Lecture 5

Instability



 Why can some solar features stay long time like
prominences and coronal loops, while some produce quick
events such as flares? This 1s the problem of instability.

 Basic Methods

— Linearization method
Consider one dimension potential energy wave

force : F:_d_W mx:F:—d—W
dx dx

for small displacement

oo 2
mx = —x{d VI/} = F(x)
x=0

dx

F (x) 1s first order approximation of F.
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Assume x =x,e'” (normal mode solution)
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Fig. 7.1. Potential energy curves for a one-dimensional system that is in equilibrium at x = 0.

An alternative approach for tackling particle stability is to consider the change
(3W) in potential energy due to a displacement (x) from equilibrium. To first order in
x,8W = x(dW/dx),, which vanishes by assumption. To second order,

x? (d*W
=Wx) - WO ==—] .
W (x) (0) 3 ( P )o
which may be derived alternatively by noting that the change in potential energy is
just minus the work done by the linear force (F,(x)), namely,
W = —J F,(x)dx = = 4xF (x) (7.1)
0

The particle is in stable equilibrium if §W > 0 for all small displacements from x =0,
both with x >0 and x < 0. It is unstable if W <0 for at least one small displace-
ment, either with x > 0 or x < 0. The frequency () can be written in terms of §W by



* Energy Method
(d*wW
SW =W (x)— W (0) = "2 ( 5

oW >0 for all small displacement - stable

]0 —— xR

oW <0 for one point - unstable

* Linearized Equations
» This is very similar to the study of waves
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At equilibrium
0=VEF, +]_'(;><§+p0§
— VX B
Jo =

)7,
Perturb the equilibrium by

V-B,=0

/0:/00+/019 V=YV, P:PO+])19 B:BO+Bl’j:j0+j1
B - —
Then: %IVX(‘GXBO)
4
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To lowest order V,=x 2 +y g +z 2

0x oy 0z

Define v, = 9¢ ) )

ot 7 E
Blzvox(fxBO) plz_v.(poé:) o
Equation of motion becomes . equilibrium

0
0t - )]

oo 05 = F(e(rn)

F@@w»=—vﬁ+mé+ﬂxg+ﬁxﬁ
=-VP+V(p,E)g+(Vx(Vx (ngO)))x%

+(vxz§o)><(V><(§xz§o)%

—_

solution  E(r,,1)=E(r, Je'™
_0)2,005(’”0): F(GE(’”O))

Asaspecialcose p, P, B, areconstants.

F=peV(V-£)-V(pE)g+ pi(v (v x(Ex B, ))<B,
o’ >0 system oscillates - stable

—_

@ <0 unstable



Rayleigh-Taylor Instability
« See Fig 7.3 interface between two medium
if B=0 o)< pl) stable
pé” > p(_) unstable
« With B field, magnetic tension provides stabilizing force.

Case 1: Plasma supported by magnetic fields

) f
assume Po(‘) << (B 0 %{

v, =e v, (z)e™  similar for all other vari ables

Motion equation in z direction

azvlz 6 (61)1 j _ 5j1y B ale aIl)l

Po o T o ez ) e T T Ty T 8
op.  d . 10B. 0B
_— _ : — x, X — ()
at dZ (valz) le ILI aZ at
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Fig. 7.3. (a) The interface b two pl in equilibrium. (b) The perturbed interface.

(a)

Fig. 74. Plasma (shaded) supported by a magnetic field (B!

o ') (2) Equilibrium configuration.
(b} Perturbations rippled in the y-direction. (c) Perturbations rippled in the x-direction.
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5 dP, d
— P V), = _a)g +g— (IOOvlz )

integrate over interface

0= _ia)[Pl]+ g[loovlz]
[Rl=R"-PO ] jump

d
from 7.10 ;Z +ikv,, =0, ipawv,, =—ikP,
z
So __lop, dv,, e e .
ST T, if initial equilibrium value B,, F,, p, are uniform
o’ dvlz 9By %Pi_p, vup =0, V=0
0= 7| P +gv.[p, ] o Ot
—kz
0)2 dv ® ddv2lz = +k2vlz Vi: = {e kz >0
0= _Ppéﬂ( dlz j n gvl(;)p(()ﬂ z e z<0
A 2 \/gt

w =—-gk growlike e

it

—(kx+k
more general form e v, (z)e

2(p) VP (+)
a)z = _gk + k <B(+)) kcrizical = g/upo

1P (BOY
k>k, ... stable - - - small wavelength
k<k unstable

critical



Case 2: Uniform field (Fig. 7.3)

It can be shown that

o =gk PP 2Bok,

P+ el + )

Lo =p e
‘ 2B,

interface is unstable O<k<k,

c

: 1
fastest growingmode k= 5 k



* Energy Method Applications

oW >0  stable
oW <0 in at least one point, unstable

perturbation as above
pot+p, B+F, By+B,, f(roat): f(’”o)eﬂw

2
5W=_[ B—O+POU0+pOgZ V
2u
1
= [(&-Fur

I

R A N P



« Kink 1nstability

e Consider a cylindrically symmetric magnetic flux tube. If it is
kinked, point A has stronger field than point B. ---- perturbation

can go further.

In polar coordinate system

B, = Bo¢ (R)& +B,. (R)é
By 1 d
o9+ (RB,. )¢
force free condition ~ j,xB, =0

d 2By,

E( §¢+B§z):_ R

j():_

5W=(2,u)1J'Bl2 —E-EX(VXEO)dV ignore g & P

B, :VX@XBO)

several complicated steps

e gt L (BeRR A
W =] F(de GER® + - (B,E—H) dR

" R(B,, +KkRB,,} +I*R’B
F(R)— 1+(k2+h2)R2
G(R):_(BO¢+RkBOZ)2_ (Bo¢—kRBOZ)2 - h2RB02
k RIL+(K* +1*)R?| 1+ (k> + 1 )R?
2 ppo  d [ By +hR°By,
+h RBO dR(l+(k2+h2)R2
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Fig. 7.6. (a) An equilibrium plasma tube surrounded by azimuthal field lines. (b) A lateral kink-like
perturbation of the tube.

The effect of line-tying was included by Raadu (1972), that of pressure gradients by
Giachetti er al. (1977) and that of both together by Hood and Priest (1979b), as
outlined in Section 10.2.3. Here the treatment of Raadu is presented, the main object
being to illustrate the method rather than obtain particular results.

In the force-free approximation, the gravitational and pressure forces are negligible
in the equilibrium. Omitting them also in the perturbed state reduces the general
expression (7.39) for the second-order potential energy to

§W=[2p]"JBf ~ B, ¢ x(Vx By)dV. (7.42)
where

B, =V x (¢ x By) (1.43)

Here, only a certain class of perturbation (§) will be considered for simplicity. If the
resulting smallest value of W is negative, the system is certainly unstable; but, if
it is positive, the system is stable only to that class of perturbation.
The form adopted for the perturbation is
§=28*12) (7.44)

where
B B N
§*= [E"(R)ﬁ - i=2E(R)$ + =-£*£°[R}2] gllmdvhz)
BO BD

and f(0)=f(2L)=0. This has several important properties. It vanishes at the ends
(z =0 and z = 2L) of the flux rope and so satisfies rigid boundary conditions there:



de R de fR
H| R, EX — kR-B..—B. |—->—(kRB, + B
[,g,de 1+(k2+h2)R2(dR( 0¢ OZ) R( 0+ By.)

2
” dg i R
ow=\||F -G dR
with boundary conditions, we can solve

R
d | pde +GEF =0
dR dR

This can be done by getting numerical results such as shown
in Figs 7.7 & 7.8




« Summary of Instabilities

1. Interchange instability
An interface between two plasma with different P&B. If two
neighboring bundle can be interchanged, if the wrinkles have a
wavenumber k, radius of curvature Rc interface, then

5 2Pk
0 =——
PR,
if magnetic fields are anchored down in two ends with a
distance L.
2
o =2k, v—/zl
PR, L

Long wave: stable

Short wave : unstable
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Fig. 7.7. Typical solutions to the Euler-Lagrange equation for the radial comp (¢®) of the minimi
ing perturbation for a Mux tube.
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Fig. 7.8. The stability diagram for a uniform-twist force-free Mlux tube of length 2L and effective width 2a,
where k is the wavenumber of the perturbation along the tube and @ is the twist (from Hood and Priest,
1979b).



2. Reyleigh-Taylor instability (Fig 7.3)

Perturbation grow at rate e’

o =gk PP
P+ Py

uniform vertical fields, modify growth rate

but do not change instability

F—0 o =gk PP

P+
0 iw=gB—\/;(JpJ _\/,00_)
0

uniform horizontal field can change instability

k

o =gk o8 = pi? .\ 2Bk’ if plasma is supported by magnetic fields below, then :
P+l el + ) o — g KBS
critical condition PUPy
P (pé” — pé_) )g,u most unstable k.=0 iow=./gk
‘ 2B’ k_#0, magnetic tension tries to restore
0 X

2

Long waves k < ‘;—A are stable
L
g
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Fig. 7.9. (a) Part of the concave surface of & magnetic field that confines plasma in some region. (b) A
Nute-like displacement of the interface.
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Fig. 7.10. (a) A linear pinch containing plasma at pressure p, and magnetic field of strength B, i. A
current (J) Nows on the surface and produces a field (B,$) in the surrounding region. (b) A sausage per-
turbation of the interface.



3. Pinched discharge
vertical current produces azimuthal fields plasma is confined —
pinched

j % B inwards is balanced by pressure gradient outwards
If there 1s no magnetic fields inside plasma the growth rate of
sausage instability is

1
2Pk \2 .
ia):( ij a :radius

0a
1
' @A)
for disturbance O = Po
a
The pinch can be stabilized by large enough
axial field B? B?
BZ PO + 0z _ 4
2u  2u
modified dispersion relation
.__2B, B
P ppya’
1

for stability, if requires  B;, >—B;



. Flow Instability

Laminar viscous flow between rigid boundaries such as walls of
Lab channels becomes unstable and develop into a turbulent flow
it occurs when R, >R, critical Reynolds number

B 1 flow
R’ =50,000 Ha
BOLO

1

(o/ pv)2

Ha = - Hartman number

B// flow

R =500 Ha

If we have uniform inviscid flow baring 2 flow speeds
- Kelvin - Helmhotz instability

2

unstableif k> sl —p") :
,0_,0+ (U(+) _ U(—))




5. Resistive Instability
B field in a current sheet of width / diffused through

ZZ
"
n=(uc)" magnetic diffusivity

plasmaon a timescale 7, =

driving force F/,
restoring force F. = jxB=—-cv_(¢B,) %
it F,>F, stable

gravitation mode - gravitation gpoXx transverse to current

sheet to produce density strafication.
1

2 2\3
Growth rate o= [(H)TAJ

4 4
Tils

/ & . dp, | ?
Ty=— 4= n:(luo-)l’rG:E_gpoj
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Fig. 712 Resistive instability in a current sheet for which the drivin
force (F, ). Significant diffusion takes place over a

wavelength (2rn/k) is shown, but, in praclic

=]

8 force (F,) exceeds the restoring
fraction (x) of the width (/) of the sheet. Here Just one
e, there may be many such features end 1o end.

x(or R)
gravitational or tearing
rippling mode mode

instabilities in a cy

Fig. 1.13, Small- and long- wavelength resistive rrent sheet or a sheared magnetic
field, 3



rippling mode::
there 1s a spatial variation across the sheet in magnetic diffusivity 7, (x)

v. dn, B, .

o
wn, dx
1
. Kdno zj“ (kz)T
lo= 23
dx 1, ) T,T,
tearing mode :
only occurs when kl <1
does not require g, or A
dx

1
1 1
ia):[rjrj(kl)ZIS, [7’4]4 <lk<1

T4

longest wavelength has fastest growth rate can lead reconnection, coronal beating.



6. Convective Instability

We have discussed this in chapter 4.

Consider g only
N2 = &[4k —(dTOJ 437
I,\ dz dz ),
w=N Brunt - Vaisala frequency

. T T, .. -
it 9o (d Oj o >0 — convectiveinstability
dz dz ),



7. Radiatively driven thermal instability
If thermal conduction were in effective, thermal instabilities would
occur in the corona and upper atmosphere, due to the radiative loss
term in energy equation.

Suppose plasma is initially in equilibrium with 7,0, balance
between mechanical heating /o (per unit volume) and optically
thin radiation ypT“ leadsto &= yp,I;

for a perturbation at constant pressure

oT mP.
c,—=h—ypl"” =—
P ot AP £ kT

Ta—l
= 2o 1-
XPoly ( Toalj

if a <1, asmalldecreasein T, (T <T,) makes %r <0,

perturbation continues, - thermal instability



c
Timescale 7, = T

oty )
Typically, <1 for T>10°K  see Table7.1

Thermal instability is prevented by heat conduction along magnetic fields.

,O'IV(k//VT) ky=ky”
conduction time
= pcy k™

r,<rt,, stabalized

7/2-a \o
L= (kOTO—ZJ =L . critical length
ZPo

L>L_ instable

TABLE 7.1

The growth-time in seconds for radiative cooling in a plasma of number density
nolm ™ ?) and temperature Ty(K).

Mg T,

10% § x 10* 10¢ 2 x 10¢ 107
o' 440 2200 32 % 10* 1.3 x 10 3.2 x 10
104 44 220 3.2 x 10? 1.3 x 10* 3.2 % 10¢

|0e 4.4 22 320 1.3 x10° 3.2 x 104




Homework

* Try to use normal mode method to analyze
the kink instability.



