
Ph777, week 2*

Part 1. Particle Kinetics of Thermal Plasmas

1.1 Debye Shielding, Collective Behavior of Plasma,
Plasma and Cyclotron Oscillations

Debye length:

�D �
h kT

4�ne2

i
= 690cm

�T [104K]
n[cm�3]

�1=2
Debye number:

ND = n
4�

3
�3D = 1:38� 109

(T [104K])3=2

(n[cm�3])1=2

Since ND � 1, we expect collective behaviors.
Plasma frequency:

!p =

s
4�e2n

me
= 5:64� 104Hz(n[cm�3])1=2

Plasma n [cm�3] !p
Interstellar Medium 1 100 kHz
Earth Ionosphere 104 10 MHz (radio)
Fusion experiment 1015 100 GHz (mm)
Sun's core 1025 1017 Hz (SX)

Cyclotron frequency:

!c =
eB

mec
= 1:76� 107HzB[gauss]

Plasma B [gauss] !c
Interstellar Medium � 10�6 � 100 kHz
Earth/Sun magnetosphere � 1 � 10 MHz (radio)
Neutron star magnetosphere 1012 � 1019 GHz (HX)
Fusion experiment 106 � 1013 Hz (IR)

1.2 Coulomb Collisions of a \Test" Particles with \Field" Particles

It is essential to understand basic physics of Coulomb scattering (or collisions) in this study
as Coulomb scattering will be the dominant physical process in a plasma. For an order-of-
magnitude estimate, we take

* Note from the lecturer (JL): I suppose Ph 777 is primary for solar MHD study. During its
�rst three weeks we will review some fundamental aspects of the plasma physics as appropri-
ate for the rest of the course. Last week, we learned Debye shielding, and plasma/cyclotron
frequencies as well as the motions of individual particles moving in a largescale electromag-
netic �elds. Here I continue some related issues that we can do with thermal (or just mean,
if not Maxwellian,) velocity distribution. In the next (week 3), I will intend to introduce the
kinetic theory for warm plasmas. Most of materials here are derived from the lecture note of
Ph136 at Caltech which I attended in 1989-90. The credit of this material goes to Dr. Roger
Blandford.
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Test particle Field particle
m mf

v vf
�e Ze

and assume m� mf and (1=2)mv2 � (1=2)mfv
2

f (i.e., v � vf ).

We begin with a single Coulomb collision as shown below:

There is a critical impact parameter (which gives (1=2)mv2 = Ze2=b0)

b0 � 2Ze2

mv2

by which we distinguish two regimes of the deection angle.

For b� b0, deected through a very small angle in which case we use
mv�D =

R
Ze2b=(b2 + v2t2)3=2dt = 2Ze2=vb. Thus

�D =
b

b0
:

For b � b0, the deection angle is of order �=2.

�D � �

2
:

The test particle's energy loss �4E equals to the energy gained by the �eld particle
1

2
mf (4vf )2. Also the momentum conserves, mv�D = mf4vf , so

4E = �1

2
mf (4vf )2 = � m

mf

�b0
b

�2
E:

Next we turn from an individual Coulomb collisions to the net, statistically averaged
e�ect of many collisions, and consider the mean time tD required for the orbit of the �eld
particles to get deected by �=2 from initial direction.

If single large-angle scattering is dominant source of this deection, tD would be:

tD =
1

nf�v
=

1

nf�b
2

0
v

(single large angle scattering)

However, the cumulative, random walk e�ects of many single scattering actually pro-
duces a net �=2 deection in a time scale shorter than this. In this case the mean deection
angle will vanish, but the mean square deection angle will be:
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h�2i =
Z bmax

bmin

hb0
b

i
nfvt2�bdb = nf2�b

2

0
vt ln

hbmax

bmin

i
:

In this case, the deection time (when h�2i � 1) is therefore

tD =
1

nf2�b20v ln�
(multiple random scattering):

This is shorter by (1=2) ln� than the tD for single large-angle scattering.
In addition to tD, we want to know the mean time for the energy of the test particle to

change signi�cantly. Since

4E
E

= � m

mf

�b0
b

�2
= � m

mf
�2D;

by analogy,

h4E
E
i = � m

mf
h�Di2:

Therefore,

tE =
mf

m
tD:

If we know �, we will be able to calculate tD, tE, ... etc. It can immediately be seen
that bmax = �D. The minimum impact parameter bmin has di�erent values depending on
whether quantum mechanical (QM) wave packet spreading is important or not.

Suppose the particle is in a QM wave packet with transverse size l0 as it nears the �eld
particle. Then it will have a QM spread 4py ' �h=l0 in its initial transverse momentum.
After time � the packet's size will be

l2(�) = l2
0
+
h4py
m

�
i2
' l2

0
+
h �h�
ml0

i2
� �h�

m

l �
r

�h�

m
�
r

�hb

mv

where � is a time for its encounter with the �eld particle. Since wave packet can be no smaller
than

p
�hb=mv, the nearest distance that the test particle can come to the �eld particles is

bnearest = �h=mv, the deBroglie wavelength. If bnearest < b0, the large-angle scatterings are
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allowed and bmin = b0. If bnearest > b0, the large-angle scatterings are prevented from
occurring by wave packet spreading, bmin = bnearest. In summary,

bmin = max [b0; �DeBroglie] = max [
2Ze2

mv2
;
�h

mv
]

and � = �D=bmin

Note that we can express the ratio of the two bmin's as

�h=mv

b0
=

v=c

2Z�

where � � e2=�hc ' 1=137, the �ne structure constant. This means that (for the �eld
particles of either protons or electrons i.e. Z = 1) wave packet spreading is important, and
bmin = �h=mv at test particle speeds > 2�c; scattering is unimportant and bmin = b0 at
speeds < 2�c.

If the test particle is an electron (m = me) and has a velocity given by
(1=2)mv2 = (3=2)kT and if plasma is made of hydrogen (Z = 1), the switch of bmin from
�h=mv to b0 occurs at

1

2
mv2 = 3

2
kT = 2�2mc2, i.e., at kT ' (one Rydberg), i.e. T ' 1� 104

K. By contrast, if the test particle is proton then the switch occurs at kT ' (mp=me)�(one
Rydberg), i.e. T ' 2� 107 K. See the table (from Spitzer 1962) in HW1.

In some literature (e.g., Melrose 1986)

ln�C ' 16:0� 1

2
lnne +

3

2
lnTe Te � 7� 104 K

' 21:6� 1

2
lnne + lnTe Te � 7� 104 K:

1.3 Thermal Equilibration Time Scales in a Plasma

The time required for particle of one species with another achieving a Maxwellian distribution
would be similar to the time for signi�cant energy exchange, i.e., teq � tE .

(1) teq; e�e � time required for electrons to equilibrate with each other. Assume electrons
begin with typical individual energies of order Te where Te is the temperature to which they
are going to equilibrate, but their initial velocity distribution is non-Maxwellian. Choose a
typical electron as test particle and all other electrons as the �eld particles.

m = me; mf = me; mv2 � mfv
2 � 3kTe

nf = n; b2
0
=
� 2e2

mv2

�2
=
� 2e2

3kTe

�2

teq; e�e =
�mf

m

� 1

nf2�b20v ln�
=

33=2

8�

m
1=2
e (kTe)

3=2

e4n ln�

A more careful calculation based on the Fokker-Planck equation gives 33=2=8� = 0:21
instead of 3=4

p
� = 0:42.
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teq; e�e =
3

4
p
�

m
1=2
e (kTe)

3=2

e4n ln�
=
h1:6� 109s

(ln�)=10

ih (kTe=1keV)3=2
n=1cm�3

i

(2) teq; i�i � time required for ions to equilibrate with each other. We replaceme by mp and
Te by Ti

teq; i�i =
hmp

me

i1=2hTi
Te

i3=2
teq; e�e � 43teq; e�e =

h7� 1010s

(ln�)=10

ih (kTe=1keV)3=2
n=1cm�3

i

(3) teq; i�i � time required for electrons to equilibrate with ions. Set m = me, mf = mp and
Te = Ti. Correspondingly mv2 = mfv

2

f = 3kTe. We then �nd teq; e�i = (mp=me)teq; e�e,
but a more careful calculation based on Fokker-Planck equation gives an additional factor,
1=23=2 = 0:35:

teq; e�i =
1

23=2

hmp

me

i
teq; e�e � 650teq; e�e =

h1� 1012s

(ln�)=10

ih (kTe=1keV)3=2
n=1cm�3

i
Note that the energy equilibration times teq are almost always enormously long compared

to 1=!p, 1=!c, and other dynamical time scales of a plasma. As a result, it is common that the
electron and ion velocity distributions are not Maxwellian and the non-Maxwellian nature
plays an important role in the dynamics and evolution of the plasma. In analyzing the
dynamics, one must use the phase space distribution function N(x; v; t) for electrons and
ions, respectively.

1.4 Thermoelectric Transport CoeÆcients

Electrons are much more mobile than ions, and are mainly responsible for the transport of
heat and charge through a plasma. But there typically are two impediments to an electron's
motion: Coulomb collisions and the Lorentz force v �B due to magnetic �eld B.

If tD;e � 1=!c then magnetic �eld has little e�ect on thermal and electrical conductivity.
But much more common is tD;e � 1=!c in which an electron typically makes many circuits
around the magnetic �eld line before Coulomb scattering signi�cantly a�ects its orbit. In
this case the electrons have great diÆculty traveling distances larger than their Lamor radii

rL � �

!c
' 3kTmec

2

eB
= 131 cm

s
kT [keV]

B[gauss]

in directions transverse to the �eld. This suppression, strictly speaking, makes MHD ap-
proach in valid. However, when MHD predicts negligible current ow across �eld lines, it
recovers its validity.

Here we shall derive the expression for the electrical conductivity �e and thermal con-
ductivity �T in regimes where the principal impediment to electron mobility is Coulomb
scattering:

In the presence of a temperature gradient rT , not only will a ow of heat, Q, appear,
but an electric current J will also ow. Similarly an electric produces a ow of heat. In the
absence of magnetic �elds,
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Q = ��TrT � �E; J = �eE+ �rT
where � and � are called thermoelectric transport coeÆcients. The derivation can be found
in some books (e.g., Kittel (1958) \Elementary Statistical Physics"). Here we will use the
above result to do an order of magnitude estimate.

(a) In a situation where rT = 0 we will show

�e � ne2tD;e

me
; � � kT

e
�e:

Calculate J = �nev. To estimate v from FÆt = mev with Æt taken as the mean di�usion
time, tD;e,

v = � eE

me
tD;e

and

J =
ne2tD;e

me
E: hence �e =

ne2tD;e

me

Also

Q = �nvE = n
eE

me
tD;e(kT ) =

kT

e

�ne2tD;e

me

�
E =

kT

e
�eE

Thus

� � kT

e
�e:

(b) In a situation where E = 0, we will show

�T � kn
kTe
me

tD;e; � � e

kTe
�T

Consider the temperature and density gradient exist such that a region with (T; n; v) is
separated from a region with (T + ÆT; n+ Æn; v0) by a distance l = �e, the mean free path of
electrons. Then

Q = nev(kT )� (n+ Æn)v0k(T + ÆT ) = nk � k
r
kT

me
ÆT

if we use ÆT = l � (dT=dx) and v tD;e � l we have

Q = nk
kT

me
tD;erT

Also, we have J = �nev = �nev2v�1 � ne(kT=me)(tD;e=l). Since J = �rT , � �
(e=kTe)�T .

(c) According to the thermodynamics these coeÆcients are not independent but satisfy a
speci�c relation (the Onsager relation):
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� = �Te +
5

2

kTe
e
�e

Our order of magnitude estimate shows that

�

�e

�

�T
� kT

e

e

kT
= O(1)

This is consistent with the relation, 1 � ��=�e�T = 0:419 (see below). Also, � � (kT=e)�
and � � kn(e=me)tD;e ' k=e�e ! �T � (kT )=e�e. This is consistent with the Onsager
relation.

(d) If a temperature gradient persists for suÆciently long, the e�ective thermal conductivity
reduces to about 42% of that in the absence of E. To see it, consider that after build-up of
charge separation,

J = 0! E = � �

�e
rT:

Therefore

q =
���
�e
� �T

�
rT = ��T;effrT

which de�nes �T;eff=�T = 1� ��=�e�T . Spitzer showed that for Hydrogen plasma,

��

�e�T
= 0:581:

1.5 Anomalous Resistivity

If Coulomb collision in a thermal plasma is the only process, electrical conductivity (called
Spitzer value) will be

� =
ne2

m�th
with �th =

4�ne4 ln�

m2v3th

where �th is the thermal collision frequency.
However, due to collective excitation, electromagnetic �elds may build up, which is more

e�ective than Coulomb scattering at deecting the orbits of individual electrons and ions and
exchanging energies with them. Correspondingly, the deections by the excitation's �elds
cause the transport coeÆcients �e, �T , �, and � to be much lower than predicted by Coulomb
scattering. i.e. they produce larger resistivity to the ow of current and heat. The enhanced
resistivities are called anomalous. Enhanced resistivity increases the collision rate and can
make the plasma approach the equilibrium more quickly.

For instance, low-frequency ion-sound turbulence leads to anomalous conductivity given
as:

�� � nee
2

me��
with �� � !pe

� W

nkT

�
:
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1.6 Dreicer Field

In the context of electron acceleration by electric �eld, there is a concept of \run-aways."
The idea is based on the fact that the acceleration in an electric �eld is independent of the
speed of the electron (only depends on charge and electric �eld E) whereas the slowing down
due to collisions� v�3 (see above and HW2). So there is a critical velocity (or energy) above
which electrons will freely run away unhindered by collisions. To �nd the relation between
the critical velocity vcr and the electric �eld, we start from the balance of the electric �eld
force with thermal collisions:

eE = mvd�th

where vd is a drift (away from equilibrium) velocity due to imposition of an external �eld E.
The electric �eld is regarded \weak" when vd � vth so that the plasma is not greatly

displaced en masse. If we increase the electric �eld to make vd = vth so that virtually all the
electrons run away. This is called Dreicer �eld and thus given by

ED =
mvth
e

�th =
4�e3

m
ln�

� n

v2th

�
In other words, in a weak electric �eld (E < ED) supra-thermal electrons can run away.

Since E � v�2, we can express vcr as

vcr =
vthp
E=ED

Note: 1. Due to runaways the tail of the Maxwellian distribution becomes depleted
and collisions feed electrons into the depleted tail and there will be continuous supply of
electrons. 2. You may express ED = 4�e=�2D if it seems more meaningful to you.

1.7 Charged Particle Motions in a Largescale Electromagnetic Fields
{ done in the last class.
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Homework (week 2)

HW1 : Spitzer (1962) gives values of ln� as:

Reproduce this table using the formulae derived in this class, noticing where the expression
for bmin switches. Take electron as test particle, and electron and positron as �eld particles.
Compare the result with the expression given by Priest. Which value of ln� would be
appropriate for the solar corona?

HW2: Derive the expression for Spitzer's electrical conductivity � and thermal collision
frequency �th when Coulomb collisions dominate (see sec. 1.5). Discuss why �th / v�3

th .
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