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ABSTRACT Traditional machine learning approaches to drug sensitivity prediction assume that training
data and test data must be in the same feature space and have the same underlying distribution. However, in
real-world applications, this assumption does not hold. For example, we sometimes have limited training data
for the task of drug sensitivity prediction in multiple myeloma patients (target task), but we have sufficient
auxiliary data for the task of drug sensitivity prediction in patients with another cancer type (related task),
where the auxiliary data for the related task are in a different feature space or have a different distribution.
In such cases, transfer learning, if applied correctly, would improve the performance of prediction algorithms
on the test data of the target task via leveraging the auxiliary data from the related task. In this paper, we
present two transfer learning approaches that combine the auxiliary data from the related task with the
training data of the target task to improve the prediction performance on the test data of the target task.
We evaluate the performance of our transfer learning approaches exploiting three auxiliary data sets and
compare them against baseline approaches using the area under the receiver operating characteristic curve
on the test data of the target task. Experimental results demonstrate the good performance of our approaches
and their superiority over the baseline approaches when auxiliary data are incorporated.

INDEX TERMS Machine learning, data mining, clinical informatics, precision medicine, cancer drug
discovery.

I. INTRODUCTION
Cancer has a significant impact on public health worldwide
and is the second leading cause of death in the US [1].
In 2016, the American Cancer Society predicts that 1,685,210
new cancer cases will be diagnosed, resulting in 595,690
deaths attributable to cancer in the US. Many of these cancer
patients respond differently to the same cancer drug during
chemotherapy. These response differences are attributable to
not only environmental (i.e., external) factors such as tobacco,
infectious organisms and an unhealthy diet, but also genetic
(i.e., internal) factors such as inherited genetic mutations,
hormones, immune conditions, and cancer cell heterogene-
ity, all of which make cancer drug discovery very diffi-
cult [2]–[6]. Because of the significant numbers of deaths
associated with cancer, its study has attracted the attention of
researchers from numerous domains including computational
biology, machine learning, and data mining [7]–[11].

Traditional machine learning approaches to drug sensitiv-
ity prediction have been adopted to improve the performance

of prediction algorithms. For example, Riddick et al. [12]
presented an approach that employs random forests as a
learning algorithm trained on gene expression signatures of
selected cancer cell lines and corresponding drug IC50 values
(i.e., labels), to induce (i.e., learn) amodel. The learnedmodel
is then applied to gene expression signatures of cancer cell
lines in the test set, to yield drug sensitivity predictions.
Geeleher et al. [13] proposed an approach to drug sensitivity
prediction that works as follows. The input data consisted
of baseline expressions with drug IC50 values in cell lines
and in vivo tumor gene expression. The raw microarray data
for the cell lines and clinical trials were processed sepa-
rately and then combined and homogenized. The homoge-
nized expression data consisted of cell lines expression data
(i.e., baseline gene expression levels in the cell lines) and
clinical trial expression data (i.e., baseline tumor expression
data from clinical trials). A learning algorithm was applied
to the training set containing cell lines expression data along
with the associated drug IC50 values for those cell lines, to
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learn a model. The resulting model was applied to the clinical
trial expression data in the test set, to yield drug sensitivity
predictions.

Costello et al. [14] assessed the performance of 44 drug
sensitivity prediction algorithms based on genomic, pro-
teomic, and epigenomic profiling data for 53 breast cancer
cell lines. The training set consisted of several profiling data
for 35 cell lines, where each cell line was associated with
responses of 28 drugs. The test set consisted of profiling
data for 18 cell lines. The drug response data (also called
the ground truth) were hidden for evaluation purposes. The
goal of each prediction algorithm was to induce (i.e., learn)
a model from the training set, and then perform predictions
on the test set. The predicted drug responses corresponded
to a ranked list of the most sensitive (to be ranked first)
to the most resistant (to be ranked last) cell lines for each
drug across all the 18 cell lines in the test set. The algo-
rithms’ predictions were evaluated against the ground truth
using a weighted probabilistic c-index (wpc-index) to report
final team rankings and resampled Spearman correlations for
verifying the consistency between the team rankings [14].
The top-performing approach worked by integrating several
profiling data with improved representation combined with
a probabilistic nonlinear regression model [14]. The second-
best performing approach employed random forest regression
to learn a model from profiling data of the training set and
perform predictions on the test set. The remaining prediction
algorithms were not statistically different.

The previous approaches work well only under the com-
mon assumption: the training set and test set are in the same
feature space and have the same distribution. However, this
assumption does not hold in real-world applications [15].
As an example, consider the task of predicting drug sensitivity
in multiple myeloma patients (referred to as the target task)
where we have limited training data (called target training
data). However, there exist an abundance of labeled auxiliary
data for the task of predicting drug sensitivity in patients
with another cancer type (referred to as the related task),
where the auxiliary data are in a different feature space or
have a different distribution. In addition, collecting addi-
tional training data to improve the accuracy of prediction
algorithms for the target task requires larger infrastructures
and is associated with higher costs of screening size [16].
Therefore, there is a need to create high-performance predic-
tion algorithms trained with more easily obtained data from
a related task. This methodology is referred to as transfer
learning [15], [17], [18].

The key contributions of our paper are as follows:
(1) we present two transfer learning approaches for the health
informatics domain that combine auxiliary data from the
related task with target training data, allowing a machine
learning model to achieve high performance in the target task,
and (2) we perform an experimental study on clinical trial
data where we leverage three auxiliary datasets, combined
one at a time with the target training set, to demonstrate the
predictive power and the stability of our prediction algorithms

that employ our proposed approaches against the prediction
algorithms that employ baseline approaches.

The rest of this paper is organized as follows. Section 2
reviews notations and methods related to our work. Section 3
describes the details of our proposed approaches, including
a transfer learning approach and a boosted transfer learning
approach. Section 4 reports experimental results, including
the comparison of our proposed approaches against the base-
line approaches on clinical trial data pertaining to multiple
myeloma patients. Section 5 presents an in-depth discussion
of these results. Section 6 concludes the paper and points out
some directions for future research. In the sequel, we use the
terms ‘‘sensitive’’ (‘‘resistant’’, respectively) and ‘‘respon-
der’’ (‘‘non-responder’’, respectively) interchangeably. The
terms ‘‘genes’’ and ‘‘features’’ are also used interchangeably
throughout the paper.

II. BACKGROUND
This section provides an introduction to the methods related
to our work, namely synthetic minority over-sampling tech-
nique (SMOTE) [19] and CUR matrix decomposition [20].
We introduce each of them respectively after we present
notations used in the paper.

A. NOTATIONS
To give a better understanding of the algorithms, we first sum-
marize the notations used in the paper. Matrices are written
as uppercase letters, e.g., matrix X. Vectors are denoted by
lowercase letters, e.g., x. Vector elements are denoted by italic
lowercase letters as scalars, e.g., yi or x. A transpose of a
matrix or a vector is indicated by T . So, for example, if x
is a row vector, xT is the corresponding column vector.

B. SYNTHETIC MINORITY OVER-SAMPLING
TECHNIQUE (SMOTE)
SMOTE [19] is a popular and a powerful over-sampling
method that has shown a great deal of success in many
applications [21]–[23]. Here, we are given a dataset D+ ∪
D−. D+ ∈ Rm× d contains examples from the minority class,
D− ∈ Rn× d contains examples from the majority class,
and m � n. For each example xi ∈ D+, SMOTE finds
the k nearest neighbors x1i , x

2
i , ..., x

k
i of xi ∈ D+, where

xji ∈ Rd , 1 ≤ j ≤ k , refers to the jth nearest neighbor of
the ith example xi in D+. Then SMOTE generates synthetic
examples z1i , z

2
i , ..., z

k
i along the lines between each minority

example xi ∈ D+ and its k nearest neighbors in the minority
class as follows:

1) for i = 1 to m
1.1) for j = 1 to k
1.1.1) zji = xi + (xji − xi)λ
1.1.2) Store [zji,+] in D++

1.2) end for
2) end for

where zji ∈ Rd refers to the jth synthetic example generated
from the ith example xi ∈ D+, λ ∈ (0, 1) is a random
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number, and the + sign indicates that synthetic examples
are labeled with the minority class label. A random subset
D
′

++ ⊆ D++ is then selected, where D
′

++ consists of n− m
synthetic examples. A learning algorithm could be called on
the balanced dataset D

′

++ ∪D+ ∪D−, to induce a model and
perform predictions on a given test set.

C. CUR MATRIX DECOMPOSITION
Suppose that we are given a dataset F ∈ Rm× p. Mahoney
and Drineas [20] proposed CUR matrix decomposition as
a dimensionality reduction paradigm that aims to obtain a
low rank approximation of the matrix F, which is expressed
in terms of some actual rows and columns of the original
matrix F:

F ≈ CUR (1)

where C consists of a small number of the actual columns of
F, R consists of a small number of the actual rows of F, and
U is a constructed matrix that guarantees that CUR is close
to F. Let vξj be the jth element of the ξ th right singular vector
of F. Let l be the rank of F. Then the normalized statistical
leverage scores equal

πj =
1
l

l∑
ξ=1

(vξj )
2

(2)

for j = 1, . . . , p and
p∑
j=1
πj = 1. C, U, and R matrices are

constructed after calling the COLUMNSELECT algorithm
of Mahoney et al., which takes the input matrix F, the rank
parameter l, and an error parameter ε, and then performs the
following steps:

1) Compute v1, v2, ..., vl (i.e., the top l right singular
vectors of F) and the normalized statistical leverage
scores in Equation (2).

2) Keep the jth column of F with probability pj =
min{1, cπj} for j = 1, . . . , p where c = O(l log l/ε2).

3) Return the matrix C consisting of the selected
columns of F.

In step 1, the singular value decomposition (SVD) of F
is computed, which decomposes F into U6VT , where
U ∈ Rm× l is the orthogonal matrix containing the top l left
singular vectors of F, 6 ∈ Rl× l is the diagonal matrix
containing singular values of F, VT

∈ Rl× p is the orthogonal
matrix containing the top l right singular vectors of F, and l
is the rank of F. The columns of U are pairwise orthogonal
and normal (i.e., orthonormal), but its rows are not orthonor-
mal as Euclidean norm is between 0 and 1. The rows of
VT are pairwise orthogonal and normal (i.e., orthonormal),
but its columns are not orthonormal as Euclidean norm is
between 0 and 1 [24]. The other matrices (i.e., R, and U) are
constructed as follows:

1) Run COLUMNSELECT on FT with c = O(l log l/ε2)
to choose rows of F (columns of FT ) and construct the
matrix R.

2) The matrix U is defined as U=C+FR+, where C+ and
R+ denote the Moore-Penrose generalized inverse of
the matrices C and R, respectively.

Statistical leverage scores have been successfully used in data
analysis to identify the most influential genes and outlier
detection [20]. A high statistical leverage score for a given
gene indicates that the gene is regarded as an important
(i.e., influential) gene. A low statistical leverage score for a
given gene indicates that the gene is regarded as an unim-
portant gene. To select the q most important genes from the
matrix F, where q < p, we find the highest q statistical
leverage scores used in computing the matrix C of F, which
correspond to the q most influential (i.e., important) genes.

FIGURE 1. Flowchart of the proposed transfer learning approach to
predicting in vivo drug sensitivity.

III. PROPOSED APPROACHES
A. THE TRANSFER LEARNING APPROACH
Figure 1 illustrates the proposed transfer learning approach,
which works as follows. Suppose that we are given a tar-
get training set F ={(x1,y1), ..., (xm, ym)} and a target test set
T ={t1, ..., tr }. In the target training set, xi ∈ Rp is the ith tar-
get training example with p genes (i.e., features), yi ∈ R is the
corresponding label of xi, and ti ∈ Rp is the ith target testing
example with p genes. The target training set and target test
set are disjoint, wherem and r are the numbers of training and
testing examples, respectively, in the target task. In addition,
we have an auxiliary dataset S = {(s1, u1), ..., (sf , uf )}, where
si ∈ Rn is the ith example (i.e., cell line of a cancer type) with
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n genes (i.e., features), ui ∈ R is the corresponding label of si,
and n, the number of genes in the auxiliary data, is different
from p, the number of genes in the target task. Our goal is to
improve the prediction performance on the target test set T
of the target task (i.e., prediction of bortezomib sensitivity in
multiple myeloma patients) via learning an accurate model
using the auxiliary dataset S and the target training set F.
We summarize the problem definition in Table 1.

TABLE 1. Problem formulation.

To incorporate the auxiliary data into the target training set,
we perform the following steps.

(i) If the number of genes p in the target training set
F is greater than the number of genes n in the auxiliary
dataset S, then we perform gene (i.e., feature) selection on
F as explained in step (ii). Otherwise, we perform gene selec-
tion on S. Assume without loss of generality that p > n.
(ii) We select q genes from F based on their importance

scores as defined in Equation (2), which depend on comput-
ing the matrices C, U, R of F and the input rank parameter l.
(In this study, q = n and we used the default parameter values
for l, c, and ε in the CUR function [25].) Specifically, we
store the indexes of the highest q leverage scores in I where
q < p; these indexes correspond to the positions of the q
most important genes in the matrix F. We then select the q
genes from the target training set F based on the positions in
I and store the target training examples with the q genes in
F
′

= {(x
′

1, y
′

1), ..., (x
′

m, y
′

m)}.
(iii) The following steps are based on a modified version

of SMOTE [19] where each example in the auxiliary dataset
S obtains a representation closer to the target training set F

′

:
1) Select b examples from the auxiliary dataset S.

(In the study presented here, b = 100.) For each exam-
ple si, 1 ≤ i ≤ b, selected from S, pick one of
si’s nearest target training examples from F

′

, denoted
x∗i , such that the picked example is different from all
the target training examples previously picked for sj,
1 ≤ j < i. More precisely, suppose si’s k nearest
target training examples are among the target training
examples previously picked for sj, 1 ≤ j < i. Then x∗i
is si’s (k+1)th nearest target training example from F

′

.
Let y

′

i be the corresponding label of x
∗
i .

2) Change the representation of the examples selected
from S using the following lines of code:
2.1) for i = 1 to b
2.1.1) s∗i = si + (x∗i − si)λ
2.1.2) Store [s∗i , (y

′

i − α)] in S
+

2.2) end for

where λ = 0.99, α = 0.01, and S+ contains the new
representations of the auxiliary data. Let D = S+ ∪ F

′

contain the combined cell lines expression data, where
D ∈ Rm

′
×n, and m

′

= m+ b.
(iv) A learning algorithm is called on D to induce a model h.
(v) The n most important genes in the target test set T

are selected based on the positions in I and stored in T
′

.

The model h is applied to the target test set T
′

to perform
predictions.

FIGURE 2. Flowchart of the proposed boosted transfer learning approach
to predicting in vivo drug sensitivity.

B. THE BOOSTED TRANSFER LEARNING APPROACH
Figure 2 illustrates the proposed boosted transfer learning
approach. Here, steps (i), (ii), and (iii) are the same as steps
(i), (ii), and (iii) of the transfer learning approach.

(iv) We employ a modified AdaBoost algorithm [26]–
[29], which works as follows. Initially, each training example
(xi, yi) ∈ D is assigned a weight wi = 1 for i = 1, . . . ,m

′

.
The probability for selecting the ith training example (xi, yi)
in the training set D is

pi =
wi

m′∑
i=1

wi

(3)

where
m
′∑

i=1
pi = 1. Select m

′

training examples (without

replacement) from D to form the training set D
′

. A learning

7384 VOLUME 5, 2017



T. Turki et al.: Transfer Learning Approaches to Improve Drug Sensitivity Prediction

algorithm is called on D
′

to learn a model h and perform
predictions on D, where the predictions are then stored in
y
′

= (y
′

1, ..., y
′

m′
). Select the n most important genes in the

target test set T ={t1, ..., tr } using the positions in I, and store
the target testing examples with the n genes in T

′

. Apply the
model h to the target test set T

′

to yield predictions, which
are stored as the first row vector in a matrix G. Repeat the
following steps j times by executing the while loop below.
(In this study, j = 6.) Initially a = 1.

While a ≤ j
1) Update the weights: wi = (yi − y

′

i)
2
for i =

1, . . . ,m
′

.
2) Calculate probabilities p = (p1, p2, ..., pm′ ) of the
training examples in D, where pi, 1 ≤ i ≤ m

′

, is as
defined in Equation (3).
3) Calculate the median of the probabilities
p1, p2, . . . , pm′ and store the median in v.
4) Select training examples from D where the weight
of each selected example must be greater than or equal
to v. Store the selected training examples in D

′

. Let p*
contain the probabilities corresponding to the selected
training examples.
5) Select m

′

training examples (with replacement)
from D

′

according to the probabilities in p* and store
the selected training examples in D

′′

. The higher prob-
ability a training example is associated with, the more
likely this training example will be included in D

′′

.
6) A learning algorithm is called onD

′′

to learn amodel
h and perform predictions on D.
7) Store the predictions performed on D in q.
8) Let y

′

= y
′

+ q, which corresponds to the cumulative
predictions on the training set D.
9) Apply the learned model h to the target test set T

′

and store the predictions as the (a+1)th row vector inG.
10) a = a+ 1.

(v) Output the final predictions as

Q = eTG (4)

where G is a (j+1)×r matrix of predictions on the target test
set T

′

, the ith row vector of G corresponds to the predictions
made in the (i−1)th iteration in step (iv), e = ( 1

j+1 , ...,
1
j+1 )

T

is a (j + 1) × 1 column vector, and Q is a 1 × r row vector
where the ith element in Q is the average of the values in the
ith column of G.

IV. EXPERIMENTS
A. DATASETS
1) DATA PERTAINING TO MULTIPLE MYELOMA PATIENTS
The target training set F ∈ R280 × 9115 contains
280 target training examples (i.e., cancer cell lines),
9,114 genes, and drug IC50 values that correspond to a
280-dimensional column vector. The target test set T ∈
R 188 × 9114 is composed of 188 samples of multiple myeloma
patients and 9,114 genes. The drug IC50 values for borte-
zomib [30], [31] were downloaded from (http://genemed.
uchicago.edu/~pgeeleher/cgpPrediction/) [13], and the data

for the cancer cell lines were downloaded from the Array-
Express repository (the accession number is E-MTAB-783 or
available at https://www.ebi.ac.uk/arrayexpress/experiments/
E-MTAB-783/?query=EMTAB783) [32]–[34]. The clinical
trial data corresponding to the target test set were down-
loaded from the Gene Expression Omnibus (GEO) reposi-
tory (http://www.ncbi.nlm.nih.gov/geo/) with the accession
number GSE9782. The data were downloaded, processed and
mapped according to Geeleher et al. [13].

2) DATA PERTAINING TO BREAST CANCER PATIENTS
The auxiliary data correspond to a 482 × 6539 matrix
containing 482 examples and 6,538 genes plus labels, i.e.,
drug IC50 values, for breast cancer patients. The drug IC50
values for docetaxel [35], [36] (a chemotherapy drug) were
downloaded from (http://genemed.uchicago.edu/~pgeeleher/
cgpPrediction/) [13]. The cell lines expression data were
downloaded from the ArrayExpress repository (with the acc-
ession number being E-MTAB-783, available at https://www.
ebi.ac.uk/arrayexpress/experiments/E-MTAB-783/?query=E
MTAB783) [32]–[34]. All the data were downloaded
and processed according to the approach developed by
Geeleher et al. [13].

3) DATA PERTAINING TO PATIENTS OF TRIPLE-NEGATIVE
BREAST CANCER AND NON-SMALL CELL LUNG CANCER
The auxiliary data correspond to a 497 × 9621 matrix
containing 497 examples and 9,620 genes plus labels
and a 258 × 9508 matrix containing 258 examples and
9,507 genes plus labels for triple-negative breast cancer
patients and non-small cell lung cancer patients, respectively.
The data were downloaded from (http://genemed.uchicago.
edu/~pgeeleher/cgpPrediction/).

B. EVALUATION AND BASELINE APPROACHES
We compared our proposed transfer learning approaches with
two different baseline approaches, described below.

1) FIRST BASELINE (B1)
This baseline employs the approach developed
by Geeleher et al. [13].

2) SECOND BASELINE (B2)
In this baseline, we apply CUR matrix decomposition to F.
We then store the indexes of the largest n statistical leverage
scores of F in I, as in our proposed approaches. The n most
important genes from the target training examples in F are
selected using the positions in I. A learning algorithm is called
on the auxiliary data with n genes combined with the target
training examples with the n most important genes, to learn
a model h. Then, the n most important genes in the target
test set are selected using the positions in I. The model h
is applied to the target testing examples with the n most
important genes, to yield drug sensitivity predictions. Thus,
this baseline differs from our proposed approaches in that it
does not have a transfer learning mechanism (cf. step (iii)
in Section 3.1).
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TABLE 2. Summary of the twelve drug sensitivity prediction algorithms
studied in this paper.

The proposed transfer learning approaches and the baseline
approaches employ twomachine learning algorithms, namely
support vector regression (SVR) and ridge regression (RR).
Table 2 summarizes the twelve prediction algorithms studied
in this paper.

Each prediction algorithm was trained on a training set,
whose labels were continuous, to yield a model. Then, each
model was applied to the target test set to yield predictions
(i.e., predicted labels), which were also continuous values.
The target test set consists of patients’ clinical trial expres-
sion data, which are baseline tumor expression data from
primary tumor biopsies before treatment with a cancer drug
(e.g., bortezomib or docetaxel).

The true labels of the target test set are categorical, which
are either ‘‘sensitive’’ or ‘‘resistant’’. These true labels were
clinically evaluated by the degree of reduction in tumor size
to a cancer drug. A cancer patient is categorized as sensitive
to the cancer drug treatment if the cancer patient exhibits less
than 25% residual tumor. A cancer patient is categorized as
resistant to the cancer drug treatment if the cancer patient
exhibits greater than or equal to 25% residual tumor [13].

Using in vitro drug sensitivity of the training data to predict
in vivo drug sensitivity of the target test set is a challenging
task and a main goal in precision medicine, which corre-
sponds to predicting the clinical outcome that is crucial for
the life of the human being [37]. If the clinical drug response
(i.e., clinical response to a cancer drug) is incorrectly pre-
dicted, the tumor size of a cancer patient would increase
significantly over the time, which causes sequelae that lead
to death. If the clinical drug response is correctly predicted,
the tumor size would decrease significantly over the time and
that would save the patient. By predicting clinical outcomes
in the target test set correctly, clinicians would benefit from
understanding the relationship between in vivo and in vitro
drug sensitivity, which leads to better personalized treatment.

Ten-fold cross validation is not suitable in this study as
labels of the target test set are categorical while labels of the
corresponding target training set are real numbers. Hence,
to evaluate whether the proposed approaches exhibit stable
performance as sample sizes change, we randomly reduced
the sample size for the target training set by 1% in each
run, until the reduction reached 4%. In other words, we per-
formed 5 runs with sample sizes of 280, 278, 275, 272, 269,
respectively.

The accuracy of the prediction algorithms was measured
using the area under the receiver operating characteristic

(ROC) curve (AUC), as described in [13]. The higher the
AUC score an algorithm achieves, the better its performance
is. We used MAUC to denote the mean of the AUC values
averaged over the five runs of experiments. Each run here
includes the predictions of a learned model on the target test
set in which the model was learned from a training set whose
size is varied to assess the stability of the prediction algo-
rithms. A stable prediction algorithm is one whose prediction
accuracy on the target test set does not change dramatically
owing to small changes of the training set size [38], [39]. This
type of assessment is important in biological systems, where
the best prediction algorithm is the one that outperforms
the other algorithms many times on conducted experiments.
The statistical significance of each prediction algorithm was
calculated.

The software used in this work included support vector
regression with linear and sigmoid kernels (with their default
parameter values) in the LIBSVM package [40], ridge regres-
sion [13], gene selection using CUR and topLeverage func-
tions in the rCUR package [25], and R code for processing
the datasets and performance evaluation [13]. We used R to
write code for the prediction algorithms and to perform the
experiments.

C. EXPERIMENTAL RESULTS
We evaluate the relative performance of our proposed
approaches compared to the baseline approaches. Each time
we use the target training set of multiple myeloma along
with one of the auxiliary datasets pertaining to breast cancer,
triple-negative breast cancer, and non-small cell lung cancer
respectively to train the approaches described in the paper
(except the B1 approach that uses only the target training
set), to yield prediction models and perform predictions on
the target test set.

1) EXPLOITING AUXILIARY DATA OF
BREAST CANCER PATIENTS
Table 3 shows details of the target training set and auxiliary
dataset pertaining to breast cancer patients used by each pre-
diction algorithm. The target training set is obtained from the
target task (i.e., prediction of bortezomib sensitivity in mul-
tiple myeloma patients) and the auxiliary data are acquired
from the related task (i.e., prediction of docetaxel sensitivity
in breast cancer patients). Row ‘‘m/l’’ shows the number
of examples or cell lines in the target training set/auxiliary
dataset used in each run. Row ‘‘p/n’’ shows the number of
genes or features in the target training set/auxiliary dataset
used in each run. Row ‘‘p ∩ n’’ shows the number of over-
lapped (i.e., intersected) genes between the target training
set and the auxiliary dataset in each run. Rows ‘‘Pm/l’’ and
‘‘Pp/n’’ show the number of selected examples in the tar-
get training set/auxiliary dataset and the number of selected
genes in the target training set/auxiliary dataset, respec-
tively, that were used by the prediction algorithms employing
our approaches during the training stage to learn models.
Rows ‘‘B1m’’ and ‘‘B1p’’ show the number of selected exam-
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TABLE 3. Details of the target training set and auxiliary dataset
pertaining to multiple myeloma patients and breast cancer patients,
respectively, used by each prediction algorithm.

ples and genes, respectively, in the target training set that
were used during the training stage by the prediction algo-
rithms employing the first baseline approach (B1). Rows
‘‘B2m/l’’ and ‘‘B2p/n’’ show the number of selected examples
and genes, respectively, in the target training set/auxiliary
dataset that were used by the prediction algorithms employ-
ing the second baseline approach (B2). In each run we
change the size of the target training set and train all the
prediction algorithms employing the approaches described in
Sections 3 and 4.2 to yield models.

TABLE 4. AUC scores of the twelve prediction algorithms on the target
test set of multiple myeloma patients where the target training set and
auxiliary dataset pertaining to multiple myeloma patients and breast
cancer patients, respectively, are used. In each run, the highest AUC is
shown in bold. Std is the standard deviation of the AUC values
obtained from the five runs.

Table 4 shows the AUCs of the twelve prediction algo-
rithms on the target test set of multiple myeloma patients.
As shown in Table 4, BT+SVR+S performs better
than the baseline prediction algorithms (i.e., B2+SVR+L,
B2+SVR+S, B2+RR, B1+SVR+L, B1+SVR+S and
B1+RR). In particular, BT+SVR+S achieves the highest
AUC in 4 out of 5 runs. The BT+SVR+S results were con-
sistently good compared to the other prediction algorithms in
terms of AUC on the target test set as we changed the target
training set size. These results indicate that the performance
of BT+SVR+S is stable.
Table 5 shows the P-values of a two-sample t-test on the

target test set for each run, as in [13]. For each prediction
algorithm, its highly statistically significant results are shown
in red (P < 0.001); its statistically significant results are
shown in blue (0.001 ≤ P < 0.05). As shown in Table 5,
our proposed prediction algorithms yield highly statistically

TABLE 5. P-values of a two-sample t-test for the twelve prediction
algorithms on the target test set where the target training set and
auxiliary dataset pertaining to multiple myeloma patients and breast
cancer patients, respectively, are used. For each prediction algorithm, its
results with P < 0.001 are considered highly statistically significant and
colored in red; its results with P < 0.05 are considered statistically
significant and colored in blue.

significant results; these highly statistically significant results
reflect the superior performance of our proposed prediction
algorithms.

FIGURE 3. Predictions of bortezomib sensitivity on the target test set of
multiple myeloma patients where the target training set and auxiliary
dataset pertaining to multiple myeloma patients and breast cancer
patients, respectively, are used. Strip charts and boxplots in
(a), (b), and (c) show the differences in predicted drug sensitivity to
bortezomib treatment between the responder (i.e., sensitive) group and
non-responder (i.e., resistant) group using BT+SVR+S, B1+RR, and
B2+RR, respectively. (d) shows the ROC curves of the prediction
algorithms, which reveal the proportion of true positives compared to the
proportion of false positives. ROC = receiver operating characteristic.

Figures 3(a), 3(b), and 3(c) show the predictions of
BT+SVR+S, B1+RR, and B2+RR, respectively, on the
target test set in the first run. The result of BT+SVR+S
shown in Figure 3(a) was highly statistically significant
(P = 4 × 10−5 from a two-sample t-test). The result of
B1+RR shown in Figure 3(b) was statistically significant
with P = 261 × 10−5 from a two-sample t-test. The
result of B2+RR shown in Figure 3(c) was not statistically
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significant with P = 49920× 10−5 from a two-sample t-test.
In Figure 3(d), the ROC curves reveal AUC values of 0.682,
0.614, and 0.499 for BT+SVR+S, B1+RR, and B2+RR,
respectively.

FIGURE 4. The Mean AUC (MAUC) values of the twelve bortezomib
sensitivity prediction algorithms for multiple myeloma patients where the
target training set and auxiliary dataset pertaining to multiple myeloma
patients and breast cancer patients, respectively, are used. The algorithms
are ranked from left to right where the leftmost algorithm has the highest
MAUC and the rightmost algorithm has the lowest MAUC.

Figure 4 shows the ranking of the twelve prediction algo-
rithms based on their MAUC values. The MAUC of an algo-
rithm is calculated by taking the mean of the AUC values the
algorithm receives from the 5 runs of experiments. As shown
in Figure 4, our prediction algorithms outperform the baseline
prediction algorithms with respect to the MAUC.

TABLE 6. Details of the target training set and auxiliary dataset
pertaining to multiple myeloma patients and triple-negative breast
cancer patients, respectively, used by each prediction algorithm.

2) EXPLOITING AUXILIARY DATA OF TRIPLE-NEGATIVE
BREAST CANCER PATIENTS
Table 6 shows details of the target training set and auxiliary
dataset pertaining to triple-negative breast cancer patients
used by each prediction algorithm. The target training set
is obtained from the target task (i.e., prediction of borte-
zomib sensitivity in multiple myeloma patients) and the aux-
iliary dataset is obtained from the related task (i.e., predic-
tion of cisplatin sensitivity in triple-negative breast cancer
patients). The only difference between Table 3 and Table 6
is that Table 6 has different auxiliary data pertaining to
triple-negative breast cancer patients, while the target test set
remains the same.

Table 7 shows the AUCs of the twelve prediction algo-
rithms on the target test set of multiple myeloma patients.
As shown in Table 7, our prediction algorithms employ-
ing the boosted transfer learning (BT) approach perform

TABLE 7. AUC scores of the twelve prediction algorithms on the target
test set of multiple myeloma patients where the target training set and
auxiliary dataset pertaining to multiple myeloma patients and
triple-negative breast cancer patients, respectively, are used. In each run,
the highest AUC is shown in bold. Std is the standard deviation of the
AUC values obtained from the five runs.

better than the baseline prediction algorithms. Specifically,
BT+SVR+S and BT+RR yielded the highest AUC in 4 out
of 5 runs. These results indicate that our prediction algo-
rithms employing the BT approach achieve high performance
in terms of AUC on the target test set. The results also
show the stability of the prediction algorithms employing the
BT approach.

TABLE 8. P-values of a two-sample t-test for the twelve prediction
algorithms on the target test set where the target training set and
auxiliary dataset pertaining to multiple myeloma patients and
triple-negative breast cancer patients, respectively, are used. For each
prediction algorithm, its results with P < 0.001 are considered highly
statistically significant and colored in red; its results with P < 0.05 are
considered statistically significant and colored in blue.

Table 8 shows the P-values of a two-sample t-test on
the target test set for each run. Our prediction algorithms
BT+SVR+S and BT+RR yield highly statistically signif-
icant results in each run (see the results colored in red
in Table 8). These highly statistically significant results show
the good performance of BT+SVR+S and BT+RR algo-
rithms (cf. Table 7).

Figures 5(a), 5(b), and 5(c) show the predictions of
BT+SVR+S, B1+RR, and B2+RR, respectively, on the
target test set in the first run. BT+SVR+S in Figure 5(a)
achieved a highly statistically significant result (P = 2716 ×
10−8 from a two-sample t-test). The result of B1+RR in
Figure 5(b) was statistically significant with P = 261× 10−5

from a two-sample t-test. The result of B2+RR in Figure 5(c)
was not statistically significant (P = 6622 × 10−4 from
a two-sample t-test). In Figure 5(d), the ROC curves reveal
AUC values of 0.683, 0.614, and 0.464 for BT+SVR+S,
B1+RR, and B2+RR, respectively.
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FIGURE 5. Predictions of bortezomib sensitivity on the target test set of
multiple myeloma patients where the target training set and auxiliary
dataset pertaining to multiple myeloma patients and triple-negative
breast cancer patients, respectively, are used. Strip charts and boxplots in
(a), (b), and (c) show the differences in predicted drug sensitivity to
bortezomib treatment between the responder (i.e., sensitive) group and
non-responder (i.e., resistant) group using BT+SVR+S, B1+RR, and
B2+RR, respectively. (d) shows the ROC curves of the prediction
algorithms, which reveal the proportion of true positives compared to the
proportion of false positives. ROC = receiver operating characteristic.

FIGURE 6. The Mean AUC (MAUC) values of the twelve bortezomib
sensitivity prediction algorithms for multiple myeloma patients where the
target training set and auxiliary dataset pertaining to multiple myeloma
patients and triple-negative breast cancer patients, respectively, are used.
The algorithms are ranked from left to right where the leftmost algorithm
has the highest MAUC and the rightmost algorithm has the lowest MAUC.

Figure 6 shows that our prediction algorithms
BT+SVR+S, BT+RR, BT+SVR+L, and T+SVR+S out-
perform the baseline prediction algorithms with respect to the
MAUC.

3) EXPLOITING AUXILIARY DATA OF NON-SMALL
CELL LUNG CANCER PATIENTS
Table 9 shows details of the target training set and auxil-
iary dataset pertaining to non-small cell lung cancer patients
used by each prediction algorithm. The target training set is
obtained from the target task (i.e., prediction of bortezomib
sensitivity in multiple myeloma patients) and the auxiliary

TABLE 9. Details of the target training set and auxiliary dataset
pertaining to multiple myeloma patients and non-small cell lung cancer
patients, respectively, used by each prediction algorithm.

dataset is obtained from the related task (i.e., prediction of
erlotinib sensitivity in non-small cell lung cancer patients).
Here, we use a different auxiliary dataset, which pertains to
non-small cell lung cancer patients, while the target test set
remains the same.

TABLE 10. AUC scores of the twelve prediction algorithms on the target
test set of multiple myeloma patients where the target training set and
auxiliary dataset pertaining to multiple myeloma patients and non-small
cell lung cancer patients, respectively, are used. In each run, the highest
AUC is shown in bold. Std is the standard deviation of the AUC values
obtained from the five runs.

Table 10 shows the AUCs of the twelve prediction algo-
rithms on the target test set of multiple myeloma patients.
Our prediction algorithm BT+SVR+S achieved the highest
AUC scores in 4 out of 5 runs. The high performance results
indicate the stability and superiority of the proposed BT
approach combined with SVR+S.

TABLE 11. P-values of a two-sample t-test for the twelve prediction
algorithms on the target test set where the target training set and
auxiliary dataset pertaining to multiple myeloma patients and non-small
cell lung cancer patients, respectively, are used. For each prediction
algorithm, its results with P < 0.001 are considered highly statistically
significant and colored in red; its results with P < 0.05 are considered
statistically significant and colored in blue.

Table 11 shows the P-values of a two-sample t-test on
the target test set for each run. Our prediction algorithm
BT+SVR+S yields a highly statistically significant result
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FIGURE 7. Predictions of bortezomib sensitivity on the target test set of
multiple myeloma patients where the target training set and auxiliary
dataset pertaining to multiple myeloma patients and non-small cell lung
cancer patients, respectively, are used. Strip charts and boxplots in (a),
(b), and (c) show the differences in predicted drug sensitivity to
bortezomib treatment between the responder (i.e., sensitive) group and
non-responder (i.e., resistant) group using BT+SVR+S, B1+RR, and
B2+RR, respectively. (d) shows the ROC curves of the prediction
algorithms, which reveal the proportion of true positives compared to the
proportion of false positives. ROC = receiver operating characteristic.

in each run (see the results colored in red in Table 11).
These highly statistically significant results show the good
performance of the BT+SVR+S algorithm (cf. Table 10).

Figures 7(a), 7(b), and 7(c) show the predictions of
BT+SVR+S, B1+RR, and B2+RR, respectively, on the
target test set in the first run. BT+SVR+S in Figure 7(a)
yielded a highly statistically significant result (P = 1195 ×
10−7 from a two-sample t-test). The result of B1+RR in
Figure 7(b) was statistically significant with P = 261× 10−5

from a two-sample t-test. B2+RR in Figure 7(c) yielded a
statistically significant result (P = 3381 × 10−6 from a two-
sample t-test). In Figure 7(d), the ROC curves reveal AUC
values of 0.673, 0.614, and 0.641 for BT+SVR+S, B1+RR,
and B2+RR, respectively.

Figure 8 shows that our prediction algorithmsBT+SVR+S
and BT+SVR+L outperform the baseline prediction algo-
rithms with respect to the MAUC.

V. DISCUSSION
Our experimental results show that our proposed approaches
significantly outperform the existing approach [13]. Further-
more, our proposed approaches are well-suited for a wide
range of tasks, such as integration of different types of
omics data to increase the accuracy of inferring gene regula-
tory networks (GRN) [41]–[45], and integration of different
cancer data to enhance the performance of drug sensitivity
prediction.

FIGURE 8. The Mean AUC (MAUC) values of the twelve bortezomib
sensitivity prediction algorithms for multiple myeloma patients where the
target training set and auxiliary dataset pertaining to multiple myeloma
patients and non-small cell lung cancer patients, respectively, are used.
The algorithms are ranked from left to right where the leftmost algorithm
has the highest MAUC and the rightmost algorithm has the
lowest MAUC.

In our work, the labels of training data are continuous
values and the predicted labels (i.e., predictions) of target test-
ing examples are also continuous values. However, the true
labels of the target testing examples are categorical, which are
either ‘‘sensitive’’ or ‘‘resistant.’’ As in [13], the mapping of
the predicted continuous values to the true categorical labels
was performed using the ROCR package [46]. The details of
this mapping algorithm can be found in [47]. In a nutshell,
the mapping algorithm sorts the predicted continuous values
obtained from a prediction algorithm in increasing order.
The mapping algorithm works iteratively by examining one
value at a time, from the smallest to the largest value. When
examining a particular value v, the mapping algorithm labels
v and all the values greater than or equal to v as ‘‘resistant’’
(i.e., positive) and all the values smaller than v as ‘‘sensi-
tive’’ (i.e., negative). The mapping algorithm compares these
‘‘resistant’’ and ‘‘sensitive’’ labels with the corresponding
true labels in the target test set to build a confusion matrix.
The true positive rate (TPR) and false positive rate (FPR) with
respect to the value v are then calculated and plotted. After all
the predicted continuous values are examined, multiple points
are plotted, where the x-coordinate of a point is a FPR and the
y-coordinate of the point is a TPR. These points constitute the
ROC curve of the prediction algorithm.

The biological rationale behind the good results of our
approaches is that combining cancer drugs is often used to
achieve enhanced therapeutic efficacy in a treatment [48]. For
example, docetaxel (a chemotherapy drug) is used to treat
breast cancer in combination with other specific chemother-
apy drugs [35], [49]. The bortezomib and docetaxel combi-
nation has been used as a therapy for breast cancer [50], [51].
Hence, the task of predicting bortezomib sensitivity in mul-
tiple myeloma patients is closely related to the task of
predicting docetaxel sensitivity in breast cancer patients,
where closeness plays an important role in machine learn-
ing. For example, suppose we are given an unseen example
(i.e., a testing example). If the unseen example has an expres-
sion profile closer to a training example with the correspond-
ing response (i.e., drug IC50 value), then the unseen example
is most likely to have a response closer to the response
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associated with the training example. The same holds for
combining bortezomib and cisplatin, which clinically led to
synergistic killing of head and neck squamous cell carci-
noma (HNSCC) cells [52]. In addition, erlotinib plus borte-
zomib showed a synergistic antitumor activity against the
H460 non-small cell lung cancer (NSCLC) cell line [53].

In the proposed approaches, we assumed that the number
of features (i.e., genes) in the target training set is greater
than the number of features in an auxiliary dataset. Then,
the top q (or n) features in the target test set are selected
using the highest q statistical leverage scores computed
on the target training set. However, if the number of fea-
tures in the auxiliary dataset is greater than the number of
features in the target training set (like the cases for triple-
negative breast cancer patients and non-small cell lung cancer
patients), then we select the top q features from the aux-
iliary dataset using the highest q statistical leverage scores
computed from the auxiliary dataset, where q equals the
number of features in the target training set, and no further
feature selection is performed on the target training and target
test sets.

In this work, differences in distributions between the tar-
get training data and auxiliary data have contributed to the
degraded performance on the target test set for the pre-
diction algorithms employing the second baseline approach
(B2), which does not have a transfer learning mechanism.
It is worth mentioning that we also assessed the per-
formance of other machine learning algorithms, including
random forests [54], support vector regression with a poly-
nomial kernel of degree 2, and support vector regression
with a Gaussian kernel. However, they exhibited poor per-
formance; consequently, their results are not included in this
paper.

VI. CONCLUSIONS
In this paper, we present two approaches to improve drug sen-
sitivity prediction, namely a transfer learning approach and
a boosted transfer learning approach. The transfer learning
approach works by (1) performing feature selection to bal-
ance the number of features; (2) changing the representation
of auxiliary data of a related task to a new representation that
is closer to target training data; and (3) combining the target
training data with the auxiliary data, and using the combined
result as input to a standard machine learning algorithm. The
boosted transfer learning approach boosts the performance of
the transfer learning approach using a modified version of
AdaBoost.

The proposed approaches employ two machine learn-
ing algorithms, namely support vector regression and ridge
regression. Our experimental results demonstrate the stability
of the proposed transfer learning approaches. Our approaches
outperform the baseline approaches including an existing
approach [13] as measured by their higher and statistically
significant AUC scores.

In future work we plan to (1) extend the transfer learn-
ing approaches proposed here to handle auxiliary data from

multiple related tasks simultaneously; (2) collaborate with
domain experts, where we leverage signaling pathways to
improve the prediction performance on a drug sensitivity pre-
diction task; and (3) adopt new feature representation meth-
ods to improve the proposed transfer learning approaches for
other drug sensitivity prediction tasks.
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