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1. Background

DNA is transcribed to messenger RNA (mRNA) and then translated to
proteins. The human genome is composed of roughly three billion bases of DNA.
However, there are only twenty-two thousand genes that code for proteins. Con-
sequently, genes only make up 1.5% of the genome.

Some genes encode RNA molecules that do not code for proteins, but are
transcribed into RNA molecules involved in cellular regulatory processes. Some-
times these sequences are called RNA genes or noncoding RNAs. There is an
“Expanded universe” of noncoding RNA, the importance scientists are appreciat-
ing more with every day. Noncoding RNAs play a wide variety of cellular roles
including the following:

*  rRNA —ribosomal RNA (structure/function of ribosomes)

* tRNA — transfer RNA (translation)

* snRNA — small-nuclear RNA (RNA splicing, telomere maintenance)

* snoRNA — small-nucleolar (chemical modification of rRNA)

*  miRNA — microRNA (translational regulation)

*  gRNA — guideRNA (mRNA editing)

+ tmRNA — tRNA/mRNA combination molecule (degradation of defective
proteins)

* riboswitches (translational and transcriptional regulation - figure 0).

* ribozymes (autocatalytic RNA)

* RNAIi - RNA interference (gene regulation by double-stranded RNA)

RNA is a hot topic and of fundamental biological importance. Noncoding
RNAs are an essential part of transcription, translation, alternative-splicing, and
gene regulation. Just last week, professors Andrew Fire (at Stanford Medical
School) and Craig Mello received the Nobel Prize for their discovery of RNA in-
terference.

Since RNA is usually single-stranded (as opposed to DNA) its bases often
bind with each other, causing the RNA polymer to fold upon itself into a specific
conformation. The description of which bases form bonds with each other is
called the secondary structure of an RNA molecule. The secondary structure of
noncoding RNA molecules is frequently more essential to its function than its se-
quence. As a result secondary structure is an important part of many tools in-
volved in noncoding RNA discovery. This is because the secondary structure of
orthologous noncoding RNA sequences is evolutionarily conserved.
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Figure 0: Riboswitches - a riboswitch is a part of an mRNA
molecule that can directly bind a small target molecule, and whose
binding of the target affects the gene's activity. Thus, an mRNA
that contains a riboswitch is directly involved in regulating its own
activity, depending on the presence or absence of its target mole-
cule. Riboswitches are usually found in the 5° UTR (Untranslated
Region) of genes.

2. NonCoding RNA Prediction

Since genes make up only a small percentage of the gene prediction has
become a standard problem in computational biology. Basic gene prediction pro-
grams look for signals such as start and stop codons. These are three-base se-
quences that tell the translation machinery to start and stop. They also look for
statistically-significant sequence conservation across related genomes.

Prediction of RNA genes is more challenging because noncoding RNA
signals in the genome are not as strong as the signals for protein coding genes.
This is because sequence conservation is frequently statistically insignificant. Of-
ten times, only a small percentage of residues in an RNA regulatory molecule
must be conserved to maintain its function.
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Figure 1: Alignment of two tRNA sequences from Drosophila melanogaster

On the other hand, the secondary structure (figure 2) of noncoding RNA mole-
cules often usually highly conserved, providing another tool for finding co-
variation across genomes. However, structure is also frequently inadequate for de-
tecting noncoding RNAs. If we just scan for structure we will find random se-
quences that will fold into ways that suggest they are functional.

These noncoding RNAs can also be found in a wide range of places.
Some noncoding RNAs are whole transcribed units such as rRNA, whereas others
such as riboswitches are in the UTRs of genes. They may be in intergenic regions,
introns, and while they are rarely in coding-regions they may be on the reverse
strand of coding regions. Thus, this huge search space demands fast algorithms.
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Figure 2: 2D and 3D structure. The image on the left is an ex-
ample of the 2D structure of a tRNA molecule. The two images on
the right are depictions of the 3D structure of a tRNA molecule.

3. Searching Genomes for Noncoding RNA Using FastR

If sequence conservation and structural conservation are both inadequate
for noncodingRNA finding then perhaps a combination approach may be best.
This is the approach taken by Zhang et al. in their gene predictor FastR, which
looks for structure in evolutionary conserved sequences. The specific goal of the
application of their program in their paper Searching Genomes for Noncoding
RNA Using FastR is to find new instances of a given noncoding RNA family in
new genomes.

Programs with the same type of functionality as FastR that already exist
include CMSearch, RSEARCH and ERPIN. However, FastR searches genomes
much faster — hence its name. As an example of the speed-up Zhang et al. per-
formed a search of 5S RNAs in a 1.6Mb genome (relatively small compared to
human 3Gb genome) using FastR and RSEARCH. RSEARCH completed the
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scan in 6.5 hours, whereas FastR took 103 seconds (figure 3). FastR is able to
achieve this amazing speed-up by applying a database filter as part of a pre-
processing step before aligning any genomic sequences to the query sequence.

Example: finding 5S RNAs in a
1.6Mb genome
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Figure 3: Example benchmarking. 5S RNA is a ribo-
somal RNA molecule. Part of its 2D structure is shown on the left.
Its 3D structure is one of the molecules in the picture of the ribo-
some on the right. In this comparison RSEARCH took 6.5 hours to
search a 1.6Mb genome for 5S RNAs, whereas FastR only took
103 seconds.

4. FastR’s Genome Filtering Method

A database filter is a computational procedure that takes a database as in-
put and outputs a subset of that database (figure 4). The purpose of the database
filter is to reduce a search space. A good has the following attributes:

4+ The object being searched for remains in the database after filter-
ing (sensitivity).
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#+ The filtered database is significantly smaller than the original data-
base.
% The filtering operation is fast (efficiency).

A filter is useless if it filters out the item being searched for. Also, a filter that re-
moves an insignificant amount of the database may not have any impact on the
search time, and may even take longer than the speed increase. Also, if the filter-
ing operation takes more time than the search, the operation is useless. An effi-
cient filter is a one that quickly removes large amounts of the original database
and a sensitive filter is one that does not incorrectly remove instances of the
searched-for item.
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Figure 4: A good database filter is one that significantly re-
duces the search space

FastR’s solution is to filter a genome (the database) using both sequence
and structural features. The basic structural feature the filter uses is called a (k, w)
stack

DEFINE: (k, w) stack: A pair of substrings of at least length k that are at most w
bases apart (figure 5).

If we use a (7,70)-stack filter, we eliminate 90% of the DB from consideration.
This stack is common to members of the tRNA family, so it is an appropriate ex-
ample of a filter. How much of the genome FastR can filter depends on the query
RNA family.
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Structural features: (k,w)-stacks

AUUCCGGGAACAUAGUAUAGGCGACGGAUUAGCUAGCCAA

Figure 5: A (k, w) stack is a pair of substrings of at least length k
that are at most w bases apart

FastR’s filter allows for three more complex (k, w) stacks:

+ Nested (k, w, 1) stacks — two (k, w) stacks where one is inside the
other.

+ Parallel (k, w, 1) stacks - two (k, w) stacks that are next to each
other.

4+ Multiloop (k, w, 1) stacks — parallel stacks nested in another stack

For each of these stacks the variable “I” refers to the distance between the stacks
in question. These different stacks are illustrated in figure 6-8.
The filtering algorithm involves a two step process. First FastR builds a

hash table of the position of all kmers (sequences of length k) in the database,
where the keys are kmers and the values are the indices where instances of the
kmer begin. It then identifies all of the (k, w) stacks. To do this it iterates over
each kmer in the hash table and sees if its reverse compliment exists. If the re-
verse compliment does exist in the hash table, it sees if any of the kmer/reverse
compliment pairs are within w distance apart. FastR then computes complex

stacking using dynamic programming methods.
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Figure 6: Nested Stacks are simple Figure 7: Parallel Stacks are simple
stacks where one is within the other. stacks that occur next to each other.

Structural features: multiloop (k,w.l)-stacks
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Figure 8: Multiloop Stacks are parallel stacks nested in another stack

5. FastR’s RNA Alignment Method

There are three possible ways in which a query RNA sequence can be
aligned to genomic sequences taking into account sequence and secondary struc-
ture:

+ Query sequence to genomic sequence
+ Query structure to genomic structure
4 Query structure to genomic sequence

FastR uses the third approach. It represents the secondary structure of the query
sequence as a binary tree and then searches for it in the genomic sequence. The
tree’s structure is defined by three rules. Starting on opposite ends of the se-
quence, where i is the rightmost term under consideration and ; is the leftmost
term under consideration:
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4+ Ifiand are paired create a black node with one child. Increment i,
decrement j, and move to the child.
+ When j is unpaired create a white node with one child. Decrement j

and move to the child.

+ When is paired, but not to i, create a white node with two children
and recurse upon both children. For the left child i=i and j=k,
where k is between i and j. For the right child i=k+1 and j=;.

These rules are illustrated in figure 9-11. An example binary tree for a secondary

structure is shown in figure 12.

Rule 1: i-j
wheniand j are
paired

Rule 2:
when jis
unpaired

Figure 9: Rule 1 of the
binary tree construction

Figure 10: Rule 2 of the
binary tree construction

Rule 3:
when jis paired
but not to the left-

most base

Figure 11: Rule 3 of the binary tree construction

10
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Figure 12: A sample binary tree

The pseudocode for the binary tree construction is shown below:

procedure Binarize(i,j) (* Binarize the interval (i, j). *)
if (i =j)

return (create_node(i,j,dotted,Nil)); (* A dotted node with 0 child. *)
if (i,5) € S

v = Binarize(i+1.,j-1);

return (create_node(i,j,solid,v)); (* A solid node with 1 child v. *)
if (k,7) € S for some i < k < j

vl = Binarize(1,k-1);

vr = Binarize(k.j);

return (create_node(i,j,dotted,vl,vr)); (*A dotted node with 2 children, vl and vr. *)
if (i < j)

v = Binarize(i,j-1);

return (create_node(i.j,dotted,v)); (* A dotted node with 1 child ». *)
end if

Given this data structure the optimal alignment is performed using dy-
namic programming on a three dimensional matrix in which the axes are i, j, and
v, where i is the starting point of a genomic sequence, j is the end point of a ge-
nomic sequence and v is the first node of the binary tree that represents the query
structure. A mathematical definition of this procedure is shown below:

11
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procedure alignRNA

(*S is the set of base-pairs in RNA structure of s. S’ is the augmented set. *)

for all intervals (i,7), 1 <i < j < n, all nodes v € 5’

if ve §

Ali, j,v] = max 4

else if v 5" —

Ali, §,v] = max {

end if
end for

A+ 1,7 — 1, child(v)] +
Ali, j = Lol + (=, tl]),
Ali+1,5,v] + ("=, t[d]),

B(tli), 21, slla], slr)),

Alt + 1, 4, child[v]] + v (s[lo]. t[2]) + v (s[rs]) =),
Ali, 5 —1, Chlld[?f]] Y(s[l], ’)+ ( o], tU])
Ali, 7, child[v]] + v(s[ls],” —) (s[ro], =)

S, and v has one {"hl]d

Ali,j — 1, child[v]] + v(s[r.], t[7]),
Ali, 7, child[v]] + v(s[rs],’ =),
A[iaj =1 U] + 7(’_!1 tb])

A[f’ + 1, J 'U] + f)'(f_".' ([E]),

else if v £ §" — S, and v has two children
Ali, 3,v] = max;<p<;{A[i, k — 1,left_child[v]] + Ak, j, right_child[v]]}

The alignRNA procedure is simplified in figure 13-15.

if black node

[Ali+1,5

1, ehild(v)]J-[a(tlal, ¢[], s[1.), sr.]). |

alignment

Ali, j,v] = max

else if white node /one child

alignment

1 Ali, j -
Ali, j,v] = max

1 child o]}y (sl Jr,];|

node with one child

Ali, ji v =

else if white node / two children

sliding k

{Ali & = 1, 1en_chita[]] Al . right child[e]]} ]
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Figure 15: Rule for a white node with two children

Figure 14: Rule for a white

12
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Validation of FastR’s Performance

A simple procedure was used to test FastR’s performance and benchmark it
against RSEARCH. Known instances of noncoding RNAs( tRNA, 5S rRNA, Ri-
bozymes, riboswitches) were inserted in a random sequence (1MB) then they ap-
plied each algorithm. They found that FastR is somewhat less sensitive than
RSEARCH but significantly faster. The results are shown in the following tables.
The GC column equals the percent GC pairings in RNA family being tested.

Ca ol || #mits | e Pos.
(/Mb) /Tot.
tRNA (.50 -+ 3 21120 89/100
tRNA 0.35 4 3 29379 89/100
{RNA 07 | 4 |3 37208 89/100
5S rRNA 0.7 5 2 7502 80/100
55 rRNA 0.5 ! 2 3307 80/100
Hammerhead | 0.5 | 4(%) | 2| 6250 50/57
Purine-Rs 0.5 4 2 10263 33/35
Thiamin-Rs | 0.5 | 4(%) | 2 10822 84/115
Lysine-Rs 0.5 5 4 2749 28/32
Riboflavin-Rs | 0.5 | 3(*) | 0 558 38/41

13
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Hits Filtered .
Query Time
(TP /Tot) Hits
RSEARCH 85/93 100 3411s
= Asn-tRNA (AE001087.1/4936-5008) m—— o -
RSEARCH 97/97 100 14939s
FastR 5S rRNA (AE016770.1/210436-210555) 80/80 <0 dda
RSEARCH 50/58 50 2741s
FastR Hammerhead (M83545.1/56-3) 47/47 47 345
RSEARCH 34/35 35 5461s
FastR Purine-Rs (Z99107.2/14363-14264) 33/33 33 —
RSEARCH 32/39 32 206581s
FastR Lysine-Rs (Z75208.1/54883-55062) 9828 98 1598
RSEARCH 109/116 115 78508
FastR Thiamin-Rs (Z99110.2/31833-31942) 71/81 ad 9945
RSEARCH 41/45 41 143858
s in-Rs (L0922%8.1/7992-8136"
FastR Riboflavin-Rs (L09228.1/7992-8136) 31/31 38 705

14
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6. Application of FastR for Discovery of Novel Instances of
Known Families of Riboswitches

In their paper Searching genomes for noncoding RNA using FastR, Zhang et al
then looked for new instances of known riboswitch families. The table below
summarizes their results, where #known is the number of known riboswitches in
the all bacterial and archaeal genomes, #7P is the number of predicted known
hits, #new is the number of new predictions in these genomes, and #new* is the
number of new predictions in these genomes that had previously been annotated

as ncRNA in Rfam.

Family #known #TP #new #new* CF eff. CF-PAIn CM time
time estimated
(hours)  (days)
FMN 103 92 34 2 8.5e-4 438 236.9
TPP 305 235 89 6 7.9e-3 6.7 2324
yybP-ykoY 109 74 65 25 7.7e-2  63.7 166.5
SAM 204 182 80 3 6.7e-4 34 136.0
Purine 82 72 31 10 5.7e-2 343 82.6
Lysine 82 61 23 5 5.7¢-3 12,6 405.8
Cobalamin 189 141 70 15 3.6e-2  65.1 794.0
glmS 24 23 8 1 1.4e-3 6.9 372.1
ydaO-yuaA 68 62 17 57 2.3e-2  36.9 470.2
ykoK 44 39 7 2 3.9e-3 105 266.7
ykkC-yxkD 14 14 11 1 1.4e-5 2.8 08.7
ocvT 148 08 28 1 4.2e-2 272 136.8
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The next table describes what the authors describe as the eighteen most promising
candidates from the 468 putative riboswitches discovered by FastR

Riboswitch ‘ Genome Location” p-value | Dt ‘ Gene Annotation
Bacillus anthracis | 794079-TO4178(+) | 0.016 264 | GMP synthase
) . | _ Hypothetical protein
Lactobacillus johnsonii® 1949385-1949485(+) | 0.018 181
(xanthine permease family)
Lactobacillus plantarum* | 2410480-2410573(+) | 0.019 156 | Xanthine / uracil transport protein
Lactobacillus plantarum® 339446-339540( —) 0.020 175 | Adenine deaminase
Purine Lactobacillus jolnsonii™ 1729531-1729628(—) | 0.021 168 | Xanthine phosphoribosyltransferase
Buaeillus anthrocis 45T48T1-4574970(+) | 0.021 319 | Conserved hypothetical protein
Clostridivm perfringens 512085-513085(+) 0.024 417 | Purine nuclecside phosphorylase
Bdellovibrio bacteriovorus | 1778017-17781 13(=) | 0.026 93 Hypothetical protein
Buacillus cercus 2435592-2435693(—) | 0.026 50 Adenine deaminase
) o ABC transporter
Bacillus subtilis T94406-T94582( —) 0.010 282
[amino acid purlllmasc)
Bacillus halodurans 1619231-1619417(+) . 0.011 206 | Diaminopimelate decarboxylase
Fusobacterinm nucleatum® 1813295-1813475(=) | 0.015 277 | Hypothetical protein
ABC-type amino acid
Lysine Mot yi:Hrmm Iahy!.np&mrnu" ]Hl'lfl.'ﬁ—l?}'lf;i‘}?[—] n.oz2 200 YP ;
transport system
Lactorocous loctis™ 2276234-2276412(+) 0.026 284 Lysine specific permease
Lactococous lactis® GODGTI-699852(— ) 0.026 273 | Dihydrodipicolinate synthase
Shewanelle oneidensis - 1689148-16809335(—) | 0.027 276 | Hypothetical Na+ /H+ antiporte
. ) Diaminochydroxyphosphoribosy-
Riboflavin Thermus thermophilus® 1210336-1210467(—) | 0.016 123
laminopyrimidine deaminase family
Thiamin Streptococcus prewmonia | 1469400-1469498(—) | 0.029 | 181 ‘ Phosphomethylpyrimidine kinase
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