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SUMMARY

Hochberg & Benjamini (1990) first presented adaptive procedures for controlling familywise error rate.
However, until now, it has not been proved that these procedures control the familywise error rate. We
introduce a simplified version of Hochberg & Benjamini’s adaptive Bonferroni and Holm procedures.
Assuming a conditional dependence model, we prove that the former procedure controls the familywise
error rate in finite samples while the latter controls it approximately.

Some key words: Bonferroni procedure; Conditional dependence; Familywise error rate; Holm procedure; Multiple
testing; Step-down procedure.

1. INTRODUCTION

We consider the problem of simultaneously testing a finite number of null hypotheses Hi (i = 1, . . . , m).
A main concern in multiple testing is the multiplicity problem, namely, that the probability of committing
at least one Type I error sharply increases with the number of the hypotheses tested at a prespecified level.
There are two approaches to solving this problem. One approach is to control the familywise error rate,
which is the probability of one or more false rejections, and the other is to control the false discovery rate,
which is the expected proportion of Type I errors among the rejected hypotheses (Benjamini & Hochberg,
1995). The former approach works well for traditional small-scale multiple comparisons while the latter
is more suitable for modern large-scale multiple-testing problems.

Several procedures have been proposed for controlling the familywise error rate, including proposals by
Holm (1979) and Hochberg (1988). A well-known procedure for controlling the false discovery rate is the
linear step-up procedure of Benjamini & Hochberg (1995). When some null hypotheses are false, these
procedures are often conservative by a factor given by the proportion of the true null hypotheses among all
null hypotheses. By exploiting knowledge of this proportion, Hochberg & Benjamini (1990) introduced
adaptive Bonferroni, Holm and Hochberg procedures for controlling the familywise error rate. These
adaptive procedures estimate the proportion and then use it to derive more powerful testing procedures.
Until now, however, no one has proven that these adaptive procedures control the familywise error rate.

Recently, other adaptive procedures that control the false discovery rate have been introduced; e.g. by
Storey et al. (2004), Genovese & Wasserman (2004), Benjamini et al. (2006), Sarkar (2006), Benjamini
& Heller (2007), Gavrilov et al. (2009) and Sarkar & Guo (2009). In finite samples, however, all the
existing procedures have been shown to control the false discovery rate only when the underlying test
statistics are independent. Using a simulation study, Benjamini et al. (2006) demonstrated that some
adaptive procedures, which control the false discovery rate under independence, may fail to control it
under dependence. Therefore, it is important to study whether adaptive procedures control the familywise
error rate or false discovery rate for dependent test statistics.

We introduce adaptive Bonferroni and Holm procedures, similar to those described in Hochberg
& Benjamini (1990) and discuss their control of the familywise error rate under dependence. In our
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proposed adaptive procedures, the proportion of true nulls is estimated using an estimator of Storey
et al. (2004), a simplified version of that used in Hochberg & Benjamini (1990). The dependence is
described using a conditional model, a generalization of the random effects model introduced by Wu
(2008). Assuming this dependence structure, we prove that the adaptive Bonferroni procedure controls
the familywise error rate in finite samples while the adaptive Holm procedure controls it approximately.
In addition, we prove that, even in finite samples, the adaptive Holm procedure can control the familywise
error rate at a level slightly larger than the prespecified level. These results offer a partial answer to
Hochberg & Benjamini’s open problem. Finally, through a small simulation study, we illustrate that the
adaptive Bonferroni and Holm procedures can be more powerful than the corresponding conventional
procedures.

2. MAIN RESULTS

Given m null hypotheses H1, . . . , Hm , consider testing if Hi = 0, true, or Hi = 1, false, simultaneously
for i = 1, . . . , m, based on their respective p-values P1, . . . , Pm . Assume that Hi (i = 1, . . . , m), are
Bernoulli random variables with pr(H = 0) = π0 = 1 − pr(H = 1), and the corresponding p-values Pi

can be expressed as

Pi = (1 − Hi )Ui + Hi G
−1
i (Ui ), (1)

where Ui (i = 1, . . . , m) are independent and identically distributed uniform(0, 1) random variables that
are independent of all Hi ; Gi is some cumulative distribution function on (0, 1) and G−1

i (u) is the
inverse of Gi . This mixture model was proposed by Wu (2008). The Pi s are conditionally independent
given Hi (i = 1, . . . , m), but Hi s may be dependent. If the Hi s are independent, then (1) reduces to the
conventional random effect model (Storey, 2002, 2003; Genovese & Wasserman, 2004).

If V is the number of true null hypotheses rejected, then the familywise error rate is defined to be the
probability of one or more false rejections, i.e. FWER = pr{V > 0}. Let P1:m � · · · � Pm:m be the ordered
values of P1, . . . , Pm and H(1), . . . , H(m) be the corresponding null hypotheses. The Bonferroni procedure
controls the familywise error rate at level π0α for test statistics with arbitrary dependence by rejecting
Hi whenever Pi �α/m. Holm (1979) proposed a step-down version of the Bonferroni procedure, which
controls the familywise error rate at α. Let αi = α/(m − i + 1) (i = 1, . . . , m) and r be the largest i such
that P1:m �α1, . . . , Pi :m � αi , then under the Holm procedure, we reject the hypotheses H(1), . . . , H(r ). If
r is not defined, then no hypothesis is rejected.

Because the above Bonferroni-type procedures are conservative by the factor π0, knowledge of π0 can
be useful for improving the performance of Bonferroni and Holm’s procedures. Several estimators of π0

have been introduced; see Schweder & Spjøtvoll (1982), Storey et al. (2004), Meinshausen & Rice (2006),
and Jin & Cai (2007), among others. We use Storey et al.’s simple estimator:

π̂0(λ) = m − R(λ) + 1

(1 − λ)m
, (2)

where λ is a prespecified constant, R(λ) = ∑m
i=1 I (Pi � λ) is the number of p-values less than or equal

to λ, and I () is an indicator function. When R(λ) is a fixed constant j , we use π̃0( j) to denote π̂0(λ).
Storey et al.’s estimator is a simplified version of Schweder and Spjøtvoll’s estimator, which was used in
the adaptive procedures of Hochberg & Benjamini (1990) and Benjamini & Hochberg (2000).

Based on π̂0(λ), an adaptive Bonferroni procedure is defined as follows.

DEFINITION 1. The level α adaptive Bonferroni procedure.

1. Given a fixed λ ∈ (0, 1), find R(λ) = ∑m
i=1 I (Pi � λ) and then calculate π̂0 based on (2).

2. Reject H(1), . . . , H(r̂ ), where

r̂ = max

{
i = 1, . . . , R(λ) : Pi :m � α

π̂0m

}
.
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If the maximum does not exist, reject no hypothesis.

For the adaptive Bonferroni procedure, the following conclusion holds.

THEOREM 1. In the conditional dependence model, the adaptive Bonferroni procedure controls the
familywise error rate at level α.

Remark 1. Theorem 1 strengthens a result of Sarkar (2006), who demonstrated that the adaptive
Bonferroni procedure controls the false discovery rate under independence. Sarkar (2006) also considered
a more general mixture model that does not require conditional independence of the p-values based on
given null hypotheses.

Similar to Hochberg & Benjamini (1990), an adaptive Holm procedure based on π̂0(λ) is as follows.

DEFINITION 2. The level α adaptive Holm procedure.

1. Given a fixed λ ∈ (0, 1), find π̂0 based on (2) and then calculate m̂0 = π̂0m and m̂ j = #{Pi > α/m̂ j−1}
for j = 1, . . . , m.

2. Let k̂ = max
{

j = 0, . . . , m : m̂ j+1 � m̂ j � m̂0

}
, if the maximum exists, otherwise let k̂ = 0. Reject

H(1), . . . , H(r̂ ), where

r̂ = max

{
i = 1, . . . , R(λ) : Pi :m � α

m̂k̂

}
.

The adaptive Holm procedure is equivalent to the conventional Holm procedure when π̂0 = 1.

THEOREM 2. In the conditional dependence model, let m0 = ∑m
i=1 I (Hi = 0) and A(λm0, m0 − 1) =

pr(X = λm0), where X ∼ Bin(m0 − 1, λ). Under the adaptive Holm procedure, we have:

(i) if limm→∞ m0 = ∞, then lim supm→∞ FWER �α. That is, the adaptive Holm procedure approxi-
mately controls the familywise error rate at level α;

(ii) if pr{m0 � n} = 1, then the adaptive Holm procedure controls the familywise error rate at level
(1 + λd)α, where d = maxm0 � n A(λm0, m0 − 1) and n is some positive integer.

Remark 2. When n in Theorem 2(ii) is moderately large, 1 + λd is only slightly larger than one.
Therefore, the adaptive Holm procedure is slightly liberal at the most for finite samples.

3. A SIMULATION STUDY

We performed a small simulation study to compare the familywise error rate of our suggested pro-
cedures with that of the Bonferroni and Holm procedures. In Figs. 1(a) and (b) we compared the es-
timated familywise error rates with respect to the number of true null hypotheses and the common
correlation, respectively. Each estimated familywise error rate was obtained by (i) generating m = 200
dependent normal random variables N (μi , 1) (i = 1, . . . , m), with a common correlation ρ and with
m0 of the 200 μi s being equal to 0 and the remaining being equal to 6; (ii) applying these four pro-
cedures to test Hi : μi = 0 against Ki : μi � 0 simultaneously for i = 1, . . . , 200 at level α = 0·05;
and (iii) repeating steps (i) and (ii) 1000 times before observing the proportion of simulations where
at least one true null hypothesis is falsely rejected. In Fig. 1(a) we set α = 0·05, λ = 0·2 and ρ =
0·5, and in Fig. 1(b) we set α = 0·05, λ = 0·2 and m0 = 150. As seen from Fig. 1(a), the estimated
familywise error rates of our suggested adaptive procedures are much closer to the prespecified level
than that of the conventional Bonferroni and Holm procedures. With an increasing number of true null
hypotheses, the estimated familywise error rates decrease slightly. Also, as seen from Fig. 1(b), with the
increasing common correlation among the test statistics, the estimated familywise error rates of the adap-
tive procedures change only slightly. By contrast, the estimated familywise error rates of the conventional
procedures decrease to zero.
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Fig. 1. Comparison of familywise error rates of four procedures: Bonferroni (dotted), adaptive
Bonferroni (solid), Holm (dashed), and adaptive Holm (dot-dashed), with parameters m = 200,

α = 0·05, λ = 0·2. Specifically, (a) ρ = 0·5 and (b) m0 = 150.
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APPENDIX

Proof of Theorem 1

Using an argument similar to that of Sarkar & Guo (2009), we first consider conditional familywise
error rate of the adaptive Bonferroni procedure, pr{V > 0 | Pj :m � λ < Pj+1:m, (Hj )m

j=1}. For notational
convenience, let I = {1, . . . , m} denote the index set of all null hypotheses and m0 = ∑m

i=1 I (Hi = 0)

denote the number of true null hypotheses for given (Hi )m
i=1. Let A j , A(−i)

j and Bi respectively denote the

events of Pj :m � λ < Pj+1:m , P (−i)
j−1:m−1 � λ < P (−i)

j :m−1 and Pi � λ for i = 1, . . . , m and j = 0, . . . , m, where

P0:m = 0, Pm+1:m = 1 and P (−i)
1:m−1 � · · · � P (−i)

m−1:m−1 are the ordered p-values of P1, . . . , Pm excluding Pi .
Let V (λ) = ∑m

i=1 I (Hi = 0, Pi � λ). Note that

pr(V > 0 | Pj :m � λ < Pj+1:m, H1, . . . , Hm)

= pr

[⋃
i∈I

{
Pi � λ, Pi � α

π̂0(λ)m
, Hi = 0

} ∣∣∣∣ A j , H1, . . . , Hm

]

�
m∑

i=1

pr

{
Pi � λ, Pi � α

π̃0( j)m
, Hi = 0

∣∣∣∣ A j , H1, . . . , Hm

}

=
m∑

i=1

pr
{

Pi � α
π̃0( j)m , Bi , A(−i)

j , Hi = 0, (Hj )m
j=1

}
pr

{
A j , (Hj )m

j=1

} . (A1)

In the last equality of (A1),

pr {Pi � α

π̃0( j)m
, Bi , A(−i)

j , Hi = 0, (Hj )
m
j=1

}

= pr

{
Pi � α

π̃0( j)m
, Bi , A(−i)

j , Hi | Hi = 0, (Hj ) j � i

}
pr{Hi = 0, (Hj ) j�i }
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and this equals

pr

{
Pi � α

π̃0( j)m
, Bi | Hi = 0

}
pr

{
A(−i)

j , Hi | Hi = 0, (Hj ) j�i

}
pr{Hi = 0, (Hj ) j�i }

= pr

{
Pi � α

π̃0( j)m

∣∣∣∣ Bi , Hi = 0

}
pr (Bi | Hi = 0)

⊗ pr
{

A(−i)
j , Hi | Hi = 0, (Hj ) j�i

}
pr{Hi = 0, (Hj ) j�i }

= α

λπ̃0( j)m
pr

{
Bi , A(−i)

j , Hi = 0, (Hj )
m
j=1

}
. (A2)

Combining (A1) and (A2), we have

pr(V > 0 | A j , H1, . . . , Hm) �
m∑

i=1

α

λπ̃0( j)m
pr

{
Bi , Hi = 0

∣∣A j , (Hj )
m
j=1

}

= α

λπ̃0( j)m
E

{
V (λ)

∣∣A j , (Hj )
m
j=1

}
. (A3)

Thus,

FWER = pr (V > 0) = E

⎡
⎣ m∑

j=0

I
{

V > 0, A j , (Hi )
m
i=1

}⎤
⎦

= E

⎡
⎣ m∑

j=0

pr
{

V > 0 | A j , (Hi )
m
i=1

}
I
{

A j , (Hi )
m
i=1

}⎤
⎦

� α

λm
E

{
V (λ)

π̂0(λ)

}

= (1 − λ)α

λ
E

[
E

{
V (λ)

m − R(λ) + 1

∣∣∣∣ (Hj )
m
j=1

}]
. (A4)

The inequality in (A4) follows from (A3) and the last equality follows from (2).
Under (Hi )m

i=1, m − R(λ) � m0 − V (λ) and m0 − V (λ) ∼ Bin (m0, 1 − λ), so that the right side of
(A4) is less than or equal to

(1 − λ)α

λ
E

[
E

{
V (λ)

m0 − V (λ) + 1

∣∣∣∣ (Hj )
m
j=1

}]
= (1 − λ)α

λ
E

[
E

{
m0 + 1

m0 − V (λ) + 1

∣∣∣∣ (Hj )
m
j=1

}
− 1

]

<
(1 − λ)α

λ

(
1

1 − λ
− 1

)
= α, (A5)

which completes the proof. In (A5), we use the following lemma due to Benjamini et al. (2006).

LEMMA 1. If Y ∼ Bin (N , p) then E{(Y + 1)−1} < {(N + 1)p}−1.

Proof of Theorem 2

Similar to the arguments in the proof of Theorem 1, we first consider the conditional familywise error
rate of the adaptive Holm procedure, pr

{
V > 0 | A j , (Hj )m

j=1

}
.

For given (Hj )m
j=1, let q̂1:m0 � · · · � q̂m0:m0 denote the ordered p-values corresponding to the true null

hypotheses. Under the adaptive Holm procedure, we have

pr (V > 0, k̂ = 0 | A j , H1, . . . , Hm) � pr

{
q̂1:m0 � λ, q̂1:m0 � α

m̂0
, k̂ = 0 | A j , (Hj )

m
j=1

}
(A6)
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and for k > 0,

pr (V > 0, k̂ = k | A j , H1, . . . , Hm) � pr

{
q̂1:m0 � λ, q̂1:m0 � α

m̂k
, k̂ = k | A j , (Hj )

m
j=1

}
. (A7)

For any q̂1:m0 satisfying α/m̂0 < q̂1:m0 �α/m̂k , suppose that q̂1:m0 ∈ (α/m̂ j−1, α/m̂ j ] for some j =
1, . . . , k, then by the definition of m̂ j , we have m0 � m̂ j . That is, α/m̂0 < q̂1:m0 � α/m̂k implies
α/m̂0 < q̂1:m0 �α/m0. Therefore, the right side of (A7) is less than or equal to

pr

{
q̂1:m0 � λ, q̂1:m0 � α

m̂0
, k̂ = k | A j , (Hj )

m
j=1

}
+ pr

{
q̂1:m0 � λ,

α

m̂0
< q̂1:m0 � α

m0
, k̂ = k | A j , (Hj )

m
j=1

}

= pr

{
q̂1:m0 � λ, q̂1:m0 � α

m0
, k̂ = k | A j , (Hj )

m
j=1

}
. (A8)

Combining (A6)–(A8), we have

pr (V > 0 | A j , H1, . . . , Hm) � pr

{
q̂1:m0 � λ, q̂1:m0 � α

min(m0, m̂0)

∣∣∣∣ A j , (Hj )
m
j=1

}

= pr

(⋃
i∈I

[
Pi � λ, Pi � α

min{m0, m̃0( j)} , Hi = 0

] ∣∣∣∣ A j , (Hj )
m
j=1

)

�
m∑

i=1

pr

[
Pi � λ, Pi � α

min{m0, m̃0( j)} , Hi = 0 | A j , (Hj )
m
j=1

]
,

where m̃0( j) is the value of m̂0(λ) when R(λ) = j . Using the arguments similar to those used in (A1)–(A3),
we have

pr (V > 0 | A j , H1, . . . , Hm) � α

λ min{m0, m̃0( j)} E
{

V (λ) | A j , (Hj )
m
j=1

}
. (A9)

Therefore, by (A9) and using the arguments similar to those used in (A4) and (A5), we have

FWER = pr{V > 0}

= E

⎡
⎣ m∑

j=1

pr
{

V > 0 | A j , (Hi )
m
i=1

}
I
{

A j , (Hi )
m
i=1

}⎤
⎦

� α

λ
E

[
V (λ)

min{m0, m̂0}
]

� (1 − λ)α

λ
E

[
E

{
V (λ)

min {(1 − λ)m0, m0 − V (λ) + 1}
∣∣∣∣ (Hj )

m
j=1

}]

= (1 − λ)α

λ
E

[
E

{
V (λ)I {V (λ) � λm0 + 1}

(1 − λ)m0

∣∣∣∣ (Hj )
m
j=1

}]

+ (1 − λ)α

λ
E

[
E

{
V (λ)I {V (λ) > λm0 + 1}

m0 − V (λ) + 1

∣∣∣∣ (Hj )
m
j=1

}]
. (A10)

Let B(·, N ) denote the cumulative distribution function of a binomial random variable X ∼ Bin(N , p).
Given (Hj )m

j=1, V (λ) ∼ Bin(m0, λ) and m0 − V (λ) ∼ Bin(m0, 1 − λ). Therefore,

E

[
V (λ)I {V (λ) � λm0 + 1}

(1 − λ)m0

∣∣∣∣ (Hj )
m
j=1

]
= λB(λm0, m0 − 1)

1 − λ
(A11)
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and

E

[
V (λ)I {V (λ) > λm0 + 1}

m0 − V (λ) + 1

∣∣∣∣ (Hj )
m
j=1

]
= λ

1 − λ

m0−1∑
λm0+1

(
m0

j

)
λ j (1 − λ)m0− j

� λ

1 − λ
{1 − B(λm0, m0)}

= λ

1 − λ
{1 − λB(λm0 − 1, m0 − 1) − (1 − λ)B(λm0, m0 − 1)}.

(A12)

Combining (A10)–(A12), we have

FWER � αE [1 + λ {B(λm0, m0 − 1) − B(λm0 − 1, m0 − 1)}] = αE{1 + λA(λm0, m0 − 1)}, (A13)

which yields the second claim. By (A13) and limm0→∞ A(λm0, m0 − 1) = 0, the first claim follows imme-
diately.
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