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Introduction We begin with an example of the use of the stratified Cox
procedure for a single predictor that does not satisfy the PH
assumption. We then describe the general approach for fitting
a stratified Cox model, including the form of the (partial) like-
lihood function used to estimate model parameters.

We also describe the assumption of no interaction that is
typically incorporated into most computer programs that
carry out the stratified Cox procedure. We show how the no-
interaction assumption can be tested, and what can be done
if interaction is found.

We conclude with a second example of the stratified Cox pro-
cedure in which more than one variable is stratified.

Abbreviated
Outline

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Preview (page 176)
II. An Example (pages 176–180)

III. The General Stratified Cox (SC) Model
(pages 180–181)

IV. The No-Interaction Assumption and How to Test
It (pages 182–188)

V. A Second Example Involving Several Stratification
Variables (pages 188–193)

VI. A Graphical View of the Stratified Cox Approach
(pages 193–194)

VII. Summary (pages 195–196)
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Objectives Upon completing the chapter, the learner should be able to:

1. Recognize a computer printout for a stratified Cox proce-
dure.

2. State the hazard form of a stratified Cox model for a given
survival analysis scenario and/or a given set of computer
results for such a model.

3. Evaluate the effect of a predictor of interest based on com-
puter results from a stratified Cox procedure.

4. For a given survival analysis scenario and/or a given set
of computer results involving a stratified Cox model,

� state the no-interaction assumption for the given model;� describe and/or carry out a test of the no-interaction
assumption;� describe and/or carry out an analysis when the no-
interaction assumption is not satisfied.
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I. Preview

Stratified Cox model:

� modification of Cox PH model� Stratification of predictor not
satisfying PH� includes predictors satisfying
PH

FOCUS

How stratification is
carried out:
•  computer results
•  hazard function
•  single predictor
    vs. ≥ 2 predictors
•  no-interaction vs.
    interaction

The “stratified Cox model” is a modification of the
Cox proportional hazards (PH) model that allows
for control by “stratification” of a predictor that
does not satisfy the PH assumption. Predictors
that are assumed to satisfy the PH assumption are
included in the model, whereas the predictor be-
ing stratified is not included.

In this presentation, we focus on how stratification
is carried out by describing the analysis of com-
puter results and the form of the hazard function
for a stratified Cox model. We first consider strati-
fying on a single predictor and then later consider
stratifying on two or more predictors. Further, we
distinguish between the use of a “no-interaction”
version of the stratified Cox model and an alterna-
tive approach that allows interaction.

II. An Example Consider the computer results shown here for a
Cox PH model containing the three variables, log
WBC, treatment group (Rx), and SEX. These re-
sults derive from a clinical trial of 42 leukemia
patients, where the response of interest is days in
remission.

EXAMPLE

Clinical trial: 42 leukemia patients 
Response-days in remission

log WBC 
Rx
Sex

1.594
1.391
0.263

0.330
0.457
0.449

0.828
0.935
0.031

Coef. Std. Err. P(PH)

•      log WBC and Rx satisfy PH
•     Sex does not satisfy PH

(Same conclusions using graphical 
approaches)

Stratified Cox (SC): 

•     control for sex (stratified); 
• simultaneously include log WBC and 

Rx in the model

From the printout, the P (PH) values for log WBC
and treatment group are nonsignificant. However,
the P (PH) value for SEX is significant below the
.05 level. These results indicate that log WBC
and treatment group satisfy the PH assumption,
whereas the SEX variable does not. The same con-
clusions regarding the PH assumption about these
variables would also be made using the graphical
procedures described earlier.

Because we have a situation where one of the
predictors does not satisfy the PH assumption,
we carry out a stratified Cox (SC) procedure
for the analysis. Using SC, we can control for
the SEX variable—which does not satisfy the
PH assumption—by stratification while simulta-
neously including in the model the log WBC and
treatment variables—which do satisfy the PH as-
sumption.
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EXAMPLE (continued) 

STATA OUTPUT USING SC:

Stratified Cox regression 
Analysis time _t: survt

Stratified Cox regression 
Analysis time _t: survt

Appendix  A  illustrates SC  procedures 
using Stata, SAS, and SPSS.

• Log WBC and Rx are included in SC 
   model. 
• SC model is stratified by SEX.

Effect of Rx adjusted for log WBC and 
SEX:

•    Hazard ratio: 2.537 = e0.931

•    Interpretation: Placebo group 
      (Rx = 1) has 2.5 times the hazard as 
      the treatment group (Rx = 0)

95% CI for Rx (1.006, 6.396) indicates 
considerable variability.

CI formula: exp(0.931 ± 1.96 × 0.472)

Std.
Err.Coef.

Haz.
Ratio [95% Conf. Interval]

log WBC 
Rx

p > |z|

1.390
0.931

0.338
0.472

0.000
0.048

4.016
2.537

2.072
1.006

7.783
6.396

No. of subjects = 42 Log likelihood = −57.560 Stratified by sex

Std.
Err.Coef.

Haz.
Ratio [95% Conf. Interval]

log WBC 
Rx

p > |z|

1.390
0.931

0.338
0.472

0.000
0.048

4.016
2.537

No. of subjects = 42 Log likelihood =    −57.560 Stratified by sex

2.072
1.006

7.783
6.396

Wald test: P = 0.048 (two-tailed), 
significant at the 0.05 level.

The computer results from a SC procedure are
shown here. These results come from the Stata
package. (See the Computer Appendix for running
a SC procedure in Stata, SAS, or SPSS).

The computer results show that the log WBC and
Rx variables are included in the model listing,
whereas the SEX variable is not included; rather,
the model stratifies on the SEX variable, as indi-
cated at the bottom of the output. Note that the
SEX variable is being adjusted by stratification,
whereas log WBC is being adjusted by its inclu-
sion in the model along with Rx.

In the above output, we have also circled some key
information that can be used to assess the effect
of the Rx variable adjusted for both log WBC and
SEX. In particular, we can see that the hazard ra-
tio for the effect of Rx adjusted for log WBC and
SEX is given by the value 2.537. This value can be
obtained by exponentiating the coefficient 0.931
of the Rx variable. The hazard ratio value can be
interpreted to mean that the placebo group (for
which Rx = 1) has 2.5 times the hazard for going
out of remission as the treatment group (for which
Rx = 0).

Also, we can see from the output that a 95% con-
fidence interval for the effect of the Rx variable is
given by the limits 1.006 to 6.396. This is a fairly
wide range, thus indicating considerable variabil-
ity in the 2.537 hazard ratio point estimate. Note
that these confidence limits can be obtained by ex-
ponentiating the quantity 0.931 plus or minus 1.96
times the standard error 0.472.

From the above output, a test for the significance
of the Rx variable adjusted for log WBC and SEX is
given by the Wald statistic P value of 0.048. This is
a two-tailed P-value, and the test is just significant
at the 0.05 level.
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LR test: Output for reduced model

EXAMPLE (continued) 

Std.
Err.Coef.

Haz.
Ratio [95% Conf. Interval]

log WBC

p > |z|

1.456 0.320 0.000 4.289 2.291 8.03

No. of subjects = 42 Log likelihood =   −59.648 Stratified by sex

SC model for males and females:
Females (g = 1):

h1(t,X) = h01(t)exp[β1Rx + β2 log WBC]

Males (g = 2):

h2(t,X) = h02(t)exp[β1Rx + β2 log WBC]

Rx and log WBC in the model
Sex not in the model (stratified)

Hazard function for stratified Cox
model:

hg(t,X) = h0g(t)exp[β1Rx + β2 log WBC]
g = 1,2;

g denotes stratum #.

LR and Wald give same conclusion.

Stratified Cox regression
Analysis time _t: survt

LR = (−2 × −59.648) − (−2 × −57.560)
       =  119.296 − 115.120 = 4.179 (P < 0.05)

ĤR for effect of Rx adjusted for log WBC
and sex:

eβ̂
1

where β1 is the coefficient of Rx.

An alternative test involves a likelihood ratio (LR)
statistic that compares the above model (full
model) with a reduced model that does not con-
tain the Rx variable. The output for the reduced
model is shown here. The log-likelihood statistic
for the reduced model is −2 times −59.648,
which is to be compared with the log-likelihood
statistic of −2 times −57.560 for the full model.

The LR statistic is therefore 119.296 minus
115.120, which equals 4.179. Under H0, this
statistic has a chi-square distribution with one
degree of freedom and is significant at the 0.05
level. Thus, the LR and Wald tests lead to the
same conclusion.

So far, we have illustrated the results from a strat-
ified Cox procedure without actually describing
the model form being used. For the remission
data example, we now present the hazard func-
tion form for the stratified Cox model, as shown
here. This hazard function formula contains a
subscript g that indicates the g th stratum.

Thus, in our remission data example, where we
have stratified on SEX, g takes on one of two
values, so that we have a different baseline hazard
function for males and females.

Notice that the hazard function formula contains
the variables Rx and log WBC, but does not
contain the variable SEX. SEX is not included
in the model because it doesn’t satisfy the PH
assumption. So, instead, the SEX variable is
controlled by stratification.

Because the variables Rx and log WBC are
included in the model, we can estimate the effect
of each variable adjusted for the other variable
and the SEX variable using standard exponential
hazard ratio expressions. For example, the esti-
mated hazard ratio for the effect of Rx, adjusted
for log WBC and SEX, is given by e to the β1 “hat,”
where β1 is the coefficient of the Rx variable.
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Cannot estimate HR for SEX variable
(SEX doesn’t satisfy PH).

Different    baseline  hazard   functions:

h01(t) for females and h02(t) for males.

No interaction assumption
(see Section IV)

Same coefficients β1 and β2 for both
female and male models. 

EXAMPLE (continued) 

Females and males:
same β1 and β2⇒ same HR’s, e.g., eβ̂

1ˆ

Different
baselines

h01(t) ⇒  Survival curve
               for females
h02(t) ⇒  Survival curve
               for males

{

Estimates of β1 and β2:

Maximize partial likelihood (L),
where L = L1 × L2
L1 is the likelihood for females derived
from h1(t),
and L2 is the likelihood for males derived
from h2(t).

Nevertheless, because the SEX variable is not
included in the model, it is not possible to obtain
a hazard ratio value for the effect of SEX adjusted
for the other two variables. This is the price to be
paid for stratification on the SEX variable. Note
that a single value for the hazard ratio for SEX
is not appropriate if SEX doesn’t satisfy the PH
assumption, because the hazard ratio must then
vary with time.

Notice also that the hazard functions for males
and females differ only insofar as they have
different baseline hazard functions, namely,
h01(t) for females and h02(t) for males. However,
the coefficients β1 and β2 are the same for both
female and male models.

Because there are different baseline hazard
functions, the fitted stratified Cox model will yield
different estimated survival curves for females
and males. These curves will be described shortly.

Note, however, that because the coefficients of Rx
and log WBC are the same for females and males,
estimates of hazard ratios, such as e to the β1
“hat,” are the same for both females and males.
This feature of the stratified Cox model is called
the “no-interaction” assumption. It is possible
to evaluate whether this assumption is tenable
and to modify the analysis if not tenable. We will
discuss this assumption further in Section IV.

To obtain estimates of β1 and β2, a (partial)
likelihood function (L) is formed from the model
and the data; this function is then maximized
using computer iteration. The likelihood function
(L) for the stratified Cox (SC) model is different
from the nonstratified Cox model. For the SC
model, L is obtained by multiplying together
likelihood functions for each stratum. Thus, L
is equal to the product of L1 and L2, where L1
and L2 denote the female and male likelihood
functions, respectively, which are derived from
their respective hazard functions h1(t) and h2(t).
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EXAMPLE (continued)

Adjusted Survival Curves for Rx
from Stratified Cox Model
(adjusted for log WBC)

1

0.8

0.6

0.4

0.2

0
0 8 16 24 32

Treatment, female

Treatment, male
Placebo, female

Placebo, male

Days

Ŝ

As mentioned above, adjusted survival curves can
be obtained for each stratum as shown here. Here
we have shown four survival curves because we
want to compare the survival for two treatment
groups over each of two strata.

If we compare treatment and placebo group sepa-
rately by sex, we can see that the treatment group
has consistently better survival prognosis than the
placebo group for females and males separately.
This supports our findings about the hazard ratio
for the treatment effect derived earlier from the
computer results for the stratified Cox model.

III. The General Stratified
Cox (SC) Model

In the previous example, we illustrated the SC
model for one binary predictor not satisfying the
PH assumption. We now describe the general form
of the SC model that allows for stratification of
several predictors over several strata.

Example: one binary predictor
↓

General: several predictors, several
strata

Z1, Z2, . . . , Zk, do not satisfy PH
X1, X2, . . . , X p, satisfy PH

We assume that we have k variables not satisfying
the PH assumption and p variables satisfying the
PH assumption. The variables not satisfying
the PH assumption we denote as Z1, Z2, . . . , Zk;
the variables satisfying the PH assumption we de-
note as X1, X2, . . . , X p.

Define a single new variable Z ∗:

1. categorize each Z i

2. form combinations of categories
(strata)

3. the strata are the categories of Z ∗

To perform the stratified Cox procedure, we de-
fine a single new variable, which we call Z ∗, from
the Z’s to be used for stratification. We do this by
forming categories of each Zi , including those Zi
that are interval variables. We then form combi-
nations of categories, and these combinations are
our strata. These strata are the categories of the
new variable Z ∗.

EXAMPLE
Age

Young Middle Old

Placebo

Treatment

Treatment
status

1 2 3

4 5 6

Z∗ = new variable with six categories
Stratify on Z∗

For example, suppose k is 2, and the two Z’s are
age (an interval variable) and treatment status
(a binary variable). Then we categorize age into,
say, three age groups—young, middle, and old. We
then form six age group–by–treatment-status com-
binations, as shown here. These six combinations
represent the different categories of a single new
variable that we stratify on in our stratified Cox
model. We call this new variable Z ∗.
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Z ∗ has k∗ categories where k∗ =
total # of combinations (strata), e.g.,
k∗ = 6 in above example.

In general, the stratification variable Z ∗ will have
k∗ categories, where k∗ is the total number of
combinations (or strata) formed after categoriz-
ing each of the Z’s. In the above example, k∗ is
equal to 6.

The general SC model:

hg (t,X) = h0g (t)exp[β1 X1 + β2 X2
+ · · · + βp X p]

g = 1, 2, . . . , k∗, strata defined
from Z ∗

We now present the general hazard function form
for the stratified Cox model, as shown here. This
formula contains a subscript g which indicates the
gth stratum. The strata are defined as the different
categories of the stratification variable Z ∗, and the
number of strata equals k∗.

Z ∗ not included in the model

X1, X2, . . . , X p included in the
model

Note that the variable Z ∗ is not explicitly included
in the model but that the X ’s, which are assumed
to satisfy the PH assumption, are included in the
model.

Different baseline hazard functions:
h0g (t), g = 1, 2, . . . , k∗

Same coefficients: β1, β2, . . . ,βp

Different
baselines

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
ĥ 01(t) ⇒ Ŝ1(t)
ĥ 02(t) ⇒ Ŝ2(t)

...
ĥ 0k(t) ⇒ Ŝk(t)

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭
Different
survival
curves

Note also that the baseline hazard function h0g (t)
is allowed to be different for each stratum. How-
ever, the coefficients β1,β2, . . . ,βp are the same
for each stratum.

As previously described by example, the fitted
SC model will yield different estimated survival
curves for each stratum because the baseline haz-
ard functions are different for each stratum.

ĤR same for each stratum

(no-interaction assumption, Sec-
tion IV)

However, because the coefficients of the X ’s are the
same for each stratum, estimates of hazard ratios
are the same for each stratum. This latter feature
of the SC model is what we previously have called
the “no-interaction” assumption to be discussed
further in Section IV.

(Partial) likelihood function:

L = L1 × L2, × · · · × Lk∗

Strata: 1 2 . . . k∗

Likelihood: L1 L2 . . . Lk∗

Hazard: h1(t,X) h2(t,X) . . . hk∗ (t,X)

To obtain estimates of the regression coefficients
β1,β2, . . . ,βp, we maximize a (partial) likelihood
function L that is obtained by multiplying together
likelihood functions for each stratum, as shown
here. Thus, L is equal to the product of L1 times
L2, and so on, up until Lk∗ , where the subscripted
L’s denote the likelihood functions for different
strata, with each of these L’s being derived from
its corresponding hazard function.
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IV. The No-Interaction
Assumption and How
to Test It

We previously pointed out that the SC model con-
tains regression coefficients, denoted as β’s, that
do not vary over the strata. We have called this
property of the model the “no-interaction assump-
tion.” In this section, we explain what this assump-
tion means. We also describe how to evaluate the
assumption and what to do if the assumption is
violated.

Stratified Cox model

hg (t,X) = h0g (t)exp[β1 X1
+β2 X2 + · · · + βp X p]

β coefficients do not vary over
strata (no-interaction assumption)

� how to evaluate� what to do if violated

EXAMPLE 

No-interaction SC model:
Stratified Cox regression
Analysis time _t: survt

Std.
Err.Coef.

Haz.
Ratio [95% Conf. Interval]

log WBC 
Rx

p > |z|

1.390
0.931

0.338
0.472

0.000
0.048

4.016
2.537

2.072
1.006

7.783
6.396

No. of subjects = 42 Log likelihood = −57.560 Stratified by sex

Interaction by fitting separate models:
Cox regression (Females)
Analysis time _t: survt

Cox regression (Males)
Analysis time _t: survt

Column p-
valuename Coeff StErr. 0.95 CI P(PH)HR

4 log 
WBC

5 Rx

1.639

1.859

0.519 0.002 5.150 1.862 14.242 0.228

0.729 0.011 6.418 1.537 26.790 0.603

Log likelihood = −22.100

Column p-
valuename Coeff StErr. 0.95 CI P(PH)HR

4 log 
WBC

5 Rx

1.170

0.267

0.499 0.019 3.222 1.213 8.562 0.674

0.566 0.637 1.306 0.431 3.959 0.539

No. of subjects = 22  Log likelihood = −33.736

No. of subjects = 20

Which model is more appropriate 
statistically?

We return to the SC output previously illustrated.
Notice that only one set of coefficients, namely,
1.390 for log WBC and 0.931 for Rx, are provided,
even though there are two strata, one for females
and one for males. These results assume no
interaction of the sex variable with either log
WBC or Rx.

If we allow for interaction, then we would
expect to obtain different coefficients for each
of the (SEX) strata. This would happen if we fit
separate hazard models to the female and male
data, with each model containing the log WBC
and Rx variables. The computer results from
fitting separate models are shown here.

Notice that the coefficient of log WBC is 1.639 for
females but is 1.170 for males. Also, the coefficient
for Rx is 1.859 for females but 0.267 for males.
These results show different coefficients for
females than for males, particularly for the Rx
variable.

But are corresponding coefficients statistically
different? That is, which model is more appropri-
ate statistically, the no-interaction model or the
interaction model? To answer this question, we
must first look at the hazard function model for
the interaction situation.
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EXAMPLE (continued) 

Interaction model: 

No-interaction model: 

Alternative interaction model: 
(  ) hg(t,X) = h0g(t)exp[β1

∗ log WBC 
+ β2

∗Rx + β3
∗ (SEX × log WBC) + β4

∗

× (SEX × Rx)]

where SEX = {1 if female 
0

h0g(t) are different for g = 1,2 
β∗ coefficients do not involve g

Equivalence of models (�) and (  ): 
g = 1 (females), so that sex = 1:

h1(t,X) = h01(t)exp[β1
∗ log WBC + β2

∗ Rx

+ β3
∗ (1 × log WBC) + β4

∗ (1 × Rx)]

h2(t,X) = h02(t)exp[β1
∗ log WBC + β2

∗ Rx 

+β3
∗ (0 × log WBC) + β4

∗ (0 × Rx)]

= h01(t)exp[ (β1
∗ + β3

∗)  log WBC 

+  (β2
∗ + β4

∗)  Rx] 

g = 2 (males), so that sex = 0:

= h02(t)exp[ β1
∗ log WBC + β2

∗ Rx]

Interaction models in same format:

Females (g = 1): h1 (t,X)
(�) = h01(t)exp[β11log WBC + β21Rx]

(  ) = h01(t)exp[(β1
∗ + β3

∗) log WBC 

+ (β2
∗ + β4

∗)Rx]

Males (g = 2): h2 (t,X)
(�) = h02(t)exp[β12log WBC + β22Rx]

( ) = h02(t)exp[β1
∗log WBC + β2

∗ Rx]

if male 

(�) hg(t,X)
= h0g(t)exp[β1g log WBC + β2gRx]
where g = 1 (females), g = 2 (males) 

hg(t,X) = h0g(t)exp[β1 log WBC + β2Rx]
where g = 1 (females), g = 2 (males) 

One way to state the hazard model formula when
there is interaction is shown here (�). Notice
that each variable in this model has a different
coefficient for females than for males, as indicated
by the subscript g in the coefficients β1g and β2g .

In contrast, in the no-interaction model, the
coefficient (β1) of log WBC is the same for
females and for males; also, the coefficient (β2)
of Rx is the same for females and for males.

An alternative way to write the interaction model
is shown here (	). This alternative form contains
two product terms—SEX × log WBC and SEX ×
Rx—as well as the main effects of log WBC and
Rx. We have coded the SEX so that 1 denotes
female and 0 denotes male.

In this alternative model, note that although the
baseline hazards h0g (t) are different for each sex,
the β∗ coefficients do not involve the subscript g
and therefore are the same for each sex.

Nevertheless, this alternative formula (	) is
equivalent to the interaction formula (�) above.
We show this by specifying the form that the
model takes for g = 1 (females) and g = 2
(males).

Notice that the coefficients of log WBC are
different in each formula, namely, (β∗

1 + β∗
3) for

females versus β∗
1 for males.

Similarly, the coefficients of Rx are different,
namely, (β∗

2 + β∗
4) for females versus β∗

2 for
males.

The preceding formulae indicate that two seem-
ingly different formulae for the interaction
model—(�) versus (	), shown earlier—can be
written in the same format. We show these
formulae here separately for females and males.
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EXAMPLE (continued) 

Females (g = 1): β11 = β1
∗ + β3

∗

β21 = β2
∗ + β4

∗

(�) (  )

Males (g = 2): β12 = β1
∗

β22 = β2
∗

(�) (  )

Stratified Cox regression 
Analysis time _t: survt

log
WBC

Rx

Sex
× log 
WBC

Sex
×  Rx

Std.
Err.

0.499

0.566

0.720

0.923

p > |z|

0.019

0.637

0.515

0.084

Haz.
Ratio

3.222

1.306

1.598

4.915

 [95% Conf. 
Interval]

1.213 8.562

0.431 3.959

0.390 6.549

0.805 30.003

Coef.

0.469

1.170

0.267

1.592

No. of subjects = 42  Log likelihood = –55.835  Stratified by sex

Females:

Males:

β̂1
∗ + β̂3

∗ = 1.170 + 0.469 = 1.639

β21 = 1.859 

β̂2
∗ + β̂4

∗ = 0.267 + 1.592 = 1.859
Rx

{
{

log WBC

log WBC β̂12 = 1.170 = β̂1
∗

Interaction model: 

hg(t,X) = h0g(t)exp[β1
∗ log WBC + β2

∗ Rx

+ β3
∗ (SEX × log WBC) 

+ β4
∗ (SEX × Rx)]

β11 = 1.639

Rx β̂22 = 0.267 = β̂2
∗

Notice that for females, the coefficient β11 in
model (�) must be equivalent to (β∗

1 + β∗
3) in

model (	) because both models have the same for-
mat, and both β11 and (β∗

1 + β∗
3) are coefficients

of the same variable, log WBC. Similarly, β21 in
model (�) is equivalent to (β∗

2 + β∗
4) in model (	)

because both are coefficients of the same variable,
Rx.

For males, it follows in an analogous way,
that the coefficient β12 is equivalent to β∗

1, and,
similarly, β22 equals β∗

2.

Here we provide computer results obtained
from fitting the alternative interaction model (	).
The estimated regression coefficients β̂

∗
1, β̂

∗
2, β̂

∗
3,

and β̂
∗
4, respectively, are circled.

We have shown above that the sums β̂
∗
1 + β̂

∗
3 and

β̂
∗
2 + β̂

∗
4 are equal to the coefficients β̂11 and β̂21,

respectively, in the original interaction model for
females.

Also, we have shown that β̂
∗
1 and β̂

∗
2 are equal

to the coefficients β̂12 and β̂22, respectively, in
the original interaction model for the males. The
numerical equivalences are shown here. Note
again that the coefficients of log WBC and Rx
for females are different from males, as is to be
expected if sex interacts with each variable.

We have thus seen that the interaction model
can be written in a format that contains product
terms involving the variable being stratified—
SEX—being multiplied by each of the predictors
not being stratified. We show this model involving
product terms again here. We will use this
model to describe a test of the no-interaction
assumption.
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EXAMPLE (continued) 

LR = −2 ln LR − (−2 ln LF)
R = reduced (no-interaction) model
F =  full (interaction) model

LR ~ χ2
2df under H0: no interaction

(2 df because two product terms tested
in interaction model)

Output: –2 log L: 111.670

No interaction (reduced model):

LR = 115.120 – 111.670 = 3.45
(P > 0.05 not significant).
Thus, the no-interaction model is accep-
table.

.

–2 ln LR

–2 ln LF

Output: –2 log L: 115.120

Interaction (full model):

Testing the no-interaction assumption:

The test is a likelihood ratio (LR) test which
compares log-likelihood statistics for the interac-
tion model and the no-interaction model. That
is, the LR test statistic is of the form −2 ln L R
minus −2 ln L F , where R denotes the reduced
model, which in this case is the no-interaction
model, and F denotes the full model, which is the
interaction model.

This LR test statistic has approximately a
chi-square distribution with 2 degrees of freedom
under the null hypothesis that the no-interaction
model is correct. The degrees of freedom here is 2
because there are two product terms being tested
in the interaction model.

The log-likelihood statistic for the reduced
model comes from the computer output for the
no-interaction model and is equal to −2 times
−57.560, or 115.120.

The log-likelihood statistic for the full model
comes from the computer results for the interac-
tion model and is equal to −2 times −55.835, or
111.670.

The LR statistic is therefore 115.120 minus
111.670, which equals 3.45. This value is not sig-
nificant at the 0.05 level for 2 degrees of freedom.
Thus, it appears that despite the numerical dif-
ference between corresponding coefficients in the
female and male models, there is no statistically
significant difference. We can therefore conclude
for these data that the no-interaction model is
acceptable (at least at the 0.05 level).

Remission data example:
� described no-interaction

assumption� evaluated assumption using LR
test� provided interaction model if
needed

Now, we generalize this process.

Using the remission data example, we have
described the no-interaction assumption, have
shown how to evaluate this assumption using a
likelihood ratio test, and have provided the form
of an interaction model that should be used in case
the no-interaction assumption does not hold. We
now describe this process more generally for any
stratified Cox analysis.



186 5. The Stratified Cox Procedure

No-interaction SC model:

hg (t,X) = h0g (t)exp[β1 X1 + β2 X2

+ · · · + βp X p]
g = 1, 2, . . . , k∗, strata defined

from Z ∗

Recall that the general form of the no-interaction
model for the stratified Cox procedure is given as
shown here. This model allows for several vari-
ables being stratified through the use of a newly
defined variable called Z ∗, whose strata consist of
combinations of categories of the variables being
stratified.

SC model allowing interaction:

hg (t,X) = h0g (t)exp[β1g X1

+β2g X2 + · · · + βpg X p]
g = 1, 2, . . . , k∗, strata defined

from Z ∗

If, in contrast, we allow for interaction of the Z ∗
variable with the X ’s in the model, we can write
the model as shown here. Notice that in this inter-
action model, each regression coefficient has the
subscript g , which denotes the g th stratum and
indicates that the regression coefficients are dif-
ferent for different strata of Z ∗.

Alternative SC interaction model:

� uses product terms involving Z ∗
� define k∗ − 1 dummy variables

Z ∗
1 , Z ∗

2 , . . . , Z ∗
k∗−1, from Z ∗

� products of the form Z ∗
i × X j ,

where i = 1, . . . , k∗ − 1 and
j = 1, . . . , p.

An alternative way to write the interaction model
uses product terms involving the variable Z ∗
with each of the predictors. However, to write
this model correctly, we need to use k∗ − 1
dummy variables to distinguish the k∗ categories
of Z ∗; also, each of these dummy variables,
which we denote as Z ∗

1 , Z ∗
2 , . . . , Z ∗

k∗−1, needs to
be involved in a product term with each of
the X ’s.

hg (t,X) = h0g (t) exp[β1 X1 + · · · + βp X p

+β11(Z ∗
1 × X1) + · · · + βp1(Z ∗

1 × X p)

+β12(Z ∗
2 × X1) + · · · + βp2(Z ∗

2 × X p)

+ · · · + β1,k∗−1(Z ∗
k∗−1 × X1) + · · ·

+βp,k∗−1(Z ∗
k∗−1 × X p)]

g = 1, 2, . . . , k∗, strata defined from Z ∗

The hazard model formula alternative model is
shown here. Notice that the first line of the for-
mula contains the X ’s by themselves, the next line
contains products of each X j with Z ∗

1 , the third
line contains the products with Z ∗

2 , and the last
line contains products with Zk∗−1. Note also that
the subscript g occurs only with the baseline haz-
ard function h0g (t), and is not explicitly used in
the β coefficients.
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EXAMPLE (Remission Data) 

Z∗ = sex, k∗ = 2, 

g =1, 2 

β1 = β1
∗, β2 = β2

∗, β11 = β3
∗, and β21 = β4

∗

+ β11(Z∗
1 × X1)

= h0g(t)exp[β1
∗log WBC 

+ β2
∗Rx + β3

∗(sex × log WBC) 

+ β4
∗(sex × Rx)]

Z∗
1 = sex(0,1), 

X1 = log WBC, X2 = Rx (p = 2) 

hg(t,X) = h0g(t)exp[β1X1 + β2X2

+ β21(Z∗
1 × X2)]

In our previous example involving the remission
data, the stratification variable (Z ∗) was the vari-
able SEX, and k∗ was equal to 2; thus, we have
only one dummy variable Z ∗

1 , which uses a (0,1)
coding to indicate sex, and we have only ( p equal
to) two predictors—X1 equal to log WBC and X2
equal to Rx. The interaction model is then written
in either of the forms shown here.

The latter version of the interaction model is what
we previously presented for the remission data ex-
ample. Because the two versions presented here
are equivalent, it follows that β∗

1 = β1,β2 = β∗
2,

β11 = β∗
3, and β21 = β∗

4.

We have thus seen that the interaction model can
be written in a format that contains product terms
involving dummy variables (i.e., Z ∗

i ) for the vari-
able being stratified being multiplied by each of
the predictors (i.e., Xi ) not being stratified. We
will use this model to describe a test of the no-
interaction assumption.

Testing the no-interaction assump-
tion:
LR = −2 ln L R − (−2 ln L F )
R = reduced (no-interaction) model
F = full (interaction) model

contains product terms

H0 :

⎧⎪⎪⎪⎨⎪⎪⎪⎩
β11 = · · · = βp1 = 0
β12 = · · · = βp2 = 0
...
β1,k∗−1 = · · · = βp,k∗−1 = 0

The test is a likelihood ratio (LR) test which com-
pares log likelihood statistics for the interaction
model and the no-interaction model. That is, the
LR test statistic is of the form −2 ln L R minus
−2 ln L F , where R denotes the reduced model,
which in this case is the no-interaction model, and
F denotes the full model, which is the interaction
model.

The no-interaction model differs from the inter-
action model in that the latter contains additional
product terms. Thus, one way to state the null hy-
pothesis of no interaction is that the coefficients
of each of these product terms are all zero.

LR ∼̇ χ2
p(k∗−1) df

under H0: no interaction

p(k∗ − 1) gives number of product
terms being tested in interaction
model

The LR test statistic has approximately a chi-
square distribution with p(k∗ − 1) degrees of free-
dom under the null hypothesis. The degrees of
freedom here is p(k∗ − 1) because this value gives
the number of product terms that are being tested
in the interaction model.
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EXAMPLE (Remission Data) 

Z∗ = sex , k∗ = 2, 

Z∗
1 = sex(0,1), 

X1 = log WBC, X2 = Rx (p = 2) 
p(k∗ − 1) = 2, so 
LR ~ χ2

2df under H0: no interaction .

Returning to the remission data example, for
which p = 2 and k∗ = 2, the value of p(k∗ − 1)
is equal to two times (2 − 1), which equals two.
Thus, to test whether the SEX variable interacts
with the log WBC and Rx predictors, the degrees
of freedom for the LR statistic is two, as previously
described.

V. A Second Example
Involving Several
Stratification Variables

The dataset “vets.dat” considers survival times in
days for 137 patients from the Veteran’s Adminis-
tration Lung Cancer Trial cited by Kalbfleisch and
Prentice in their text (The Statistical Analysis of
Survival Time Data, Wiley, pp. 223–224, 1980). The
exposure variable of interest is treatment status.
Other variables of interest as control variables are
cell type (four types, defined in terms of dummy
variables), performance status, disease duration,
age, and prior therapy status. Failure status is de-
fined by the status variable. A complete list of the
variables is shown here.

Here we provide computer output obtained from
fitting a Cox PH model to these data. Using the
P(PH) information in the last column, we can see
that at least four of the variables listed have P(PH)
values below the 0.100 level. These four variables
are labeled in the output as large cell (0.033),
adeno cell (0.081), small cell (0.078), and Perf. Stat
(0.000). Notice that the three variables, large cell,
adeno cell, and small cell, are dummy variables
that distinguish the four categories of cell type.

Thus, it appears from the P(PH) results that the
variables cell type (defined using dummy vari-
ables) and performance status do not satisfy the
PH assumption.

Based on the conclusions just made about the PH
assumption, we now describe a stratified Cox anal-
ysis that stratifies on the variables, cell type and
performance status.

EXAMPLE 
vets.dat: survival time in days, n = 137 

Veteran’s Administration Lung Cancer Trial 
Column   1: Treatment (standard = 1, test = 2) 
Column   2: Cell type 1 (large = 1, other = 0) 
Column   3: Cell type 2 (adeno = 1, other = 0) 
Column   4: Cell type 3 (small = 1, other = 0) 
Column   5: Cell type 4 (squamous = 1, other = 0)
Column   6: Survival time (days) 
Column   7: Performance status (0 = worst, ..., 

100 = best) 
Column   8: Disease duration (months) 
Column   9: Age 
Column 10: Prior therapy (none = 0, some = 10) 
Column 11: Status (0 = censored, 1 = died)

Cox regression 
Analysis time _t: survt

Coef.
Std.
Err. p > |z|

Haz.
Ratio

[95% Conf. 
Interval] P(PH)

Treatment 0.290  0.207  0.162 1.336  0.890 2.006  0.628
Large cell 0.400  0.283  0.157 1.491  0.857 2.594  0.033
Adeno cell 1.188  0.301  0.000 3.281 1.820 5.915  0.081
Small cell 0.856  0.275  0.002 2.355 1.374 4.037  0.078
Perf. Stat –0.033  0.006  0.000 0.968  0.958 0.978  0.000
Dis. Durat. 0.000  0.009  0.992 1.000 0.982 1.018  0.919
Age –0.009  0.009  0.358 0.991 0.974 1.010  0.198
Pr. Therapy 0.007  0.023  0.755 1.007  0.962 1.054  0.145

No. of subjects = 137  Log likelihood = –475.180

Variables not satisfying PH: 
•    cell type (3 dummy variables) 
•   performance status 
•   prior therapy (possibly)

SC model: stratifies on cell type and per-
formance status



V. A Second Example Involving Several Stratification Variables 189

EXAMPLE (continued) 

Z∗ given by combinations of categories:

Z∗ has k∗= 4 × 2 = 8 categories 

•    cell type (four categories)
•  performance status (interval) change

  to
•  PSbin (two categories)

•  treatment status
•  disease duration
•   age
•  prior therapy

Four other variables considered as X’s:

Here, we use treatment status and age
as X’s

Stratified Cox regression
Analysis time _t: survt

Coef.
Std.
Err. p > |z|

Haz.
Ratio

[95% Conf.
Interval]

Treatment

Age

0.125 0.208 0.548 1.134 0.753 1.706

– 0.001 0.010 0.897 0.999 0.979 1.019

No. of subjects = 137  Log likelihood = –262.020  Stratified by Z
∗

No-interaction model

HR = 1.134 (P = 0.548)

T̂reatment effect (adjusted for age
and Z∗) is nonsignificant

No-interaction model:

Interaction model:

hg(t,X)
= h0g(t)exp[β1 Treatment + β2 Age]
g = 1, 2 , . . ., 8 (= # of strata

defined from Z∗)

hg(t,X)
= h0g(t)exp[β1g Treatment + β2g Age]
g = 1, 2 , . . ., 8

Because we are stratifying on two variables, we
need to form a single new categorical variable
Z ∗ whose categories represent combinations of
categories of the two variables. The cell type
variable has four categories by definition. The
performance status variable, however, is an
interval variable ranging between 0 for worst to
100 for best, so it needs to be categorized. We
categorize this variable into two groups using a
cutpoint of 60, and we denote this binary variable
as PSbin. Thus, the number of categories for our
Z ∗ variable is 4 × 2, or 8; that is, k∗ = 8.

In addition to the two stratification variables, cell
type and performance status, there are four other
variables to be considered as predictors in the
stratified Cox model. These are treatment status,
disease duration, age, and prior therapy.

For illustrative purposes here, we use only
treatment status and age as predictors. The
other two variables, disease duration and prior
therapy, are considered in exercises following this
presentation.

Here we show computer output from fitting a
stratified Cox model that stratifies on cell type
and performance status using the eight-category
stratification variable Z ∗. This model also in-
cludes treatment and age as predictors. These
results consider a no-interaction model, because
only one regression coefficient is provided for
the treatment and age predictors. Notice that the
estimated hazard ratio is 1.134 for the effect of
the treatment variable adjusted for age and Z ∗,
the latter being adjusted by stratification. The
p-value for this adjusted treatment effect is 0.548,
which is highly nonsignificant.

The no-interaction model we have just described
has the hazard function formula shown here.

To evaluate whether the no-interaction model
is appropriate, we need to define an interaction
model that allows different regression coeffi-
cients for different strata. One way to write this
interaction model is shown here.
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EXAMPLE (continued) 

Alternative interaction model: 

hg(t,X) = h0g(t)exp[β1 Treatment + β2 Age
+ β11(tr Z∗

1) + β12(tr Z∗
2) + β13(tr Z∗

3)
+ β14(tr Z∗

4) + β15(tr Z∗
1Z∗

4)
+ β16(tr Z∗

2Z∗
4) + β17(tr Z∗

3 Z∗
4)

+ β21(AGE Z∗
1) + β22(AGE Z∗

2)
+ β23(AGE Z∗

3) + β24(AGE Z∗
4)

+ β25(AGE Z∗
1Z∗

4) + β26(AGE Z∗
2 Z∗

4)
+ β27(AGE Z∗

3Z∗
4)]

Another version of interaction model:
Replace Z∗

1, ..., Z∗
7 by

Z∗
1 = large cell (binary) 

Z∗
2 = adeno cell (binary)

Z∗
3 = small cell (binary)

Z∗
4 = PSbin (binary)

Z∗
5 = Z∗

1 × Z∗
4

Z∗
6 = Z∗

2 × Z∗
4

Z∗
7 = Z∗

3 × Z∗
4

hg(t,X)
= h0g(t)exp[β1 Treatment

+ β2 Age

   + β11(Z∗
1 × Treatment) + . . . 

+ β17(Z∗
7 × Treatment)

+ β21(Z∗
1 × Age) + . . . + β27(Z∗

7 × Age)]

g = 1, 2 , . . ., 8

An alternative version of this interaction model
that involves product terms is shown here. This
version uses seven dummy variables denoted as
Z ∗

1 , Z ∗
2 up through Z ∗

7 to distinguish the eight cat-
egories of the stratification variable Z ∗. The model
contains the main effects of treatment and age
plus interaction terms involving products of each
of the seven dummy variables with each of the two
predictors.

Yet another version of the interaction model is to
replace the seven dummy variables Z ∗

1 to Z ∗
7 by

the seven variables listed here. These variables are
three of the binary variables making up the cell
type variable, the binary variable for performance
status, plus three product terms involving each of
the cell type dummy variables multiplied by the
PSbin dummy variable (Z ∗

4).

The latter interaction model is shown here. In this
model, the variable tr Z ∗

1 denotes the product of
treatment status with the large cell dummy Z ∗

1 , the
variable tr Z ∗

2 denotes the product of treatment
status with the adeno cell variable Z ∗

2 , and so on.
Also, the variable tr Z ∗

1 Z ∗
4 denotes the triple prod-

uct of treatment status times the large cell vari-
able Z ∗

1 times the PSbin variable Z ∗
4 , and so on,

for the other triple product terms involving treat-
ment. Similarly, for the terms involving age, the
variable Age Z ∗

1 denotes the product of age with
Z ∗

1 , and the variable Age Z ∗
1 Z ∗

4 denotes the triple
product of age times Z ∗

1 times Z ∗
4 .

Note that we are just considering the interaction
between the stratified variables and the predictors.
We could also (but do not) consider the interaction
between the two predictors, treatment, and age.
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EXAMPLE (continued) 

Coef.
Std.
Err. p > |z|

Haz.
Ratio

[95% Conf. 
Interval]

Treatment 0.286 0.664 0.667 1.331 0.362 4.893
Age 0.000 0.030 0.978 0.999 0.942 1.060
tr Z∗

1 2.351 1.772 0.184 10.495 0.326 337.989

tr Z∗
2 –1.158 0.957 0.226 0.314 0.048 2.047

tr Z∗
3 0.582 0.855 0.496 1.790 0.335 9.562

tr Z∗
4 –1.033 0.868 0.234 0.356 0.065 1.950

tr Z∗
1Z∗

4 –0.794 1.980 0.688 0.452 0.009 21.882

tr Z∗
2Z∗

4 2.785 1.316 0.034 16.204 1.229 213.589

tr Z∗
3Z∗

4 0.462 1.130 0.683 1.587 0.173 14.534

Age Z∗
1 0.078 0.064 0.223 1.081 0.954 1.225

Age Z∗
2 –0.047 0.045 0.295 0.954 0.873 1.042

Age Z∗
3 –0.059 0.042 0.162 0.943 0.868 1.024

Age Z∗
4 0.051 0.048 0.287 1.053 0.958 1.157

Age Z∗
1Z∗

4 –0.167 0.082 0.042 0.847 0.721 0.994

Age Z∗
2Z∗

4 –0.045 0.068 0.511 0.956 0.838 1.092

Age Z∗
3Z∗

4 0.041 0.061 0.499 1.042 0.924 1.175

Stratified Cox Regression Analysis on 
Variable: Z∗

Response: Surv. Time

No. of subjects = 137  Log likelihood = –249.972  Stratified by Z∗

Eight possible combinations of Z∗
1 to Z∗

4:

g = 1: Z∗
1 = Z∗

2 = Z∗
3 = Z∗

4 = 0
g = 2: Z∗

1 = 1, Z∗
2 = Z∗

3 = Z∗
4 = 0

g = 3: Z∗
2 = 1, Z∗

1 = Z∗
3 = Z∗

4 = 0
g = 4: Z∗

3 = 1, Z∗
1= Z∗

2 = Z∗
4 = 0

g = 5: Z∗
1 = Z∗

2 = Z∗
3 = 0, Z∗

4 = 1
g = 6: Z∗

1 = 1, Z∗
2 = Z∗

3 = 0, Z∗
4 = 1

g = 7: Z∗
2 = 1, Z∗

1 = Z∗
3 = 0, Z∗

4 = 1
g = 8: Z∗

3 = 1, Z∗
1 = Z∗

2 = 0, Z∗
4 = 1

g = 1: Z∗
1 = Z∗

2 = Z∗
3 = Z∗

4 = 0
(Squamous cell type and PSbin = 0)

All product terms are zero:
h1(t,X)
= h01(t)exp[β1Treatment + β2 Age],

where β̂1 = 0.286, 

β̂2 = 0.000, so that 
ĥ1(t,X) = ĥ01(t)exp[(0.286)Treatment]

g = 2: Z∗
1 = 1, Z∗

2 = Z∗
3 = Z∗

4 = 0
(Large cell type and PSbin = 0)

Nonzero product terms     Coefficients

Age Z∗
1 = Age β21

tr Z∗
1 = Treatment β11

Here we provide the computer results from fitting
the interaction model just described. Notice that
the first two variables listed are the main effects
of treatment status and age. The next seven vari-
ables are product terms involving the interaction
of treatment status with the seven categories of Z ∗.
The final seven variables are product terms involv-
ing the interaction of age with the seven categories
of Z ∗. As defined on the previous page, the seven
variables used to define Z ∗ consist of three dummy
variables Z ∗

1 , Z ∗
2 and Z ∗

3 for cell type, a binary vari-
able Z ∗

4 for performance status and products of Z ∗
4

with each of Z ∗
1 , Z ∗

2 , and Z ∗
3 . Note that once the

variables Z ∗
1 , Z ∗

2 , Z ∗
3 , and Z ∗

4 are specified, the val-
ues of the three product terms are automatically
determined.

We can use these results to show that the inter-
action model being fit yields different regression
coefficients for each of the eight categories defined
by the subscript g for the stratification variable Z ∗.
These eight categories represent the possible com-
binations of the four variables Z ∗

1 to Z ∗
4 , as shown

here.

Consider the hazard function when the variables
Z ∗

1 through Z ∗
4 are all equal to zero. This stratum

is defined by the combination of squamous cell
type and a binary performance status value of 0.
In this case, all product terms are equal to zero
and the hazard model contains only the main ef-
fect terms treatment and age. The estimated haz-
ard function for this stratum uses the coefficients
0.286 for treatment and 0.000 for age, yielding the
expression shown here. Note that age drops out
of the expression because its coefficient is zero to
three decimal places.

Now consider the hazard function when the vari-
able Z ∗

1 equals 1 and Z ∗
2 through Z ∗

4 are equal to
zero. This stratum is defined by the combination
of large cell type and a PSbin value of 0. In this
case, the only nonzero product terms are Age Z ∗

1
and tr Z ∗

1 , whose coefficients are β21 and β11, re-
spectively.
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EXAMPLE (continued) 

h2(t,X) = h02(t)exp[(β1 + β11)Treatment
+ (β2 + β21) Age]

β̂1 = 0.286, β̂2 = 0.000

β̂11 = 2.351, β̂21 = 0.078

Hazard functions for interaction model:

g = 1: (Z∗
1 = Z∗

2 = Z∗
3 = Z∗

4 = 0):
ĥ1(t,X) = ĥ01(t)exp[(0.286)Treatment]

g = 2: (Z∗
1 = 1, Z∗

2 = Z∗
3 = Z∗

4 = 0):
ĥ2(t,X) = ĥ02(t)exp[(2.637)Treatment

+ (0.078)Age]
g = 3: (Z∗

2 = 1, Z∗
1 = Z∗

3 = Z∗
4 = 0):

ĥ3(t,X) = ĥ03(t)exp[(−0.872)Treatment

+ (–0.047)Age]
g = 4: (Z∗

3 = 1, Z∗
1 = Z∗

2 = Z∗
4 = 0):

ĥ4(t,X) = ĥ04(t)exp[(0.868)Treatment

+ (−0.059)Age]
g = 5: (Z∗

1 = Z∗
2 = Z∗

3 = 0, Z∗
4 = 1):

ĥ5(t,X) = ĥ05(t)exp[(–0.747)Treatment

+ (0.051)Age]
g = 6: (Z∗

1 = 1, Z∗
2 = Z∗

3 = 0, Z∗
4 = 1):

ĥ6(t,X) = ĥ06(t)exp[(0.810)Treatment

+ (−0.038)Age]
g = 7: (Z∗

2 = 1, Z∗
1 = Z∗

3 = 0, Z∗
4 = 1):

ĥ7(t,X) = ĥ07(t)exp[(0.880)Treatment

+ (−0.041)Age]
g = 8: (Z∗

3 = 1, Z∗
1 = Z∗

2 = 0, Z∗
4 = 1):

ĥ8(t,X) = ĥ08(t)exp[(0.297)Treatment

+ (0.033)Age]

LR test to compare no-interaction model
with interaction model:

H0: no-interaction model acceptable, i.e.,
Treatment: β11 = β12 = . . . = β17 = 0
and Age: β21 = β22 = . . . = β27 = 0 

14 coefficients ⇒ df = 14 

LR = –2 ln LR − (2 ln LF)

F = full (interaction) model

R = reduced (no-interaction) model

The hazard function for this second stratum is
shown here. Notice that the coefficients of the
treatment and age variables are (β1 + β11) and
(β2 + β21), respectively. The estimated values of
each of these coefficients are given here.

The corresponding estimated hazard function for
the second stratum (i.e., g = 2) is shown here. For
comparison, we repeat the estimated hazard func-
tion for the first stratum.

The estimated hazard functions for the remain-
ing strata are provided here. We leave it up to the
reader to verify these formulae. Notice that the co-
efficients of treatment are all different in the eight
strata, and the coefficients of age also are all dif-
ferent in the eight strata.

We have presented computer results for both the
no-interaction and the interaction models. To eval-
uate whether the no-interaction assumption is sat-
isfied, we need to carry out a likelihood ratio test
to compare these two models.

The null hypothesis being tested is that the no-
interaction model is acceptable. Equivalently, this
null hypothesis can be stated by setting the co-
efficients of all product terms in the interaction
model to zero. That is, the seven coefficients of
product terms involving treatment and the seven
coefficients of the product terms involving age are
set equal to zero as shown here.

Because the null hypothesis involves 14 coeffi-
cients, the degrees of freedom of the LR chi-
square statistic is 14. The test statistic takes the
usual form involving the difference between log-
likelihood statistics for the reduced and full mod-
els, where the reduced model is the no-interaction
model and the full model is the interaction model.
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EXAMPLE (continued) 

LR~χ2
14df under H0: no interaction

LR = (−2 × –262.020) − (−2 × –249.972)
= 524.040 − 499.944 = 24.096

P = 0.045 (significant at 0.05)
Conclusion:
Reject H0: interaction model is
preferred.

Might use further testing to simplify
interaction model, e.g., test for seven
products involving treatment or test for
seven products involving age.

.

Thus, under the null hypothesis, the LR statistic
is approximately chi-square with 14 degrees of
freedom.

The computer results for the no-interaction and
interaction models give log-likelihood values of
524.040 and 499.944, respectively. The difference
is 24.096. A chi-square value of 24.096 with 14 de-
grees of freedom yields a p-value of 0.045, so that
the test gives a significant result at the 0.05 level.
This indicates that the no-interaction model is not
acceptable and the interaction model is preferred.

Note, however, that it may be possible from fur-
ther statistical testing to simplify the interaction
model to have fewer than 14 product terms. For
example, one might test for only the seven prod-
uct terms involving treatment or only the seven
product terms involving age.

VI. A Graphical View of the
Stratified Cox Approach

a. h(t) = h0(t)exp(β1RX
+β2SEX)

ln(− ln S(t)) = ln(− ln S0(t))
+β1RX + β2SEX

ln(−lnS(t))

males, RX = 1

males, RX = 0

females, RX = 0

females, RX = 1

t

In this section we examine four log–log survival
plots illustrating the assumptions underlying a
stratified Cox model with or without interaction.
Each of the four models considers two dichoto-
mous predictors: treatment (coded RX = 1 for
placebo and RX = 0 for new treatment) and SEX
(coded 0 for females and 1 for males). The four
models are as follows (see left).

a. h0(t)exp(β1RX + β2SEX). This model
assumes the PH assumption for both RX
and SEX and also assumes no interaction
between RX and SEX. Notice all four
log–log curves are parallel (PH assumption)
and the effect of treatment is the same for
females and males (no interaction). The
effect of treatment (controlling for SEX)
can be interpreted as the distance between
the log–log curves from RX = 1 to RX = 0,
for males and for females, separately.
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b. h(t) = h0(t) exp(β1RX + β2SEX
+β3 RX × SEX)

ln(−ln S(t)) = ln(−ln S0(t))
+ β1RX+β2SEX+β3RX×SEX

ln(−lnS(t))

males, RX = 1

males, RX = 0

females, RX = 0
females, RX = 1

t

c. h(t) = h0g(t)exp(β1RX)
(g = 1 for males, g = 0 for
females)
ln(−lnS(t)) = ln(− ln S0g(t))

+ β1RX

ln(−lnS(t))

males, RX = 1
males, RX = 0

females, RX = 0

females, RX = 1
t

d. h(t) = h0g(t)exp(β1RX
+ β2 RX × SEX)

(g = 1 for males, g = 0 for
females)
ln(−ln S(t)) = ln(−ln S0g(t))

+β1RX + β2 RX ×SEX

ln(−lnS(t))

males, RX = 1

males, RX = 0

females, RX = 0

females, RX = 1

t

b. h(t) = h0(t)exp(β1RX + β2SEX + β3
RX × SEX). This model assumes the PH
assumption for both RX and SEX and
allows for interaction between these two
variables. All four log–log curves are
parallel (PH assumption) but the effect of
treatment is larger for males than females
as the distance from RX = 1 to RX = 0 is
greater for males.

c. h(t) = h0g(t)exp(β1RX), where g = 1 for
males, g = 0 for females. This is a stratified
Cox model in which the PH assumption is
not assumed for SEX. Notice the curves for
males and females are not parallel.
However, the curves for RX are parallel
within each stratum of SEX indicating that
the PH assumption is satisfied for RX. The
distance between the log–log curves from
RX = 1 to RX = 0 is the same for males
and females indicating no interaction
between RX and SEX.

d. h(t) = h0g(t) exp(β1RX + β2RX × SEX),
where g = 1 for males, g = 0 for females.
This is a stratified Cox model allowing for
interaction of RX and SEX. The curves for
males and females are not parallel
although the PH assumption is satisfied for
RX within each stratum of SEX. The
distance between the log–log curves from
RX = 1 to RX = 0 is greater for males than
females indicating interaction between RX
and SEX.
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VII. Summary We now summarize the most important features
of the stratified Cox (SC) model described in this
presentation.

The SC model is a modification of the Cox PH
model to allow for control by “stratification” of
predictors not satisfying the PH assumption. Vari-
ables that are assumed to satisfy the assumption
are included in the model as predictors; the strat-
ified variables are not included in the model.

Stratified Cox (SC) model:

� stratification of predictors not
satisfying PH assumption� includes predictors satisfying
PH� does not include stratified
variables

Computer Results

Stratified Cox regression
Analysis time t: survt

Std. Haz. [95% Conf.
Coef. Err. p > |z| Ratio Interval]

log
WBC 1.390 0.338 0.000 4.016 2.072 7.783
RX 0.931 0.472 0.048 2.537 1.006 6.396
No. of Log likelihood Stratified
subjects = 42 = −57.560 by sex

The computer results for a SC model provides
essentially the same type of output as provided
for a Cox PH model without stratification. An ex-
ample of SC output using the remission data is
shown here. The variables included as predictors
in the model are listed in the first column followed
by their estimated coefficients, standard errors,
p-values, hazard ratio values, and 95% confidence
limits. Such information cannot be provided for
the variables being stratified, because these lat-
ter variables are not explicitly included in the
model.

Hazard function for stratified Cox
model:

hg (t,X) = h0g (t)exp[β1 X1 + β2 X2

+ · · · + βp X p]
g = 1, 2, . . . , k∗, strata defined

from Z ∗

Z ∗ has k∗ categories
X1, X2, . . . , X p satisfy PH

The general hazard function form for the stratified
Cox model is shown here. This formula contains
a subscript g that indicates the gth stratum, where
the strata are different categories of the stratifica-
tion variable Z ∗ and the number of strata equals
k∗. Notice that the baseline hazard functions are
different in each stratum.

Stratification variable Z∗:

� identify Z1, Z2, . . . , Zk not
satisfying PH� categorize each Z� form combinations of categories
(strata)� each combination is a stratum
of Z ∗

The variable Z ∗ is defined by first identifying the
Zi variables not satisfying the PH assumption. We
then categorize each Z and form combinations of
categories of each of the Z’s. Each combination
represents a different stratum making up the vari-
able Z ∗.
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No-interaction model:
Same coefficients β1,β2, . . . ,βp
for each g, i.e., Z ∗ does not interact
with the X ’s.

The above model is designated as a “no-
interaction” model because the β’s in the model
are the same for each subscript g. The no-
interaction assumption means that the variables
being stratified are assumed not to interact with
the X ’s in the model.

Different
baselines

⎧⎪⎪⎪⎨⎪⎪⎪⎩
h01(t) ⇒ Ŝ1(t)
h02(t) ⇒ Ŝ2(t)

...
h0k(t) ⇒ Ŝk∗ (t)

⎫⎪⎪⎪⎬⎪⎪⎪⎭
Different
survival
curves

For the no-interaction model, the fitted SC model
will yield different estimated survival curves for
each stratum because the baseline hazard func-
tions are different for each stratum.

ĤR same for each stratum However, because the coefficients of the X ’s are the
same for each stratum, estimates of hazard ratios
are the same for each stratum.

(Partial) likelihood function:

L = L1 × L2 × · · · × Lk∗

Regression coefficients in the SC model are esti-
mated by maximizing a partial likelihood function
that is obtained by multiplying likelihood func-
tions for each stratum.

Stratified Cox model allowing interaction:

hg (t,X) = h0 g (t) exp[β1g X1 + β2g X2

+ · · · + βpg X p]

g = 1, 2, . . . , k∗, strata defined from Z ∗.

In order to evaluate the no-interaction assump-
tion, we must define an interaction model for com-
parison. One version of the interaction model is
shown here. This version shows regression coeffi-
cients with different subscripts in different strata;
that is, each β coefficient has a subscript g.

Alternative stratified Cox interac-
tion model:

� uses product terms involving Z ∗
� define k∗ − 1 dummy variables

from Z ∗
� products of the form Z ∗

i × X j

An alternative way to write the interaction model
uses product terms involving the Z ∗ variable with
each predictor. This model uses k∗−1 dummy vari-
ables to distinguish the k∗ categories of Z ∗. Each
of these dummy variables is included as a product
term with each of the X ’s.

Testing the no-interaction assump-
tion:

LR = −2 ln L R − (2 ln L F )
R = reduced (no-interaction) model
F = full (interaction) model

contains product terms
LR∼̇χ2

p(k∗−1)df under H0: no
interaction

To evaluate the no-interaction assumption, we can
perform a likelihood ratio test that compares the
(reduced) no-interaction model to the (full) inter-
action model. The null hypothesis is that the no-
interaction assumption is satisfied. The test statis-
tic is given by the difference between the log-
likelihood statistics for the no-interaction and in-
teraction models. This statistic is approximately
chi-square under the null hypothesis. The degrees
of freedom is p(k∗−1) where p denotes the num-
ber of X ’s and k∗ is the number of categories mak-
ing up Z ∗.
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PRESENTATION COMPLETE!

Chapters This presentation is now complete. We suggest
that the reader review this presentation using the
detailed outline that follows. Then answer the
practice exercises and the test that follow.

The next Chapter (6) is entitled “Extension of the
Cox PH Model for Time-Dependent Variables.”
There we show how an “extended” Cox model
can be used as an alternative to the stratified Cox
model when one or more predictors do not satisfy
the PH assumption. We also discuss more gener-
ally what is a time-dependent variable, and show
how such a variable can be evaluated using an ex-
tended Cox model.

1. Introduction to Survival
Analysis

2. Kaplan–Meier Survival Curves
and the Log–Rank Test

3. The Cox Proportional Hazards
Model and Its Characteristics

4. Evaluating the Proportional
Hazards Assumption

√
5.

�
�

�
�The Stratified Cox Procedure

Next:

6. Extension of the Cox
Proportional Hazards Model for
Time-Dependent Variables



198 5. The Stratified Cox Procedure

Detailed
Outline

I. Preview (page 176)
A. Focus on how stratified Cox (SC) procedure is

carried out:� analysis of computer results from SC
procedure;� hazard function for SC model;� stratifying on a single predictor versus two or
more predictors;� no-interaction versus interaction models.

II. An Example (pages 176–180)
A. Cox PH results for remission data yield

P (PH) = 0.031 for SEX.
B. SC model used: control for SEX (stratified);

include log WBC and Rx in model.
C. Analysis of Rx effect from stratified Cox

results:
ĤR = 2.537; 95% CI: (1.006,6.396); LR and
Wald tests: P < 0.05.

D. Hazard model: hg (t, X) =
h0g(t) exp[β1 log WBC + β2 Rx], g = 1,2� different baseline hazard functions and

survival curves for females and males;� same coefficients β1 and β2 for both females
and males (no-interaction assumption);� obtain estimates by maximizing partial
likelihood L = L1 × L2.

E. Graph of four adjusted survival curves for Rx
(adjusted for log WBC).

III. The General Stratified Cox (SC) Model
(pages 180–181)
A. hg (t,X) = h0g (t) exp [β1 X1 +β2 X2 + · · · +βp X p],

g = 1, 2, · · · , k∗ ,

where the strata are defined from the stratification
variable Z ∗.

B. Z ∗ defined from Z1, Z2, . . . , Zk variables that do
not satisfy PH:� categorize each Zi� form combinations of categories� each combination is a stratum of Z ∗

C. Different baseline hazard functions and survival
curves for each stratum.
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D. Assumes no interaction: same coefficients
β1,β2, . . . ,βp for each g; i.e., Z ∗ does not interact
with the X’s; i.e., estimated HR is same for each
stratum.

E. Obtain estimates by maximizing partial likelihood
L = L1 × L2 × · · · × Lk∗ , where Li is likelihood
for ith stratum.

IV. The No-Interaction Assumption and How to Test It
(pages 182–188)
A. Assumes same coefficients β1,β2, . . . ,βp for each

g.
B. Interaction model:

hg (t, X) = h0g (t)exp[β1g X1 + β2g X2 + · · · + βpg X p] ,

g = 1, 2, . . . , k∗ strata defined from Z ∗.
C. Alternative stratified Cox interaction model:� uses product terms involving Z ∗

� define k∗−1 dummy variables
Z ∗

1 , Z ∗
2 , . . . , Zk∗−1

∗ from Z ∗
� products of the form Z ∗

i × X j , where
i = 1, . . . , k∗ − 1; j = 1, . . . , p� hazard function: g = 1, 2, . . . , k∗ strata
defined from Z ∗

hg (t,X) = h0g (t)exp[β1 X1 + · · · + βp X p + β11(Z ∗
1 × X1)

+ · · · + βp1(Z ∗
1 × X p) + β12(Z ∗

2 × X1) + · · · + βp2(Z ∗
2 × X p)

+ · · · + β1,k∗−1(Z ∗
k∗−1 × X1) + · · · + βp,k∗−1(Z ∗

k∗−1 × X p)]

D. Testing the no-interaction assumption: use LR
statistic given by L R = −2 ln L R − (−2 ln LF)
where R = reduced (no interaction) model and
F = full (interaction) model
L R∼̇χ2

p(k∗−1)df under H0: no interaction,
i.e., β11 = β21 = . . . = βp,k∗−1 = 0

V. A Second Example Involving Several Stratification
Variables (pages 188–193)
A. Dataset “vets.dat” from Veteran’s Administration

Lung Cancer Trial; n = 137; survival time in days.
B. Variables are: treatment status, cell type (four

types), performance status, disease duration, age,
and prior therapy status.

C. Cox PH results indicate [using P (PH)] that cell
type and performance status do not satisfy PH
assumption.
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D. Example stratifies on cell type and performance
status using four categories of cell type and two
categories of performance status, so that Z ∗ has
k∗ = 8 strata.

E. X ’s considered in model are treatment status and
age.

F. Computer results for no-interaction model:
estimated HR for effect of treatment adjusted for
age and Z ∗ is 1.134 (P = 0.548); not significant.

G. Hazard function for no-interaction model:
hg (t,X) = h0g(t) exp [β1 Treatment + β2 Age],
g = 1, 2, . . . , 8

H. Hazard function for interaction model:
hg (t,X) = h0g(t) exp [β1g Treatment + β2g Age],
g = 1, 2, . . . , 8

I. Alternative version of interaction model:
hg (t,X) = h0g (t) exp [β1 Treatment + β2 Age
+ β11(Z ∗

1 × Treatment) + · · · + β17(Z ∗
7 × Treatment)

+ β21(Z ∗
1 × Age) + · · · + β27(Z ∗

7 × Age)],
g = 1, 2, . . . , 8
where Z ∗

1 = large cell (binary), Z ∗
2 = adeno cell

(binary), Z ∗
3 = small cell (binary), Z ∗

4 = PSbin
(binary), Z ∗

5 = Z ∗
1 × Z ∗

4 , Z ∗
6 = Z ∗

2 × Z ∗
4 ,

Z ∗
7 = Z ∗

3 × Z ∗
4

J. Demonstration that alternative interaction version
(in item I) is equivalent to original interaction
formulation (in item H) using computer results for
the alternative version.

K. Test of no-interaction assumption:� null hypothesis: β11 = β12 = . . . = β17 = 0
and β21 = β22 = . . . = β27 = 0� LR∼̇χ2

14 df under H0: no interaction� LR = 524.040 − 499.944 = 24.096
(P = 0.045)
Conclusion: Reject null hypothesis;
interaction model is preferred.

VI. A Graphical View of the Stratified Cox Approach
(pages 193–194)
Comparison of log–log survival curves
1. Describe interaction of Rx and Sex.
2. Describe violation of PH assumption for Sex.

VII. Summary (pages 195–196)
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Practice
Exercises

The following questions derive from the dataset vets.dat con-
cerning the Veteran’s Administration Lung Cancer Trial that
we previously considered in the presentation on the stratified
Cox model. Recall that survival times are in days and that
the study size contains 137 patients. The exposure variable
of interest is treatment status (standard = 1, test = 2). Other
variables of interest as control variables are cell type (four
types, defined in terms of dummy variables), performance
status, disease duration, age, and prior therapy status. Fail-
ure status is defined by the status variable (0 = censored,
1 = died).

1. Consider the following two edited printouts obtained
from fitting a Cox PH model to these data.

Cox regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)

Treatment 0.290 0.207 0.162 1.336 0.890 2.006 0.628
Large cell 0.400 0.283 0.157 1.491 0.857 2.594 0.033
Adeno cell 1.188 0.301 0.000 3.281 1.820 5.915 0.081
Small cell 0.856 0.275 0.002 2.355 1.374 4.037 0.078
Perf.Stat −0.033 0.006 0.000 0.968 0.958 0.978 0.000
Dis.Durat. 0.000 0.009 0.992 1.000 0.982 1.018 0.919
Age −0.009 0.009 0.358 0.991 0.974 1.010 0.198
Pr.Therapy 0.007 0.023 0.755 1.007 0.962 1.054 0.145

No. of subjects = 137 Log likelihood = −475.180

Cox regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)

Treatment 0.298 0.197 0.130 1.347 0.916 1.981 0.739
Small cell 0.392 0.210 0.062 1.481 0.981 2.235 0.382
Perf.Stat −0.033 0.005 0.000 0.968 0.958 0.978 0.000
Dis.Durat. −0.001 0.009 0.887 0.999 0.981 1.017 0.926
Age −0.006 0.009 0.511 0.994 0.976 1.012 0.211
Pr.Therapy −0.003 0.023 0.884 0.997 0.954 1.042 0.146

No. of subjects = 137 Log likelihood = −487.770

How do the printouts differ in terms of what the P(PH)
information says about which variables do not satisfy
the PH assumption?

2. Based on the above information, if you were going to
stratify on the cell type variable, how would you define
the strata? Explain.



202 5. The Stratified Cox Procedure

3. Consider a stratified analysis that stratifies on the vari-
ables Z1 = “small cell” and Z2 = “performance status.”
The small cell variable is one of the dummy variables for
cell type defined above. The performance status variable
is dichotomized into high (60 or above) and low (below
60) and is denoted as PSbin. The stratification variable
which combines categories from Z1 and Z2 is denoted as
SZ ∗ and consists of four categories. The predictors in-
cluded (but not stratified) in the analysis are treatment
status, disease duration, age, and prior therapy. The com-
puter results are as follows:

Stratified Cox
regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Treatment 0.090 0.197 0.647 1.095 0.744 1.611
Dis.Durat. 0.000 0.010 0.964 1.000 0.982 1.019
Age 0.002 0.010 0.873 1.002 0.983 1.021
Pr.Therapy −0.010 0.023 0.656 0.990 0.947 1.035

No. of subjects = 137 Log likelihood = −344.848 Stratified by SZ∗

Based on these results, describe the point and interval
estimates for the hazard ratio for the treatment effect ad-
justed for the other variables, including SZ ∗. Is this haz-
ard ratio meaningfully and/or statistically significant?
Explain.

4. State the form of the hazard function for the model being
fit in question 3. Why does this model assume no interac-
tion between the stratified variables and the predictors
in the model?

5. State two alternative ways to write the hazard function
for an “interaction model” that allows for the interac-
tion of the stratified variables with the treatment status
variable, but assumes no other type of interaction.

6. State two alternative versions of the hazard function for
an interaction model that allows for the interaction of
the stratified variables (small cell and performance sta-
tus) with each of the predictors treatment status, disease
duration, age, and prior therapy.

7. For the interaction model described in question 6, what
is the formula for the hazard ratio for the effect of treat-
ment adjusted for the other variables? Does this formula
give a different hazard ratio for different strata? Explain.
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8. State two alternative versions of the null hypothesis for
testing whether the no-interaction assumption is satis-
fied for the stratified Cox model. Note that one of these
versions should involve a set of regression coefficients
being set equal to zero.

9. State the form of the likelihood ratio statistic for evaluat-
ing the no-interaction assumption. How is this statistic
distributed under the null hypothesis, and with what de-
grees of freedom?

10. Provided below are computer results for fitting the in-
teraction model described in question 6. In this print-
out the variable Z ∗

1 denotes the small cell variable and
the variable Z ∗

2 denotes the PSbin variable. The variable
DDZ∗

1 denotes the product of Z∗
1 with disease duration,

and other product terms are defined similarly.

Stratified Cox
regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Treatment 0.381 0.428 0.374 1.464 0.632 3.389
Dis.Durat. 0.015 0.021 0.469 1.015 0.975 1.057
Age 0.000 0.017 0.994 1.000 0.968 1.033
Pr.Therapy 0.023 0.041 0.571 1.023 0.944 1.109
DDZ∗

1 −0.029 0.024 0.234 0.971 0.926 1.019
AgeZ∗

1 −0.055 0.037 0.135 0.946 0.880 1.018
PTZ∗

1 0.043 0.075 0.564 1.044 0.901 1.211
DDZ∗

2 0.025 0.032 0.425 1.026 0.964 1.092
AgeZ∗

2 0.001 0.024 0.956 1.001 0.956 1.049
PTZ∗

2 −0.078 0.054 0.152 0.925 0.831 1.029
DDZ1Z∗

2 −0.071 0.059 0.225 0.931 0.830 1.045
AgeZ1Z∗

2 0.084 0.049 0.084 1.088 0.989 1.196
PTZ1Z∗

2 −0.005 0.117 0.963 0.995 0.791 1.250
trZ∗

1 0.560 0.732 0.444 1.751 0.417 7.351
trZ∗

2 −0.591 0.523 0.258 0.554 0.199 1.543
trZ1Z∗

2 −0.324 0.942 0.731 0.723 0.114 4.583

No. of subjects = 137 Log likelihood = −335.591 Stratified by SZ∗

Use the above computer results to state the form of the
estimated hazard model for each of the four strata of the
stratification variable SZ∗. Also, for each strata, compute
the hazard ratio for the treatment effect adjusted for dis-
ease duration, age, and prior therapy.
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11. Carry out the likelihood ratio test to evaluate the no-
interaction model described in question 4. In carrying
out this test, make sure to state the null hypothesis in
terms of regression coefficients being set equal to zero in
the interaction model fitted in question 10. Also, deter-
mine the p-value for this test and state your conclusions
about significance as well as which model you prefer, the
no-interaction model or the interaction model.

12. The adjusted log–log survival curves for each of the four
strata defined by the stratification variable SZ ∗ (adjusted
for treatment status, disease duration, age, and prior
therapy) are presented below.

6

4

2

0

0 200 400 600 800 Days
−2

Adjusted log–log survival curves by SZ∗Ŝ adj ∗∗∗

Using this graph, what can you conclude about whether
the PH assumption is satisfied for the variables, small
cell type and PSbin?

13. Comment on what you think can be learned by graphing
adjusted survival curves that compare the two treatment
groups for each of the four strata of SZ ∗.

Test The following questions consider a dataset from a study
by Caplehorn et al. (“Methadone Dosage and Retention of
Patients in Maintenance Treatment,” Med. J. Aust., 1991).
These data comprise the times in days spent by heroin addicts
from entry to departure from one of two methadone clinics.
Two other covariates, namely, prison record and maximum
methadone dose, are believed to affect the survival times. The
dataset name is addicts.dat. A listing of the variables is given
below:

Column 1: Subject ID
Column 2: Clinic (1 or 2)
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Column 3: Survival status (0 = censored, 1 = departed
from clinic)

Column 4: Survival time in days
Column 5: Prison record (0 = none, 1 = any)
Column 6: Maximum methadone dose (mg/day)

1. The following edited printout was obtained from fitting a
Cox PH model to these data:

Cox regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval] P(PH)

clinic −1.009 0.215 0.000 0.365 0.239 0.556 0.001
prison 0.327 0.167 0.051 1.386 0.999 1.924 0.332
dose −0.035 0.006 0.000 0.965 0.953 0.977 0.341

No. of subjects = 238 Log likelihood = −673.403

Based on the P(PH) information in the above printout, it
appears that clinic does not satisfy the PH assumption;
this conclusion is also supported by comparing log–log
curves for the two clinics and noticing strong nonparal-
lelism. What might we learn from fitting a stratified Cox
(SC) model stratifying on the clinic variable? What is a
drawback to using a SC procedure that stratifies on the
clinic variable?

2. The following printout was obtained from fitting a SC PH
model to these data, where the variable being stratified is
clinic:

Stratified Cox
regression
Analysis time t:
survt Coef. Std. Err. p > |z| Haz. Ratio [95% Conf. Interval]

Prison 0.389 0.169 0.021 1.475 1.059 2.054
Dose −0.035 0.006 0.000 0.965 0.953 0.978

No. of subjects = 238 Log likelihood = −597.714 Stratified by clinic

Using the above fitted model, we can obtain the adjusted
curves below that compare the adjusted survival probabil-
ities for each clinic (i.e., stratified by clinic) adjusted for
the variables, prison and maximum methadone dose.
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Based on these adjusted survival curves, what conclusions
can you draw about whether the survival experience is differ-
ent between the two clinics? Explain.

3. State the hazard function model being estimated in
the above computer results. Why is this model a no-
interaction model?

4. Using the above computer results, provide point and inter-
val estimates for the effect of prison adjusted for clinic and
dose. Is this adjusted prison effect significant? Explain.

5. The following computer results consider a SC model that
allows for interaction of the stratified variable clinic with
each of the predictors, prison and dose. Product terms
in the model are denoted as clinpr = clinic × prison and
clindos = clinic × dose.

Stratified Cox
regression
Analysis time t:
survt Coef. Std. Err. P > |z| Haz. Ratio [95% Conf. Interval]

prison 1.087 0.539 0.044 2.966 1.032 8.523
dose −0.035 0.020 0.079 0.966 0.929 1.004
clinpr −0.585 0.428 0.172 0.557 0.241 1.290
clindos −0.001 0.015 0.942 0.999 0.971 1.028

No. of subjects = 238 Log likelihood = −596.779 Stratified by clinic

State two alternative versions of the interaction model be-
ing estimated by the above printout, where one of these
versions should involve the product terms used in the
above printout.

6. Using the computer results above, determine the esti-
mated hazard models for each clinic. (Note that the clinics
are coded as 1 or 2.)
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7. Below are the adjusted survival curves for each clinic
based on the interaction model results above. These
curves are adjusted for the prison and dose variables.
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0.6
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0 300 600 900

0

Adjusted survival curves (stratified by clinic)
Interaction Model

Clinic 2

Clinic 1

Compare the survival curves by clinic obtained for the
interaction model with the corresponding curves previ-
ously shown for the no-interaction model. Do both curves
indicate the similar conclusions about the clinic effect?
Explain.

8. Carry out a likelihood ratio test to determine whether the
no-interaction model is appropriate. In doing so, make use
of the computer information described above, state the
null hypothesis, state the form of the likelihood statistic
and its distribution under the null hypothesis, and com-
pute the value of the likelihood statistic and evaluate its
significance. What are your conclusions?

Answers to
Practice
Exercises

1. The first printout indicates that the variables large cell,
adeno cell, small cell, and performance status do not sat-
isfy the PH assumption at the 0.10 level. The second print-
out considers a different model that does not contain the
large cell and adeno cell variables. This latter printout in-
dicates that small cell satisfies the PH assumption, in con-
trast to the first printout. The performance status variable,
however, does not satisfy the PH assumption as in the first
printout.

2. The cell type variable is defined to have four categories,
as represented by the three dummy variables in the first
printout. The “small cell” variable dichotomizes the cell
type variable into the categories small cell type versus the
rest. From the second printout, the small cell variable does
not appear by itself to violate the PH assumption. This re-
sult conflicts with the results of the first printout, for which
the cell type variable considered in four categories does not
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satisfy the PH assumption at the 0.10 level of significance.
We therefore think it is more appropriate to use a SC pro-
cedure only if four strata are to be used. A drawback to
using four strata, however, is that the number of survival
curves to be plotted is larger than for two strata; conse-
quently, a large number of curves is more difficult to in-
terpret graphically than when there are only two curves.
Thus, for convenience of interpretation, we may choose
to dichotomize the cell type variable instead of consider-
ing four strata. We may also consider dichotomies other
than those defined by the small cell variable. For instance,
we might consider dichotomizing on either the adeno or
large cell variables instead of the small cell variable. Al-
ternatively, we may combine categories so as to compare,
say, large and adeno cell types with small and squamous
types. However, a decision to combine categories should
not be just a statistical decision, but should also be based
on biologic considerations.

3. ĤRadj = 1.095, 95% CI: (0.744,1.611), two-tailed P-value is
0.647, not significant. The estimated hazard ratio for treat-
ment is neither meaningfully or statistically significant.
The point estimate is essentially 1, which says that there is
no meaningful effect of treatment adjusted for the predic-
tors in the model and for the stratified predictor SZ ∗.

4. hg (t,X) = h0g(t)exp[β1Treatment + β2DD + β3 Age
+ β4PT], g = 1, . . . , 4, where the strata are defined from
the stratification variable SZ ∗, DD = disease duration,
and PT = prior therapy. This model assumes no interac-
tion because the coefficient of each predictor in the model
is not subscripted by g, i.e., the regression coefficients are
the same for each stratum.

5. Version 1: hg (t, X) = h0g (t)exp[β1g Treatment + β2 DD
+ β3 Age + β4 PT], g = 1, . . . , 4.

Version 2: hg (t,X) = h0g(t)exp[β1 Treatment + β2 DD
+ β3 Age + β4 PT + β5(Z ∗

1 × Treatment)
+ β6(Z ∗

2 × Treatment) + β7(Z ∗
1 × Z ∗

2 × Treatment)],
where Z ∗

1 = small cell type (0, 1), Z ∗
2 = PSbin (0, 1),

and g = 1, . . . , 4.
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6. Version 1: hg (t,X) = h0g (t)exp[β1g Treatment + β2g DD
+ β3g Age + β4g PT], g = 1, . . . , 4.

Version 2: hg (t,X) = h0g (t)exp[β1 Treatment + β2 DD

+ β3 Age + B4 PT + β5(Z ∗
1 × Treatment) + β6(Z ∗

1 × DD)

+ β7(Z ∗
1 × Age) + β8(Z ∗

1 × PT) + β9(Z ∗
2 × Treatment)

+ β10(Z ∗
2 × DD) + β11(Z ∗

2 × Age) + β12(Z ∗
2 × PT)

+ β13(Z ∗
1 × Z ∗

2 × Treatment) + β14(Z ∗
1 × Z ∗

2 × DD)

+ β15(Z ∗
1 × Z ∗

2 × Age) + β16(Z ∗
1 × Z ∗

2 × PT)],

g = 1, . . . , 4.

7. HRg = exp(β1g ), using version 1 model form. Yes, this for-
mula gives different hazard ratios for different strata be-
cause the value of the hazard ratio changes with the sub-
script g.

8. H0: No interaction assumption is satisfied.

H0: β11 = β12 = β13 = β14, β21 = β22 = β23 = β24,

β31 = β32 = β33 = β34, β41 = β42 = β43 = β44
from version 1.

H0: β5 = β6 = β7 = β8 = β9 = β10 = β11 = β12
= β13 = β14 = β15 = β16 = 0 from version 2.

9. LR = −2 ln L R − (−2 ln L F ), where R denotes the reduced
(no-interaction) model and F denotes the full (interaction)
model. Under the null hypothesis, LR is approximately a
chi-square with 12 degrees of freedom.

10. Estimated hazard models for each stratum:

g = 1; Z ∗
1 = Z ∗

2 = 0:
ĥ 1(t,X) = ĥ 01(t)exp[(0.381)Treatment + (0.015)DD
+ (0.000)Age + (0.023)PT]

g = 2; Z ∗
1 = 1, Z ∗

2 = 0:
ĥ 2(t,X) = ĥ 02(t)exp[(0.941)Treatment + (−0.014)DD
+ (−0.055)Age + (0.066)PT]

g = 3; Z ∗
1 = 0, Z ∗

2 = 1:
ĥ 3(t,X) = ĥ 03(t) exp[(−0.210)Treatment + (0.040)DD
+ (0.001)Age + (−0.055)PT]

g = 4; Z ∗
1 = 1, Z ∗

2 = 1:
ĥ 4(t,X) = ĥ 04(t)exp[(0.026)Treatment + (−0.060)DD
+ (0.030)Age + (−0.017)PT]
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Estimated hazard ratios for treatment effect adjusted for
DD, Age, and PT:

g = 1: ĤR1 = exp (0.381) = 1.464
g = 2: ĤR2 = exp (0.941) = 2.563
g = 3: ĤR3 = exp (−0.210) = 0.811
g = 4: ĤR4 = exp (0.026) = 1.026

11. H0: β5 = β6 = β7 = β8 = β9 = β10 = β11 = β12 = β13 =
β14 = β15 = β16 = 0

LR = 689.696 − 671.182 = 18.514, which is approxi-
mately chi-square with 12 df.

P = 0.101, which is not significant below the .05 level.
Conclusion: Accept the null hypothesis and conclude that
the no-interaction model is preferable to the interaction
model.

12. The three curves at the bottom of the graph appear to be
quite non-parallel. Thus, the PH assumption is not satis-
fied for one or both of the variables, small cell type and
PSbin. Note, however, that because both these variables
have been stratified together, it is not clear from the graph
whether only one of these variables fails to satisfy the PH
assumption.

13. If we graph adjusted survival curves that compare the two
treatment groups for each of the four strata, we will be
able to see graphically how the treatment effect, if any,
varies over time within each strata. The difficulty with this
approach, however, is that eight adjusted survival curves
will be produced, so that if all eight curves are put on the
same graph, it may be difficult to see what is going on.
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Introduction We begin by defining a time-dependent variable and providing
some examples of such a variable. We also state the general
formula for a Cox model that is extended to allow time depen-
dent variables, followed by a discussion of the characteristics
of this model, including a description of the hazard ratio.

In the remainder of the presentation, we give examples of
models with time-dependent variables, including models that
allow for checking the PH assumption for time-independent
variables. In particular, we describe a method that uses “heav-
iside functions” to evaluate the PH assumption for time-
independent variables. We also describe two computer appli-
cations of the extended Cox model, one concerning a study on
the treatment of heroin addiction and the other concerning
the Stanford heart transplant study.

Abbreviated
Outline

The outline below gives the user a preview of the material to
be covered by the presentation. A detailed outline for review
purposes follows the presentation.

I. Preview (page 214)
II. Review of the Cox PH Model (pages 214–216)

III. Definition and Examples of Time-Dependent
Variables (pages 216–219)

IV. The Extended Cox Model for Time-Dependent
Variables (pages 219–221)

V. The Hazard Ratio Formula for the Extended Cox
Model (pages 221–223)

VI. Assessing Time-Independent Variables That Do
Not Satisfy the PH Assumption (pages 224–229)

VII. An Application of the Extended Cox Model to an
Epidemiologic Study on the Treatment of Heroin
Addiction (pages 230–234)

VIII. An Application of the Extended Cox Model to the
Analysis of the Stanford Heart Transplant Data
(pages 235–239)

IX. The Extended Cox Likelihood (pages 239–242)
X. Summary (pages 242–245)
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Objectives Upon completing the chapter, the learner should be able to:

1. State or recognize the general form of the Cox model ex-
tended for time-dependent variables.

2. State the specific form of an extended Cox model appro-
priate for the analysis, given a survival analysis scenario
involving one or more time-dependent variables.

3. State the formula for a designated hazard ratio of interest,
given a scenario describing a survival analysis using an
extended Cox model.

4. State the formula for an extended Cox model that pro-
vides a method for checking the PH assumption for one
more of the time-independent variables in the model, given
a scenario describing a survival analysis involving time-
independent variables.

5. State the formula for an extended Cox model that uses
one or more heaviside functions to check the PH assump-
tion for one more of the time-independent variables in the
model, given a scenario describing a survival analysis in-
volving time-independent variables.

6. State the formula for the hazard ratio during different time
interval categories specified by the heaviside function(s),
for a model involving heaviside function(s).

7. Carry out an appropriate analysis of the data to evaluate
the effect of one or more of the explanatory variables in
the model(s) being used, given computer results for a sur-
vival analysis involving time-dependent variables. Such an
analysis will involve:� computing and interpreting any hazard ratio(s) of

interest;� carrying out and interpreting appropriate test(s) of
hypotheses for effects of interest;� obtaining confidence intervals for hazard ratios of
interest;� evaluating interaction and confounding involving one
or more covariates.
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Presentation

I. Preview This presentation describes how the Cox propor-
tional hazards (PH) model can be extended to al-
low time-dependent variables as predictors. Here,
we focus on the model form, characteristics of this
model, the formula for and interpretation of the
hazard ratio, and examples of the extended Cox
model. We also show how the extended Cox model
can be used to check the PH assumption for time-
independent variables, and we provide computer
applications to illustrate different types of time-
dependent variables. Finally, we describe the ex-
tended cox likelihood and how it contrasts with
the Cox PH likelihood function.

FOCUS

•  model form
•  characteristics
•  hazard ratio
•  examples of models
•  checking the PH
    assumption
•  computer 
    applications

II. Review of the Cox
PH Model

The general form of the Cox PH model is shown
here. This model gives an expression for the haz-
ard at time t for an individual with a given spec-
ification of a set of explanatory variables denoted
by the bold X. That is, the bold X represents a col-
lection (sometimes called a “vector”) of predictor
variables that is being modeled to predict an indi-
vidual’s hazard.

h(t,X) = h0(t) exp

[
p∑

i=1

βi Xi

]

X = (X1, X2, . . . , Xp)
Explanatory/predictor variables

h0(t) × exp

[
p∑

i=1

βi Xi

]

Baseline hazard Exponential

Involves t but Involves X ’s but
not X ’s not t (X ’s are

time-
independent)

The Cox model formula says that the hazard at
time t is the product of two quantities. The first
of these, h0(t), is called the baseline hazard func-
tion. The second quantity is the exponential ex-
pression e to the linear sum of βi Xi , where the
sum is over the p explanatory X variables.

An important feature of this formula, which con-
cerns the proportional hazards (PH) assumption,
is that the baseline hazard is a function of t but
does not involve the X ’s, whereas the exponential
expression involves the X ’s but does not involve t.
The X ’s here are called time-independent X ’s.
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X ’s involving t: time dependent

Requires extended Cox model
(no PH)

It is possible, nevertheless, to consider X ’s that
do involve t. Such X ’s are called time-dependent
variables. If time-dependent variables are consid-
ered, the Cox model form may still be used, but
such a model no longer satisfies the PH assump-
tion and is called the extended Cox model. We
will discuss time-dependent variables and the cor-
responding extended Cox model beginning in the
next section.

Hazard ratio formula:

ĤR = exp

[
p∑

i=1

β̂i (X ∗
i − Xi )

]
where X∗ = (X ∗

1, X ∗
2, . . . , X ∗

p) and
X = (X1, X2, . . . , X p) denote the
two sets of X ’s.

From the Cox PH model, we can obtain a gen-
eral formula, shown here, for estimating a hazard
ratio that compares two specifications of the X ’s,
defined as X∗ and X.

PH assumption:

ĥ (t,X∗)

ĥ (t,X)
= θ̂ (a constant over t)

i.e., ĥ (t,X∗) = θ̂ĥ (t,X)

The (PH) assumption underlying the Cox PH
model is that the hazard ratio comparing any
two specifications of X predictors is constant over
time. Equivalently, this means that the hazard for
one individual is proportional to the hazard for
any other individual, where the proportionality
constant is independent of time.

Hazards cross ⇒ PH not met

Hazards don’t cross ⇒\ PH met

An example of when the PH assumption is not met
is given by any study situation in which the haz-
ards for two or more groups cross when graphed
against time. However, even if the hazard func-
tions do not cross, it is possible that the PH as-
sumption is not met.

Three approaches:

� graphical� time-dependent variables� goodness-of-fit test

As described in more detail in Chapter 4, there
are three general approaches for assessing the PH
assumption. These are

� a graphical approach;� the use of time-dependent variables in an ex-
tended Cox model; and� the use of a goodness-of-fit test.

Time-dependent covariates:

Extend Cox model: add product
term(s) involving some function of
time

When time-dependent variables are used to assess
the PH assumption for a time-independent vari-
able, the Cox model is extended to contain prod-
uct (i.e., interaction) terms involving the time-
independent variable being assessed and some
function of time.
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h(t,X) = h0(t) exp[β1sex + β2(sex × t)]

EXAMPLE

H0:β2 = 0 ⇒ PH assumption satisfied 

For example, if the PH assumption is being as-
sessed for gender, a Cox model might be extended
to include the variable sex × t in addition to sex.
If the coefficient of the product term turns out to
be non-significant, we can conclude that the PH
assumption is satisfied for sex provided that the
variable sex × t is an appropriate choice of time-
dependent variable.

Options when PH assumption not
satisfied:

� Use a stratified Cox (SC) model.� Use time-dependent variables.

There are two options to consider if the PH as-
sumption is not satisfied for one or more of the
predictors in the model. In Chapter 5, we de-
scribed the option of using a stratified Cox (SC)
model, which stratifies on the predictor(s) not sat-
isfying the PH assumption, while keeping in the
model those predictors that satisfy the PH as-
sumption. In this chapter, we describe the other
option, which involves using time-dependent vari-
ables.

Time-dependent variables may be:

� inherently time-dependent� defined to analyze a time-
independent predictor not
satisfying the PH assumption.

Note that a given study may consider predictors
that are inherently defined as time-dependent, as
we will illustrate in the next section. Thus, in addi-
tion to considering time-dependent variables as an
option for analyzing a time-independent variable
not satisfying the PH assumption, we also discuss
predictors which are inherently defined as time-
dependent.

III. Definition and Examples
of Time-Dependent
Variables

A time-dependent variable is defined as any vari-
able whose value for a given subject may differ
over time (t). In contrast, a time-independent vari-
able is a variable whose value for a given subject
remains constant over time.

As a simple example, the variable RACE is a
time-independent variable, whereas the variable
RACE × time is a time-dependent variable.

Definition:

Time-dependent Time-independent

Value of variable Value of variable
differs over time is constant over

time

Example:�
�

�
�Race × t

�
�

�
	Race
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EXAMPLES OF
DEFINED VARIABLES 

Defined variable: RACE × t

Time-independent
Race = 1 ⇒ Race × t = t
Race = 0 ⇒ Race × t = 0 (at any t)

E × (log t – 3){

{

Function of t

[E denotes a (0,1) exposure variable].

E × g(t) where g(t) = 1  if t ≥ t0
0  if t < t0

Heavyside function

t ≥ t0: E × g(t) = E

t < t0: E × g(t) = 0

1

0

Heavyside functions used when PH
assumptions not met.

The variable RACE × time is an example of what is
called a “defined” time-dependent variable. Most
defined variables are of the form of the product of a
time-independent variable (e.g., RACE) multiplied
by time or some function of time. Note that after
RACE is determined for a given subject, all the val-
ues of the RACE × time variable are completely
defined over a specified time interval of study.

A second example of a defined variable is given by
E× (log t − 3), where E denotes, say, a (0,1) expo-
sure status variable determined at one’s entry into
the study. Notice that here we have used a func-
tion of time—that is, log t − 3—rather than time
alone.

Yet another example of a defined variable, which
also involves a function of time, is given by E ×
g (t), where g (t) is defined to take on the value 1 if
t is greater than or equal to some specified value
of t, called t0, and takes on the value 0 if t is less
than t0.

The function g (t) is called a “heaviside” function.
Note that whenever t is greater than or equal to
t0, g (t) equals 1, so E × g (t) = E; however, when-
ever t is less than t0, g (t) = 0, so the value of
E × g (t) is always 0. We will later return to illus-
trate how heaviside functions may be used as one
method for the analysis when a time-independent
variable like E does not satisfy the proportional
hazards assumption.

Internal variable: Another type of time-dependent variable is called
an “internal” variable. Examples of such a variable
include exposure level E at time t, employment
status (EMP) at time t, smoking status (SMK) at
time t, and obesity level (OBS) at time t.

EXAMPLES OF INTERNAL
VARIABLES
E(t), EMP(t), SMK(t), OBS(t),

Values change because of “internal”
characteristics or behavior of the in-
dividual.

All these examples consider variables whose val-
ues may change over time for any subject under
study; moreover, for internal variables, the reason
for a change in value depends on “internal” char-
acteristics or behavior specific to the individual.
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“Ancillary” variable:
Value changes because of “external”
characteristics.

In contrast, a variable is called an “ancillary” vari-
able if its value changes primarily because of “ex-
ternal” characteristics of the environment that
may affect several individuals simultaneously. An
example of an ancillary variable is air pollution
index at time t for a particular geographical area.
Another example is employment status (EMP) at
time t, if the primary reason for whether some-
one is employed or not depends more on general
economic circumstances than on individual char-
acteristics.

EXAMPLES OF ANCILLARY 
VARIABLES

Air pollution index at time t; EMP(t)

ANOTHER EXAMPLE
Heart transplant status at time t:

Transplant

Heart transplant status = HT(t)

Internal:
Status determined
from individual
traits

Ancillary:
Status determined
from external
availability of a
donor

HT(t) = 1  if received transplant at some time t0 ≤ t
0  if did not receive transplant by time t

HT(t): 0000...0 111111111

t0
t

T

T

HT(t):
No transplant HT(t): 0000...00000

t

As another example, which may be part internal
and part ancillary, we consider heart transplant
status (HT) at time t for a person identified to have
a serious heart condition, making him or her el-
igible for a transplant. The value of this variable
HT at time t is 1 if the person has already received
a transplant at some time, say t0, prior to time t.
The value of HT is 0 at time t if the person has not
yet received a transplant by time t.

Note that once a person receives a transplant,
at time t0, the value of HT remains at 1 for all
subsequent times. Thus, for a person receiving a
transplant, the value of HT is 0 up to the time of
transplant, and then remains at 1 thereafter. In
contrast, a person who never receives a transplant
has HT equal to 0 for all times during the period
he or she is in the study.

The variable “heart transplant status,” HT(t), can
be considered essentially an internal variable, be-
cause individual traits of an eligible transplant re-
cipient are important determinants of the decision
to carry out transplant surgery. Nevertheless, the
availability of a donor heart prior to tissue and
other matching with an eligible recipient can be
considered an “ancillary” characteristic external
to the recipient.
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Computer commands differ for
defined vs. internal vs. ancillary.

But, the form of extended Cox
model and procedures for analysis
are the same regardless of variable
type.

The primary reason for distinguishing among de-
fined, internal, or ancillary variables is that the
computer commands required to define the vari-
ables for use in an extended Cox model are some-
what different for the different variable types,
depending on the computer program used. Never-
theless, the form of the extended Cox model is the
same regardless of variable type, and the proce-
dures for obtaining estimates of regression coeffi-
cients and other parameters, as well as for carrying
out statistical inferences, are also the same.

IV. The Extended Cox Model
for Time-Dependent
Variables

Given a survival analysis situation involving both
time-independent and time-dependent predictor
variables, we can write the extended Cox model
that incorporates both types as shown here at the
left. As with the Cox PH model, the extended model
contains a baseline hazards function h0(t) which
is multiplied by an exponential function. How-
ever, in the extended model, the exponential part
contains both time-independent predictors, as de-
noted by the Xi variables, and time-dependent pre-
dictors, as denoted by the X j (t) variables. The en-
tire collection of predictors at time t is denoted by
the bold X(t).

h(t,X(t)) = h0(t) exp
[ p1∑

i=1
βi Xi

+
p2∑

j=1
δ j X j (t)

]

X(t) = (X1, X2, . . . X p1︸ ︷︷ ︸
Time-independent

,

X1(t), X2(t), . . . X p2 (t))︸ ︷︷ ︸
Time-dependent

h(t,X(t)) = h0(t) exp[βE + δ(E × t)],

EXAMPLE

p1 = 1, p2 = 1,
X(t) = (X1 = E , X1(t) = E ×  t)

As a simple example of an extended Cox model,
we show here a model with one time-independent
variable and one time-dependent variable. The
time-independent variable is exposure status E,
say a (0,1) variable, and the time-dependent vari-
able is the product term E × t.

Estimating regression
coefficients:
ML procedure:
Maximize (partial) L.
Risk sets more complicated than for
PH model.

As with the simpler Cox PH model, the regression
coefficients in the extended Cox model are esti-
mated using a maximum likelihood (ML) proce-
dure. ML estimates are obtained by maximizing a
(partial) likelihood function L. However, the com-
putations for the extended Cox model are more
complicated than for the Cox PH model, because
the risk sets used to form the likelihood function
are more complicated with time-dependent vari-
ables. The extended Cox likelihood is described
later in this chapter.
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Computer programs for the
extended Cox model:

Stata (Stcox)
SAS (PHREG)
SPSS (COXREG)

⎫⎬⎭ Computer
Appendix

Computer packages that include programs for fit-
ting the extended Cox model include Stata, SAS,
and SPSS. See the Computer Appendix at the end
of this text for a comparison of the Stata, SAS, and
SPSS procedures applied to the same dataset.

Statistical inferences:
Wald and/or LR tests
Large sample confidence intervals

Methods for making statistical inferences are es-
sentially the same as for the PH model. That is, one
can use Wald and/or likelihood ratio (LR) tests and
large sample confidence interval methods.

Assumption of the model:
The hazard at time t depends on the
value of X j (t) at that same time.

An important assumption of the extended Cox
model is that the effect of a time-dependent vari-
able X j (t) on the survival probability at time t de-
pends on the value of this variable at that same
time t, and not on the value at an earlier or later
time.

h(t,X(t)) = h0(t) exp

[
p1∑

i=1

βi Xi

+
p2∑

j=1

δ j X j (t)

]
↑

One coefficient forX j (t)

Note that even though the values of the vari-
able X j (t) may change over time, the hazard
model provides only one coefficient for each time-
dependent variable in the model. Thus, at time t,
there is only one value of the variable X j (t) that
has an effect on the hazard, that value being mea-
sured at time t.

Can modify for lag-time effect It is possible, nevertheless, to modify the definition
of the time-dependent variable to allow for a “lag-
time” effect.

Lag-time effect:

EMP(t) = employment status at week t

EXAMPLE

Model without lag-time: 

Same week

h(t,X(t)) = h0(t) exp[δEMP(t)]

One-week earlier

Model with 1-week lag-time:
h(t,X(t)) = h0(t) exp[δ∗EMP(t – 1)]

To illustrate the idea of a lag-time effect, suppose,
for example, that employment status, measured
weekly and denoted as EMP (t), is the time-
dependent variable being considered. Then, an ex-
tended Cox model that does not consider lag-time
assumes that the effect of employment status on
the probability of survival at week t depends on the
observed value of this variable at the same week t,
and not, for example, at an earlier week.

However, to allow for, say, a time-lag of one week,
the employment status variable may be modified
so that the hazard model at time t is predicted by
the employment status at week t − 1. Thus, the
variable EMP (t) is replaced in the model by the
variable EMP (t − 1).
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General lag-time extended model:

h(t,X(t)) = h0(t) exp

[
p1∑

i=1

βi Xi

+
p2∑

j=1

δ j X j (t − L j )

]
↗

X j (t − L j ) replaces X j (t)

More generally, the extended Cox model may be
alternatively written to allow for a lag-time modi-
fication of any time-dependent variable of interest.
If we let L j denote the lag-time specified for time-
dependent variable j, then the general “lag-time
extended model” can be written as shown here.
Note that the variable X j (t) in the earlier version
of the extended model is now replaced by the vari-
able X j (t − L j ).

V. The Hazard Ratio Formula
for the Extended
Cox Model

We now describe the formula for the hazard ra-
tio that derives from the extended Cox model.
The most important feature of this formula is
that the proportional hazards assumption is no
longer satisfied when using the extended Cox
model.

The general hazard ratio formula for the extended
Cox model is shown here. This formula describes
the ratio of hazards at a particular time t, and re-
quires the specification of two sets of predictors
at time t. These two sets are denoted as bold X∗(t)
and bold X(t).

The two sets of predictors, X∗(t) and X(t), identify
two specifications at time t for the combined set of
predictors containing both time-independent and
time-dependent variables. The individual compo-
nents for each set of predictors are shown here.

PH assumption is not satisfied for
the extended Cox model.

ĤR(t) = ĥ (t,X∗(t))

ĥ (t,X(t))

= exp

[
p1∑

i=1

β̂i

[
X ∗

i − Xi
]

+
p2∑

j=1

δ j
[
X ∗

j (t) − X j (t)
]]

Two sets of predictors:

X∗(t) = (X ∗
1, X ∗

2, . . . , X ∗
p1

, X ∗
1(t),

X ∗
2(t), . . . , X ∗

p2
(t))

X(t) = (X1, X2, . . . , X p1, X1(t),
X2(t), . . . , X p2 (t))
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h(t,X(t)) = h0(t) exp[βE + δ(E × t)]

EXAMPLE

E = { 1  if exposed 
0  if unexposed

X*(t) = (E = 1, E × t = t)
X(t) = (E = 0, E × t = 0)

HR(t) =ˆ ĥ(t, E = 1) 

ĥ(t, E = 0)
= exp[β̂(1 – 0) + δ̂((1 × t) – (0 × t))]
= exp[β̂ + δ̂t]

δ̂ > 0 ⇒ HR(t) ↑ as t ↑
PH assumption not satisfied

ˆ

As a simple example, suppose the model contains
only one time-independent predictor, namely, ex-
posure status E, a (0,1) variable, and one time-
dependent predictor, namely, E × t. Then, to com-
pare exposed persons, for whom E = 1, with
unexposed persons, for whom E = 0, at time
t, the bold X∗(t) set of predictors has as its
two components E = 1 and E × t = t; the bold
X(t) set has as its two components E = 0 and
E × t = 0.

If we now calculate the estimated hazard ratio that
compares exposed to unexposed persons at time
t, we obtain the formula shown here; that is, HR
“hat” equals the exponential of β “hat” plus δ “hat”
times t. This formula says that the hazard ratio is
a function of time; in particular, if δ “hat” is posi-
tive, then the hazard ratio increases with increas-
ing time. Thus, the hazard ratio in this example is
certainly not constant, so that the PH assumption
is not satisfied for this model.

ĤR(t) = exp

[
p1∑

i=1

β̂i

[
X ∗

i − Xi
]

+
p2∑

j=1

δ̂ j

�
�

�
�

[
X ∗

j (t) − X j (t)
] ]

↗
A function of time

More generally, because the general hazard ratio
formula involves differences in the values of the
time-dependent variables at time t, this hazard ra-
tio is a function of time. Thus, in general, the ex-
tended Cox model does not satisfy the PH assump-
tion if any δ j is not equal to zero.

In general, PH assumption not sat-
isfied for extended Cox model.

δ̂ j is not time-dependent.

δ̂ j represents “overall” effect of
X j (t).

Note that, in the hazard ratio formula, the co-
efficient δ j “hat” of the difference in values
of the jth time-dependent variable is itself not
time-dependent. Thus, this coefficient represents
the “overall” effect of the corresponding time-
dependent variable, considering all times at which
this variable has been measured in the study.
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EXAMPLE
E(t) = chemical exposure status
       at time t (weekly)

= 0  if unexposed at time t
1  if exposed at time t

A

B

:

:

E(t)     0 1 0 1 1

t        1 2 3 4 5...

E(t)     1 1 0 1 0

t        1 2 3 4 5...

Exposed vs. unexposed
E = 1 E = 0

h(t,X(t)) = h0(t) exp[δE(t)]

One coefficient

δ represents the overall effect of E(t).

......

{

= eδ,  a fixed number

HR(t) = ˆ
h(t,E(t) = 0)

h(t,E(t) = 1)

= exp[δ[1 – 0]]

ˆ
But, PH is not satisfied:
HR(t) is time-dependent because E(t) is
time-dependent.

As another example to illustrate the formula for
the hazard ratio, consider an extended Cox model
containing only one variable, say a weekly mea-
sure of chemical exposure status at time t. Sup-
pose this variable, denoted as E(t), can take one of
two values, 0 or 1, depending on whether a person
is unexposed or exposed, respectively, at a given
weekly measurement.

As defined, the variable E(t) can take on differ-
ent patterns of values for different subjects. For
example, for a five-week period, subject A’s values
may be 01011, whereas subject B’s values may be
11010.

Note that in this example, we do not consider
two separate groups of subjects, with one group
always exposed and the other group always un-
exposed throughout the study. This latter situa-
tion would require a (0,1) time-independent vari-
able for exposure, whereas our example involves
a time-dependent exposure variable.

The extended Cox model that includes only the
variable E(t) is shown here. In this model, the val-
ues of the exposure variable may change over time
for different subjects, but there is only one coeffi-
cient, δ, corresponding to the one variable in the
model. Thus, δ represents the overall effect on sur-
vival time of the time-dependent variable E(t).

Notice, also, that the hazard ratio formula, which
compares an exposed person to an unexposed per-
son at time t, yields the expression e to the δ “hat.”

Although this result is a fixed number, the PH as-
sumption is not satisfied. The fixed number gives
the hazard ratio at a given time, assuming that the
exposure status at that time is 1 in the numerator
and is 0 denominator. Thus, the hazard ratio is
time-dependent, because exposure status is time-
dependent, even though the formula yields a single
fixed number.
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VI. Assessing Time-
Independent Variables
That Do Not Satisfy the
PH Assumption

Use an extended Cox model to

� check PH assumption;� assess effect of variable not
satisfying PH assumption.

We now discuss how to use an extended Cox model
to check the PH assumption for time-independent
variables and to assess the effect of a variable that
does not satisfy the PH assumption.

Three methods for checking PH as-
sumption:

1. graphical
2.

�
�

�
�extended Cox model

3. GOF test

As described previously (see Chapter 4), there are
three methods commonly used to assess the PH
assumption: (1) graphical, using, say, log–log sur-
vival curves; (2) using an extended Cox model; and
(3) using a goodness-of-fit (GOF) test. We have pre-
viously (in Chapter 4) discussed items 1 and 3, but
only briefly described item 2, which we focus on
here.

Cox PH model for p time-
independent X ’s:

h(t,X) = h0(t) exp

[
p∑

i=1

βi Xi

]
If the dataset for our study contains several, say p,
time-independent variables, we might wish to fit a
Cox PH model containing each of these variables,
as shown here.

Extended Cox model:
Add product terms of the form:

Xi × gi (t)

However, to assess whether such a PH model is
appropriate, we can extend this model by defin-
ing several product terms involving each time-
independent variable with some function of time.
That is, if the ith time-independent variable is de-
noted as Xi , then we can define the ith product
term as Xi × gi (t) where gi (t) is some function of
time for the ith variable.

h(t,X(t)) = h0(t) exp
[ p∑

i=1
βi Xi

+
p∑

i=1
δi Xi gi (t)

]
The extended Cox model that simultaneously con-
siders all time-independent variables of interest is
shown here.
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EXAMPLE

gi(t) = 0 for all i implies no time- 
dependent variable involving Xi, i.e.,

h(t,X(t)) = h0(t) exp
p

i=1
ΣβiXi[ ]  

In using this extended model, the crucial decision
is the form that the functions gi (t) should take.
The simplest form for gi (t) is that all gi (t) are
identically 0 at any time; this is another way of
stating the original PH model, containing no time-
dependent terms.

EXAMPLE 2

gi(t) = t ⇒ Xigi(t) = Xi × t

h(t,X(t)) = h0(t) exp
p

i=1
ΣβiXi + Σδi(Xi × t)[  ]  p

i=1

Another choice for the gi (t) is to let gi (t) = t. This
implies that for each Xi in the model as a main ef-
fect, there is a corresponding time-dependent vari-
able in the model of the form Xi × t. The extended
Cox model in this case takes the form shown here.

EXAMPLE 3: one variable 
at a time

XL only ⇒ { gL(t) = t,

gi(t) = 0 for other i

h(t,X(t)) = h0(t) exp[ βiXi + δL(XL × t)]∑
p

i=1

Suppose, however, we wish to focus on a partic-
ular time-independent variable, say, variable X L .
Then gi (t) = t for i = L , but equals 0 for all other
i. The corresponding extended Cox model would
then contain only one product term X L × t, as
shown here.

h(t,X(t)) = h0(t) exp[ βiXi +      δ i(Xi × ln t)]
gi(t) = ln t ⇒ Xigi(t) = Xi ×  ln t

∑ ∑
p p

i=1 i=1

EXAMPLE 4 Another choice for the gi (t) is the log of t, rather
than simply t, so that the corresponding time-
dependent variables will be of the form Xi × ln t.

EXAMPLE 5: Heaviside Function

gi(t) =
0  if t ≥ t0
1  if t < t0

{
And yet another choice would be to let gi (t) be a
“heaviside function” of the form gi (t) = 1 when
t is at or above some specified time, say t0, and
gi (t) = 0 when t is below t0. We will discuss this
choice in more detail shortly.

Extended Cox model:

h(t,X(t)) = h0(t) exp

[
p∑

i=1

βi Xi

+
p∑

i=1

δi Xi gi (t)

]
� Check PH assumption.� Obtain hazard ratio when PH

assumption not satisfied.

H0 : δ1 = δ2 = · · · = δp = 0

Given a particular choice of the gi (t), the corre-
sponding extended Cox model, shown here again
in general form, may then be used to check the PH
assumption for the time-independent variables in
the model. Also, we can use this extended Cox
model to obtain a hazard ratio formula that con-
siders the effects of variables not satisfying the PH
assumption.

To check the PH assumption using a statistical
test, we consider the null hypothesis that all the δ
terms, which are coefficients of the Xi gi (t) prod-
uct terms in the model, are zero.
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Under H0, the model reduces to PH
model:

h(t,X) = h0(t) exp

[
p∑

i=1

βi Xi

] Under this null hypothesis, the model reduces to
the PH model.

L R = −2 ln LPH model

−(−2 ln Lext. Cox model)

∼̇χ2
p under H0

This test can be carried out using a likelihood ratio
(LR) test which computes the difference between
the log likelihood statistic, −2 ln L, for the PH
model and the log likelihood statistic for the ex-
tended Cox model. The test statistic thus obtained
has approximately a chi-square distribution with
p degrees of freedom under the null hypothesis,
where p denotes the number of parameters being
set equal to zero under H0.

EXAMPLE 

h(t,X(t)) = h0(t) exp[βE + δ(E × t)]
H0: δ = 0 (i.e., PH assumption is

satisfied)

Reduced model:
h(t,X) = h0(t) exp[βE]

LR = −2 ln LR − (−2 ln LF)
~χ2 with 1 df under H0
.

F = full (extended), R = reduced (PH)

As an example of this test, suppose we again con-
sider an extended Cox model that contains the
product term E × t in addition to the main effect
of E, where E denotes a (0,1) time-independent ex-
posure variable.

For this model, a test for whether or not the PH
assumption is satisfied is equivalent to testing the
null hypothesis that δ = 0. Under this hypothesis,
the reduced model is given by the PH model con-
taining the main effect E only. The likelihood ra-
tio statistic, shown here as the difference between
log-likelihood statistics for the full (i.e., extended
model) and the reduced (i.e., PH) model, will have
an approximate chi-square distribution with one
degree of freedom in large samples.

SAS: PHREG fits both PH and
extended Cox models.

Stata: Stcox fits both PH and
extended Cox models.

Note that to carry out the computations for this
test, two different types of models, a PH model
and an extended Cox model, need to be fit.

If PH test significant: Extended Cox
model is preferred; HR is time-
dependent.

If the result of the test for the PH assumption is sig-
nificant, then the extended Cox model is preferred
to the PH model. Thus, the hazard ratio expression
obtained for the effect of an exposure variable of
interest is time-dependent. That is, the effect of the
exposure on the outcome cannot be summarized
by a single HR value, but can only be expressed as
a function of time.
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EXAMPLE

h(t,X(t)) = h0(t) exp[βE + δ(E × t)]

t

HR = exp[β̂ + δ̂t]

HR

δ̂>0

We again consider the previous example, with the
extended Cox model shown here. For this model,
the estimated hazard ratio for the effect of expo-
sure is given by the expression e to the quantity
β “hat” plus δ “hat” times t. Thus, depending on
whether δ “hat” is positive or negative, the esti-
mated hazard ratio will increase or decrease ex-
ponentially as t increases. The graph shown here
gives a sketch of how the hazard ratio varies with
time if δ “hat” is positive.

Heaviside function:

t0 t

HR

g (t) =
{

1 if t ≥ t0
0 if t < t0

h(t,X(t)) = h0(t) exp[βE + δEg (t)]

We now provide a description of the use of a “heav-
iside” function. When such a function is used, the
hazard ratio formula yields constant hazard ratios
for different time intervals, as illustrated in the ac-
companying graph.

Recall that a heaviside function is of the form g (t),
which takes on the value 1 if t is greater than or
equal to some specified value of t, called t0, and
takes on the value 0 if t is less than t0. An extended
Cox model which contains a single heaviside func-
tion is shown here.

t ≥ t0: g (t) = 1 ⇒ E × g (t) = E
h(t,X) = h0(t) exp[(β+δ)E]

ĤR = exp[β̂ + δ̂]

Note that if t ≥ t0, g (t) = 1, so the value of E ×
g (t) = E; the corresponding hazard function is of
the form h0(t) × e to the quantity (β + δ) times E,
and the estimated hazard ratio for the effect of E
has the form e to the sum of β “hat” plus δ “hat.”

t < t0: g (t) = 0 ⇒ E × g (t) = 0
h(t,X) = h0(t) exp[βE]

ĤR = exp[β̂]

If t < t0, g (t) = 0, the corresponding hazard ratio
is simplified to e to the β “hat.”

A single heaviside function in the
model

h(t,X)
= h0(t) exp[βE + δ(E × g (t))]

yields two hazard ratios:

t ≥ t0 : ĤR = exp(β̂ + δ̂)

t < t0 : ĤR = exp(β̂)

Thus, we have shown that the use of a single heav-
iside function results in an extended Cox model
which gives two hazard ratio values, each value
being constant over a fixed time interval.
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Alternative model with two heavi-
side functions:

h(t,X) = h0(t) exp[δ1(E × g1(t))
+ δ2(E × g2(t))]

g1(t) =
{

1 if t ≥ t0
0 if t < t0

g2(t) =
{

1 if t < t0
0 if t ≥ t0

Note: Main effect for E not in model.

There is actually an equivalent way to write this
model that uses two heaviside functions in the
same model. This alternative model is shown here.
The two heaviside functions are called g1(t) and
g2(t). Each of these functions are in the model as
part of a product term with the exposure variable
E. Note that this model does not contain a main
effect term for exposure.

Two HR’s from the alternative
model:

t ≥ t0 : g1(t) = 1, g2(t) = 0
h(t,X) = h0(t) exp[δ1(E × 1)

+ δ2(E × 0)]
= h0(t) exp[δ1 E]

so that ĤR = exp(δ̂1)

For this alternative model, as for the earlier model
with only one heaviside function, two different
hazard ratios are obtained for different time inter-
vals. To obtain the first hazard ratio, we consider
the form that the model takes when t ≥ t0. In this
case, the value of g1(t) is 1 and the value of g2(t)
is 0, so the exponential part of the model simpli-
fies to δ1 × E; the corresponding formula for the
estimated hazard ratio is then e to the δ1 “hat.”

t < t0 : g1(t) = 0, g2(t) = 1
h(t,X) = h0(t) exp[δ1(E × 0)

+ δ2(E × 1)]
= h0(t) exp[δ2 E]

so that ĤR = exp(δ̂2)

When t < t0, the value of g1(t) is 0 and the value of
g2(t) is 1. Then, the exponential part of the model
becomes δ2 × E, and the corresponding hazard
ratio formula is e to the δ2 “hat.”

Alternative model:

h(t,X(t)) = h0(t) exp[δ1(E × g1(t))
+ δ2(E × g2(t))]

Original model:

h(t,X(t))
= h0(t) exp[βE + δ(E × g (t))]

t ≥ t0 : ĤR = exp(δ̂1) = exp(β̂ + δ̂)

t < t0 : ĤR = exp(δ̂2) = exp(β̂)

Thus, using the alternative model, again shown
here, we obtain two distinct hazard ratio values.
Mathematically, these are the same values as ob-
tained from the original model containing only
one heaviside function. In other words, δ1 “hat” in
the alternative model equals β “hat” plus δ “hat” in
the original model (containing one heaviside func-
tion), and δ2 “hat” in the alternative model equals
β “hat” in the original model.
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Heaviside functions:

� two ĤR’s constant within two
time intervals� extension: several ĤR’s constant
within several time intervals

We have thus seen that heaviside functions can
be used to provide estimated hazard ratios that
remain constant within each of two separate time
intervals of follow-up. We can also extend the use
of heaviside functions to provide several distinct
hazard ratios that remain constant within several
time intervals.

Four time intervals:

HR

0 .5 1.0 1.5 t (years)

Extended Cox model contains either

� E, E × g1(t), E × g2(t),
E × g3(t)
or� E × g1(t), E × g2(t), E ×
g3(t), E × g4(t)

| 1 | 2 | 3 | 4−−−−−−−−−−−−−−−
0 0.5 1.0 1.5 t(years)

Suppose, for instance, that we wish to separate the
data into four separate time intervals, and for each
interval we wish to obtain a different hazard ratio
estimate as illustrated in the graph shown here.

We can obtain four different hazard ratios using
an extended Cox model containing a main effect of
exposure and three heaviside functions in the model
as products with exposure. Or, we can use a model
containing no main effect exposure term, but with
product terms involving exposure with four heav-
iside functions.

To illustrate the latter model, suppose, as shown
on the graph, that the first time interval goes from
time 0 to 0.5 of a year; the second time interval
goes from 0.5 to 1 year; the third time interval goes
from 1 year to a year and a half; and the fourth
time interval goes from a year and a half onward.

h(t,X(t))
= h0(t) exp[δ1 Eg1(t) + δ2 Eg2(t)

+δ3 Eg3(t) + δ4 Eg4(t)]

where

g1(t) =
{

1 if 0 ≤ t < 0.5 year
0 if otherwise

g2(t) =
{

1 if 0.5 year ≤ t < 1.0 year
0 if otherwise

g3(t) =
{

1 if 1.0 year ≤ t < 1.5 years
0 if otherwise

g4(t) =
{

1 if t ≥ 1.5 years
0 if otherwise

Then, an appropriate extended Cox model con-
taining the four heaviside functions g1(t), g2(t),
g3(t), and g4(t) is shown here. This model assumes
that there are four different hazard ratios identi-
fied by three cutpoints at half a year, one year, and
one and a half years. The formulae for the four
hazard ratios are given by separately exponenti-
ating each of the four estimated coefficients, as
shown below:

4 ĤR’s

⎧⎪⎪⎨⎪⎪⎩
0 ≤ t < 0.5: ĤR = exp(δ̂1)
0.5 ≤ t < 1.0: ĤR = exp(δ̂2)
1.0 ≤ t < 1.5: ĤR = exp(δ̂3)
t ≥ 1.5: ĤR = exp(δ̂4)
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VII. An Application of the
Extended Cox Model to
An Epidemiologic Study
on the Treatment of
Heroin Addiction

A 1991 Australian study by Caplehorn et al., com-
pared retention in two methadone treatment clin-
ics for heroin addicts. A patient’s survival time
(T) was determined as the time in days until the
patient dropped out of the clinic or was cen-
sored at the end of the study clinic. The two clin-
ics differed according to their overall treatment
policies.

A listing of some of the variables in the dataset
for this study is shown here. The dataset name is
called “ADDICTS,” and survival analysis programs
in the Stata package are used in the analysis. Note
that the survival time variable is listed in column
4 and the survival status variable, which indicates
whether a patient departed from the clinic or was
censored, is listed in column 3. The primary ex-
posure variable of interest is the clinic variable,
which is coded as 1 or 2. Two other variables of in-
terest are prison record status, listed in column 5
and coded as 0 if none and 1 if any, and maximum
methadone dose, in milligrams per day, which is
listed in column 6. These latter two variables are
considered as covariates.

One of the first models considered in the analysis
of the addicts dataset was a Cox PH model con-
taining the three variables, clinic, prison record,
and dose. An edited printout of the results for this
model is shown here. What stands out from this
printout is that the P(PH) value for the clinic vari-
able is zero to three significant places, which in-
dicates that the clinic variable does not satisfy the
proportional hazard assumption.

Since the P(PH) values for the other two variables
in the model are highly nonsignificant, this sug-
gests that these two variables, namely, prison and
dose, can remain in the model.

EXAMPLE

Dataset name: ADDICTS
Column 1: Subject ID
Column 2: Clinic (1 or 2)
Column 3: Survival status (0 = cen-

sored, 1 = departed clinic)
Column 4: Survival time in days
Column 5: Prison Record

(0 = none, 1 = any)
Column 6: Maximum Methadone Dose

(mg/day)

E

covariates

h(t,X) = h0(t) exp[β1(clinic)
+ β2(prison) + β3(dose)]

Coef. Std. Err. p> |z| Haz. Ratio P(PH)

Clinic
Prison
Dose

−1.009
  0.327
−0.035

0.215
0.167
0.006

0.000
0.051
0.000

0.365
1.386
0.965

0.001
0.332
0.347

P(PH) for the variables prison and dose are
nonsignificant ⇒ remain in model

1991 Australian study (Caplehorn
et al.) of heroin addicts

• two methadone treatment clinics

• T = days remaining in treatment
(= days until drop out of clinic)

• clinics differ in treatment policies
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EXAMPLE (continued)

Results:

Stratifying by clinic: cannot obtain hazard
ratio for clinic

Hazard ratio for clinic requires clinic in the
model.

Adjusted Survival Curves
Stratified by Clinic

(prison and dose in the model)

Clinic 2

Clinic 1

1

.8

.6

.4

.2

0
0 200 400 600 800 1000 1200

Days

Ŝ

h(t,X(t)) = h0(t) exp[β1(clinic)
+ β2(prison) + β3(dose)
+ δ(clinic)g(t)]

Extended Cox model:

t ≥ 365 days: HR = exp(β̂1 + δ̂)

t < 365 days: HR = exp(β̂1)

where

g(t) = 1  if t ≥ 365 days
0  if t < 365 days{

clinic = { 1  if clinic 1
0  if clinic 2

and

Note:
Previously

clinic = 2 for
clinic 2

• Curve for clinic 2 consistently lies above
   curve for clinic 1.

• Curves diverge, with clinic 2 being vastly
   superior after one year.

Further evidence of the PH assumption not be-
ing satisfied for the clinic variable can be seen
from a graph of adjusted survival curves strati-
fied by clinic, where the prison and dose variables
have been kept in the model. Notice that the two
curves are much closer together at earlier times,
roughly less than one year (i.e., 365 days), but the
two curves diverge greatly after one year. This in-
dicates that the hazard ratio for the clinic variable
will be much closer to one at early times but quite
different from one later on.

The above graph, nevertheless, provides impor-
tant results regarding the comparison of the two
clinics. The curve for clinic 2 consistently lies
above the curve for clinic 1, indicating that clinic
2 does better than clinic 1 in retaining its patients
in methadone treatment. Further, because the two
curves diverge after about a year, it appears that
clinic 2 is vastly superior to clinic 1 after one year
but only slightly better than clinic 1 prior to one
year.

Unfortunately, because the clinic variable has been
stratified in the analysis, we cannot use this anal-
ysis to obtain a hazard ratio expression for the
effect of clinic, adjusted for the effects of prison
and dose. We can only obtain such an expression
for the hazard ratio if the clinic variable is in the
model.

Nevertheless, we can obtain a hazard ratio us-
ing an alternative analysis with an extended Cox
model that contains a heaviside function, g (t), to-
gether with the clinic variable, as shown here.
Based on the graphical results shown earlier, a log-
ical choice for the cutpoint of the heaviside func-
tion is one year (i.e., 365 days). The corresponding
model then provides two hazard ratios: one that is
constant above 365 days and the other that is con-
stant below 365 days.

Note that in the extended Cox model here, we have
coded the clinic variable as 1 if clinic 1 and 0 if
clinic 2, whereas previously we had coded clinic
2 as 2. The reason for this change in coding, as
illustrated by computer output below, is to obtain
hazard ratio estimates that are greater than unity.
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EXAMPLE (continued) 

h(t,X(t)) = h0(t) exp[β2(prison)
+ β3(dose) + δ1(clinic)g1(t)
+ δ2(clinic)g2(t)]

t < 365 days: HR = exp(δ̂1)

t ≥ 365 days: HR = exp(δ̂2)

where

g1(t) = { 1  if t < 365 days
0  if t ≥ 365 days

g2(t) = { 1  if t ≥ 365 days
0  if t < 365 days

and

ˆ
ˆ

t < 365 days: HR = e0.460 = 1.583 

t ≥ 365 days: HR = e1.828  = 6.223
ˆ
ˆ

Coef.

0.378

–0.036

0.460

1.828

Std.
Err.

0.168

0.006

0.255

0.386

p>|z|

0.025

0.000

0.072

0.000

Haz.
Ratio

1.459

0.965

1.583

6.223

[95% Conf. Interval]

1.049

0.953

0.960

2.921

2.029

0.977

2.611

13.259

Prison

Dose

Clinic × g1
Clinic × g2

95% confidence intervals for clinic effect:
t < 365 days: (0.960, 2.611)
t ≥ 365 days: (2.921, 13.259)

(......   ) ( )

0 1 5 10 15

1 year

HR

1.0
.8
.6
.4
.2
0

0 200 400 600 800 1000 1200
Days

Adjusted Survival Curves

Clinic 2
Clinic 1

Ŝ

An equivalent way to write the model is to use two
heaviside functions, g1(t) and g2(t), as shown here.
This latter model contains product terms involv-
ing clinic with each heaviside function, and there
is no main effect of clinic.

Corresponding to the above model, the effect of
clinic is described by two hazard ratios, one for
time less than 365 days and the other for greater
than 365 days. These hazard ratios are obtained by
separately exponentiating the coefficients of each
product term, yielding e to the δ1 “hat” and e to
the δ2 “hat,” respectively.

A printout of results using the above model with
two heaviside functions is provided here. The re-
sults show a borderline nonsignificant hazard ra-
tio (P = 0.072) of 1.6 for the effect of clinic when
time is less than 365 days in contrast to a highly
significant (P = 0.000 to three decimal places) haz-
ard ratio of 6.2 when time exceeds 365 days.

Note that the estimated hazard ratio of 1.583 from
the printout is computed by exponentiating the
estimated coefficient 0.460 of the product term
“clinic × g1” and that the estimated hazard ra-
tio of 6.223 is computed by exponentiating the
estimated coefficient 1.828 of the product term
“clinic × g2”.

Note also that the 95% confidence interval for the
clinic effect prior to 365 days—that is, for the prod-
uct term “clinic × g1(t)”—is given by the limits
0.960 and 2.611, whereas the corresponding confi-
dence interval after 365 days—that is, for the prod-
uct term “clinic × g2”—is given by the limits 2.921
and 13.259. The latter interval is quite wide, show-
ing a lack of precision when t exceeds 365 days;
however, when t precedes 365 days, the interval
includes the null hazard ratio of 1, suggesting a
chance effect for this time period.

The results we have just shown support the obser-
vations obtained from the graph of adjusted sur-
vival curves. That is, these results suggest a large
difference in clinic survival times after one year
in contrast to a small difference in clinic survival
times prior to one year, with clinic 2 always doing
better than clinic 1 at any time.
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EXAMPLE (continued)
One other analysis:
Use an extended Cox model that
provides for diverging survival curves

h(t,X(t)) = h0(t)exp[β1(clinic)
 +β2(prison)+β3(dose)

+ δ(clinic × t)]

HR = exp(β̂1 + δ̂t)

So

t = 91 days

 HR = exp(β̂1 + 91δ̂)ˆ
t = 274:

 HR = exp(β̂1 + 274δ̂)ˆ

h(t,X(t)) = h0(t)exp[β1(clinic)

+ β2(prison) + β3(dose)

+ δ(clinic)(91)]

h(t,X(t)) = h0(t)exp[β1(clinic)

+ β2(prison) + β3(dose)

+ δ(clinic)(274)]

t = 458.5:

 HR = exp(β̂1 + 458.5δ̂)ˆ
t = 639:

 HR = exp(β̂1 + 639δ̂)ˆ
t = 821.5:

 HR = exp(β̂1 + 821.5δ̂)ˆ

δ̂ > 0 ⇒ HR as  time ˆ

HR changes over time.

There is, nevertheless, at least one other approach
to the analysis using time-dependent variables
that we now describe. This approach considers
our earlier graphical observation that the survival
curves for each clinic continue to diverge from
one another even after one year. In other words, it
is reasonable to consider an extended Cox model
that allows for such a divergence, rather than a
model that assumes the hazard ratios are constant
before and after one year.

One way to define an extended Cox model that pro-
vides for diverging survival curves is shown here.
This model includes, in addition to the clinic vari-
able by itself, a time-dependent variable defined
as the product of the clinic variable with time (i.e.
clinic × t). By including this product term, we
are able to estimate the effect of clinic on survival
time, and thus the hazard ratio, for any specified
time t.

To demonstrate how the hazard ratio changes over
time for this model, we consider what the model
and corresponding estimated hazard ratio expres-
sion are for different specified values of t.

For example, if we are interested in the effect of
clinic on survival on day 91, so that t = 91, the
exponential part of the model simplifies to terms
for the prison and dose variables plus β1 times
the clinic variable plus δ times the clinic variable
times 91: the corresponding estimated hazard ra-
tio for the clinic effect is then e to the power β1
“hat” plus δ “hat” times t = 91.

At 274 days, the exponential part of the model con-
tains the prison, dose, and clinic main effect terms
as before, plus δ times the clinic variable times
274: the corresponding hazard ratio for the clinic
effect is then e to β1 “hat” plus 274 δ “hat”.

The formulae for the estimated hazard ratio for
other specified days are shown here. Notice that
the estimated hazard ratio appears to be increase
over the length of the follow-up period. Thus, if
δ “hat” is a positive number, then the estimated
hazard ratios will increase over time.
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EXAMPLE (continued) 

Coef.

0.390

–0.035

–0.0183

0.003

Std.
Err.

0.169

0.006

0.347

0.001

P>|z|

0.021

0.000

0.958

0.001

Haz.
Ratio

1.476

0.965

0.982

1.003

[95% Conf. Interval]

1.060

0.953

0.497

1.001

2.056

0.978

1.939

1.005

prison

dose

clinic

clinic × t

 HR depends on β̂1 and δ̂.ˆ

Computer results for extended Cox
model involving T(t):

cov (β̂1, δ̂) = –.000259 Log likelihood = –667.642 ˆ
β̂1 = –0.0183 δ̂ = 0.003

t = 91.5:  HR = exp(β̂1 + δ̂t) = 1.292ˆ
t = 274:  HR = exp(β̂1 + δ̂t) = 2.233ˆ
t = 458.5:  HR = exp(β̂1 + δ̂t) = 3.862ˆ
t = 639:  HR = exp(β̂1 + δ̂t) = 6.677ˆ
t = 821.5:  HR = exp(β̂1 + δ̂t) = 11.544ˆ

exp β̂1 + δ̂t ± 1.96     Var(β̂1 + δ̂t)

Var(β̂1 + δ̂t) = sβ̂1
+ t2 sδ̂ + 2t cov(β̂1, δ̂)

↑ ↑ ↑
(0.347)2 (0.001)2 (–.000259)

ˆ

ˆ

Time (days)

91.5
274
458.5
639    
821.5

ĤR

1.292
2.233
3.862
6.677

11.544

95% CI

(0.741, 2.250)
(1.470, 3.391)
(2.298, 6.491)

2 2

(3.102, 14.372)
(3.976, 33.513)

We now show edited results obtained from fitting
the extended Cox model we have just been de-
scribing, which contains the product of clinic with
time. The covariance estimate shown at the bot-
tom of the table will be used below to compute
confidence intervals.

From these results, the estimated coefficient of the
clinic variable is β1 “hat” equals −0.0183, and the
estimated coefficient δ “hat” obtained for the prod-
uct term equals 0.003. For the model being fit,
the hazard ratio depends on the values of both β1
“hat” and δ “hat.”

On the left, the effect of the variable clinic is de-
scribed by five increasing hazard ratio estimates
corresponding to each of five different values of t.
These values, which range between 1.292 at
91.5 days to 11.544 at 821.5 days, indicate how
the effect of clinic diverges over time for the fitted
model.

We can also obtain 95% confidence intervals for
each of these hazard ratios using the large sam-
ple formula shown here. The variance expression
in the formula is computed using the variances
and covariances which can be obtained from the
computer results given above. In particular, the
variances are (0.347)2 and (0.001)2 for β1 “hat”
and δ “hat,” respectively; the covariance value is
−0.000259.

A table showing the estimated hazard ratios and
their corresponding 95% confidence intervals for
the clinic effect is given here. Note that all confi-
dence intervals are quite wide.
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VIII. An Application of the
Extended Cox Model to
the Analysis of the
Stanford Heart
Transplant Data

EXAMPLE
Patients identified as eligible for heart
transplant:
T = time until death or censorship
65 patients receive transplants
38 patients do not receive transplants
n = 103 patients

Goal: Do patients receiving transplants
survive longer than patients not receiv-
ing transplants?

One approach:
Compare two separate groups: 65 trans-
plants vs. 38 nontransplants

Problem:

Wait-time

Eligibility

Censored
or death

↑
Received

transplant
← Total survival time →

×
Time→

Note: Wait-time contributes to survival
time for nontransplants.

Covariates:
Tissue mismatch score prognostic only
Age at transplant for transplants

Age at eligibility: not considered prog-
nostic for nontransplants

}

We now consider another application of the ex-
tended Cox model which involves the use of an
internally defined time-dependent variable. In a
1977 report (Crowley and Hu, J. Amer. Statist.
Assoc.) on the Stanford Heart Transplant Study,
patients identified as being eligible for a heart
transplant were followed until death or censor-
ship. Sixty-five of these patients received trans-
plants at some point during follow-up, whereas
thirty-eight patients did not receive a transplant.
There were, thus, a total of n = 103 patients. The
goal of the study was to assess whether patients re-
ceiving transplants survived longer than patients
not receiving transplants.

One approach to the analysis of this data was
to separate the dataset into two separate groups,
namely, the 65 heart transplant patients and the
38 patients not receiving transplants, and then to
compare survival times for these groups.

A problem with this approach, however, is that
those patients who received transplants had to
wait from the time they were identified as eligible
for a transplant until a suitable transplant donor
was found. During this “wait-time” period, they
were at risk for dying, yet they did not have the
transplant. Thus, the wait-time accrued by trans-
plant patients contributes information about the
survival of nontransplant patients. Yet, this wait-
time information would be ignored if the total
survival time for each patient were used in the
analysis.

Another problem with this approach is that two
covariates of interest, namely, tissue mismatch
score and age at transplant, were considered as
prognostic indicators of survival only for patients
who received transplants. Note that age at eligi-
bility was not considered an important prognostic
factor for the nontransplant group.
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EXAMPLE (continued) 

HT(t) =

Problems:
• wait-time of transplant recipients
• prognostic factors for transplants

only

Alternative approach:
Uses an extended Cox model

Exposure variable:
Heart transplant status at time t,
defined as

0  if did not receive transplant
 by time t, i.e., if t < wait-
 time

1  if received transplant prior
 to time t, i.e., if t ≥ wait-
 time

T

T

Wait-time for transplants contributes to survival
for nontransplants.

In addition to HT(t), two time-dependent
covariates included in model.

No transplant

Transplant

Time of transplant

HT(t)
0000...00000

t

t

HT(t)
0000...0111111111

Because of the problems just described, which
concern the wait-time of transplants and the ef-
fects of prognostic factors attributable to trans-
plants only, an alternative approach to the analysis
is recommended. This alternative involves the use
of time-dependent variables in an extended Cox
model.

The exposure variable of interest in this extended
Cox model is heart transplant status at time t, de-
noted by HT(t). This variable is defined to take
on the value 0 at time t if the patient has not
received a transplant at this time, that is, if t is
less than the wait-time for receiving a transplant.
The value of this variable is 1 at time t if the
patient has received a transplant prior to or at
time t, that is, if t is equal to or greater than the
wait-time.

Thus, for a patient who did not receive a transplant
during the study, the value of HT(t) is 0 at all times.
For a patient receiving a transplant, the value of
HT(t) is 0 at the start of eligibility and continues
to be 0 until the time at which the patient receives
the transplant; then, the value of HT(t) changes
to 1 and remains 1 throughout the remainder of
follow-up.

Note that the variable HT(t) has the property that
the wait-time for transplant patients contributes
to the survival experience of nontransplant pa-
tients. In other words, this variable treats a trans-
plant patient as a nontransplant patient prior to
receiving the transplant.

In addition to the exposure variable HT(t), two
other time-dependent variables are included in
our extended Cox model for the transplant data.
These variables are covariates to be adjusted for
in the assessment of the effect of the HT(t) vari-
able.
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EXAMPLE (continued)

Note: HT(t) does not satisfy PH
assumption.

Focus:
Assessing the effect of HT(t) adjusted
for TMS(t) and AGE(t).

h(t,X(t)) = h0(t) exp[δ1HT(t)
+ δ2TMS(t) + δ3AGE(t)]

Variable
HT(t)
TMS(t)
AGE(t)

Coef.
−3.1718
0.4442
0.0552

P>|z|
0.008
0.112
0.014

Haz.
Ratio
0.0417
1.5593
1.0567

Std.
Err.

1.1861
0.2802
0.0226

HR =ˆ

HR = e−3.1718 = 0.0417 =ˆ 1
23.98

1
24

ĥ(transplants)

ĥ(nontransplants)
≈ ?

Not appropriate!

Covariates:

TMS(t) = 0  if t < wait-time
                  TMS if t ≥ wait-time

AGE(t) = 0  if t < wait-time
                  AGE if t ≥ wait-time

These covariates are denoted as TMS(t) and
AGE(t) and they are defined as follows: TMS(t)
equals 0 if t is less than the wait-time for a trans-
plant but changes to the “tissue mismatch score”
(TMS) at the time of the transplant if t is equal
to or greater than the wait-time. Similarly, AGE(t)
equals 0 if t is less than the wait-time but changes
to AGE at time of transplant if t is equal to or
greater than the wait-time.

The extended Cox model for the transplant data is
shown here. The model contains the three time-
dependent variables HT(t), TMS(t) and AGE(t) as
described above.

For this model, since HT(t) is the exposure vari-
able of interest, the focus of the analysis concerns
assessing the effect of this variable adjusted for
the two covariates. Note, however, that because
the HT(t) variable is time-dependent by definition,
this variable does not satisfy the PH assumption,
so that any hazard ratio estimate obtained for this
variable is technically time-dependent.

A summary of computer results for the fit of the
above extended Cox model is shown here. These
results indicate that the exposure variable HT(t) is
significant below the one percent significance level
(i.e., the two-sided p-value is 0.008). Thus, trans-
plant status appears to be significantly associated
with survival.

To evaluate the strength of the association, note
that e to the coefficient of HT(t) equals 0.0417.
Since 1 over 0.0417 is 23.98, it appears that there is
a 24-fold increase in the hazard of nontransplant
patients to transplant patients. The preceding in-
terpretation of the value 0.0417 as a hazard ratio
estimate is not appropriate, however, as we shall
now discuss further.
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EXAMPLE (continued) 

ˆ23.98 is inappropriate as a HR:

Alternative interpretation:
At time t,
ĥ (“not yet received transplant’’)
≈ 24 ĥ(“already received transplant’’)

More appropriate:

Hazard ratio formula should account
for TMS and AGE.

Transplant? TMS(t)HT(t) AGE(t)

Yes
No

1
0 0 0

TMS AGE

i denotes ith transplant patient

X*(t) = (HT(t) = 1, TMS(t) = TMSi, AGE(t) = AGEi)
X(t) = (HT(t) = 0, TMS(t) = 0, AGE(t) = 0)

ĤR(t) = exp[δ̂1(1 − 0) + δ̂2(TMSi – 0)
+ δ̂3(AGEi − 0)]
= exp[δ̂1 + δ̂2TMSi + δ̂3AGEi]

= exp[−3.1718 + 0.4442 TMSi

+ 0.0552 AGEi]

• does not compare two separate
groups

• exposure variable is not time-
independent

• wait-time on transplants contributes
to survival on nontransplants 

First, note that the value of 23.98 inappropri-
ately suggests that the hazard ratio is compar-
ing two separate groups of patients. However, the
exposure variable in this analysis is not a time-
independent variable that distinguishes between
two separate groups. In contrast, the exposure
variable is time-dependent, and uses the wait-time
information on transplants as contributing to the
survival experience of non-transplants.

Since the exposure variable is time-dependent, an
alternative interpretation of the hazard ratio esti-
mate is that, at any given time t, the hazard for a
person who has not yet received a transplant (but
may receive one later) is approximately 24 times
the hazard for a person who already has received a
transplant by that time.

Actually, we suggest that a more appropriate haz-
ard ratio expression is required to account for
a transplant’s TMS and AGE score. Such an ex-
pression would compare, at time t, the values of
each of the three time-dependent variables in the
model. For a person who received a transplant,
these values are 1 for HT(t) and TMS and AGE for
the two covariates. For a person who has not re-
ceived a transplant, the values of all three variables
are 0.

Using this approach to compute the hazard ratio,
the X∗(t) vector, which specifies the predictors for
a patient i who received a transplant at time t, has
the values 1, TMSi and AGEi for patient i; the X(t)
vector, which specifies the predictors at time t for
a patient who has not received a transplant at time
t, has values of 0 for all three predictors.

The hazard ratio formula then reduces to e to the
sum of δ1 “hat” plus δ2 “hat” times TMSi plus δ3
“hat” times AGEi , where the δ “hat’s” are the es-
timated coefficients of the three time-dependent
variables. Substituting the numerical values for
these coefficients in the formula gives the expo-
nential expression circled here.
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EXAMPLE (continued)

HR(t) is time-dependent, i.e., its value at 
time t depends on TMSi and AGEi at 
time t

ˆ

TMS range: (0−3.05)
AGE range: (12−64)

The resulting formula for the hazard ratio is time-
dependent in that its value depends on the TMS
and AGE values of the ith patient at the time of
transplant. That is, different patients can have dif-
ferent values for TMS and AGE at time of trans-
plant. Note that in the dataset, TMS ranged be-
tween 0 and 3.05 and AGE ranged between 12 and
64.

We end our discussion of the Stanford Heart
Transplant Study at this point. For further insight
into the analysis of this dataset, we refer the reader
to the 1977 paper by Crowley and Hu (J. Amer.
Statist. Assoc.).

IX. The Extended Cox
Likelihood

At the end of the presentation from Chapter 3 (Sec-
tion VIII), we illustrated the Cox likelihood using
the dataset shown on the left. In this section we
extend that discussion to illustrate the Cox likeli-
hood with a time-dependent variable.

To review: The data indicate that Barry got the
event at TIME = 2 years. Gary got the event at
3 years, Harry was censored at 5 years, and Larry
got the event at 8 years. Furthermore, Barry and
Larry were smokers whereas Gary and Harry were
nonsmokers.

ID TIME STATUS SMOKE

Barry 2 1 1
Gary 3 1 0
Harry 5 0 0
Larry 8 1 1

SURVT = Survival time (in years)
STATUS = 1 for event, 0 for
censorship
SMOKE = 1 for a smoker, 0 for a
nonsmoker

Cox PH model: h(t) = h0(t)eβ1SMOKE In Chapter 3 we constructed the Cox likelihood
with one predictor SMOKE in the model. The
model and the likelihood are shown on the left.
The likelihood is a product of three terms, one
term for each event time tj (TIME = 2, 3, and 8).
The denominator of each term is the sum of the
hazards from the subjects still in the risk set at
time tj, including the censored subject Harry. The
numerator of each term is the hazard of the sub-
ject who got the event at tj. The reader may wish
to reread Section VIII of Chapter 3.

Cox PH Likelihood

L =[
h0(t)eβ1

h0(t)eβ1 + h0(t)e0 + h0(t)e0 + h0(t)eβ1

]

×
[

h0(t)e0

h0(t)e0 + h0(t)e0 + h0(t)eβ1

]

×
[

h0(t)eβ1

h0(t)eβ1

]
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Cox extended model

h(t) = h0(t)eβ1SMOKE + β2SMOKE × TIME↗
Time-dependent covariate
(its value changes over time)

Now consider an extended Cox model, which con-
tains the predictor SMOKE, and a time-dependent
variable SMOKE × TIME. For this model it is not
only the baseline hazard that may change over
time but also the value of the predictor variables.
This can be illustrated by examining Larry’s haz-
ard at each event time.

Larry got the event at TIME = 8

Larry’s hazard at each event time

TIME Larry’s Hazard

2 h0(t)eβ1+2β2

3 h0(t)eβ1+3β2

8 h0(t)eβ1+8β2

Larry, a smoker, got the event at TIME = 8.
However at TIME = 2, 3, and 8, the covariate
SMOKE × TIME changes values, thus affecting
Larry’s hazard at each event time (see left). Un-
derstanding how the expression for an individual’s
hazard changes over time is the key addition to-
ward understanding how the Cox extended likeli-
hood differs from the Cox PH likelihood.

Cox extended model

L =[
h0(t)eβ1+2β2

h0(t)eβ1+2β2 + h0(t)e0 + h0(t)e0 + h0(t)eβ1+2β2

]

×
[

h0(t)e0

h0(t)e0 + h0(t)e0 + h0(t)eβ1+3β2

]

×
[

h0(t)eβ1+8β2

h0(t)eβ1+8β2

]

Likelihood is product of 3 terms:
L = L1 × L2 × L3↗ ↑ ↖

Barry Gary Larry
(t = 2) (t = 3) (t = 8)

The likelihood for the extended Cox model is con-
structed in a similar manner to that of the likeli-
hood for the Cox PH model. The difference is that
the expression for the subject’s hazard is allowed
to vary over time. The extended Cox likelihood for
these data is shown on the left.

Just as with the Cox PH likelihood shown previ-
ously, the extended Cox likelihood is also a product
of three terms, corresponding to the three event
times (L = L1 × L2 × L3). Barry got the event
first at t = 2, then Gary at t = 3, and finally Larry
at t = 8. Harry, who was censored at t = 5, was
still at risk when Barry and Gary got the event.
Therefore, Harry’s hazard is still in the denomina-
tor of L1 and L2.

SMOKE × TIME = 0 for nonsmok-
ers

SMOKE × TIME changes over time
for smokers

Larry’s hazard changes over L1, L2,
L3.

The inclusion of the time-varying covariate
SMOKE × TIME does not change the expres-
sion for the hazard for the nonsmokers (Gary and
Harry) because SMOKE is coded 0 for nonsmok-
ers. However, for smokers (Barry and Larry), the
expression for the hazard changes with time. No-
tice how Larry’s hazard changes in the denomina-
tor of L1, L2 and L3 (see dashed arrows above).
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h0(t) cancels in L

L =
[

eβ1+2β2

eβ1+2β2 + e0 + e0 + eβ1+2β2

]
×

[
e0

e0 + e0 + eβ1+3β2

]
×

[
eβ1+8β2

eβ1+8β2

]

The baseline hazard cancels in the extended Cox
likelihood as it does with the Cox PH likelihood.
Thus, the form of the baseline hazard need not be
specified, as it plays no role in the estimation of
the regression parameters.

Incorrent coding of SMOKE × TIME

SMOKE
ID TIME STATUS SMOKE × TIME

Barry 2 1 1 2
Gary 3 1 0 0
Harry 5 0 0 0
Larry 8 1 1 8↗

Coded as time-independent,
not time-dependent

A word of caution for those planning to run a
model with a time-varying covariate: it is incor-
rect to create a product term with TIME in the
data step by multiplying each individual’s value
for SMOKE with his survival time. In other words,
SMOKE × TIME should not be coded like the typ-
ical interaction term. In fact, if SMOKE × TIME
were coded as it is on the left, then SMOKE ×
TIME would be a time-independent variable.
Larry’s value for SMOKE × TIME is incorrectly
coded at a constant value of 8 even though Larry’s
value for SMOKE × TIME changes in the likeli-
hood over L1, L2, and L3.

Incorrectly coded SMOKE × TIME

� Time independent� Probably highly significant� Survival time should predict
survival time� But not meaningful

If the incorrectly coded time-independent
SMOKE × TIME were included in a Cox model it
would not be surprising if the coefficient estimate
were highly significant even if the PH assumption
were not violated. It would be expected that a
product term with each individual’s survival time
would predict the outcome (his survival time),
but it would not be meaningful. Nevertheless, this
is a common mistake.

Correctly coding SMOKE × TIME

� Time dependent� Computer packages allow
definition in the analytic
procedure� See Computer Appendix for
details

To obtain a correctly defined SMOKE × TIME
time-dependent variable, computer packages typ-
ically allow the variable to be defined within the
analytic procedure. See Computer Appendix to
see how time-dependent variables are defined in
Stata, SAS, and SPSS.
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Coding SMOKE × TIME as time-
dependent

Multiple Observations per Subject

SMOKE
ID TIME STATUS SMOKE × TIME

Barry 2 1 1 2
Gary 2 0 0 0
Gary 3 1 0 0
Harry 2 0 0 0
Harry 3 0 0 0
Harry 5 0 0 0
Larry 2 0 1 2
Larry 3 0 1 3
Larry 5 0 1 5
Larry 8 1 1 8↑

Coded as time-dependent

When a time-dependent variable is defined within
the Cox analytic procedure, the variable is defined
internally such that the user may not see the time-
dependent variable in the dataset. However, the
dataset on the left will provide a clearer idea of the
correct definition of SMOKE × TIME. The dataset
contains multiple observations per subject. Barry
was at risk at t = 2 and got the event at that time.
Gary was at risk at t = 2 and t = 3. Gary didn’t get
the event at t = 2 but did get the event at t = 3.
Harry was at risk at t = 2, t = 3, t = 5 and didn’t
get the event. Larry was at risk at t = 2, t = 3,
t = 5, t = 8 and got the event at t = 8. Notice how
the SMOKE × TIME variable changes values for
Larry over time.

Multiple observations per subject:
revisited in Chapter 8 (recurrent
events)

Survival analysis datasets containing multiple ob-
servations per subject are further discussed in
Chapter 8 on recurrent events. With recurrent
event data, subjects may remain at risk for sub-
sequent events after getting an event.

X. Summary A summary of this presentation on time-
dependent variables is now provided. We began by
reviewing the main features of the Cox PH model.
We then defined a time-dependent variable and il-
lustrated three types of these variables—defined,
internal, and ancillary.

Review Cox PH model.

Define time-dependent variable:
defined, internal, ancillary.

Extended Cox model:

h(t,X(t)) = h0(t) exp
[ p1∑

i=1
βi Xi

+
p2∑

j=1
δ j X j (t)

]
Next, we gave the form of the “extended Cox
model,” shown here again, which allows for time-
dependent as well as time-independent variables.

ĤR(t) = exp

[
p1∑

i=1

β̂i

[
X ∗

i − Xi
]

+
p2∑

j=1

δ̂ j
[�
�

�
�X ∗

j (t) − X j (t)
]]

↗
Function of time

We then described various characteristics of this
extended Cox model, including the formula for the
hazard ratio. The latter formula is time-dependent
so that the PH assumption is not satisfied.
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Model for assessing PH
assumption:

h(t,X(t)) = h0(t) exp
[ p∑

i=1
βi Xi

+
p∑

i=1
δi Xi gi (t)

]

We also showed how to use time-dependent vari-
ables to assess the PH assumption for time-
independent variables. A general formula for an
extended Cox model that simultaneously consid-
ers all time-independent variables of interest is
shown here.

Examples of gi (t):
t, log t, heaviside function

The functions gi (t) denote functions of time for
the ith variable that are to be determined by the in-
vestigator. Examples of such functions are gi (t) =
t, log t, or a heaviside function.

Heaviside functions:

HR̂

t

The use of heaviside functions were described and
illustrated. Such functions allow for the hazard
ratio to be constant within different time intervals.

h(t,X(t)) = h0(t) exp[βE + δEg (t)]

where

g (t) =
{

1 if t ≥ t0
0 if t < t0

h(t,X(t))
= h0(t) exp[β1 Eg1(t) + β2 Eg2(t)]

where

g1(t) =
{

1 if t ≥ t0
0 if t < t0

g2(t) =
{

1 if t < t0
0 if t ≥ t0

For two time intervals, the model can take either
one of two equivalent forms as shown here. The
first model contains a main effect of exposure and
only one heaviside function. The second model
contains two heaviside functions without a main
effect of exposure. Both models yield two distinct
and equivalent values for the hazard ratio.

EXAMPLE 1

1991 Australian study of heroin addicts 

• two methadone maintenance clinics 
• addicts dataset file 
• clnic variable did not satisfy PH 

assumption

We illustrated the use of time-dependent variables
through two examples. The first example consid-
ered the comparison of two methadone mainte-
nance clinics for heroin addicts. The dataset file
was called addicts. In this example, the clinic vari-
able, which was a dichotomous exposure variable,
did not satisfy the PH assumption.
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EXAMPLE (continued) 

h(t,X(t)) = h0(t)exp[β2(prison)
+ β3(dose) + β1(clinic)
+ δ(clinic × t)] 

Adjusted Survival Curves 
Stratified by Clinic

Clinic 1
Clinic 2

0
0

0.2
0.4
0.6
0.8
1.0

200 400 600 800 1000 1200
Days

Ŝ

Heaviside functions

where
T(t)   1, 3, 5, 7, 9 in half-year intervals

h(t,X(t)) = h0(t) exp[β2(prison)
+ β3(dose) + δ1(clinic)g1(t)
+ δ2(clinic)g2(t)]

Adjusted survival curves stratified by clinic
showed clinic 2 to have consistently higher sur-
vival probabilities than clinic 1, with a more pro-
nounced difference in clinics after one year of
follow-up. However, this stratification did not al-
low us to obtain a hazard ratio estimate for clinic.
Such an estimate was possible using an extended
Cox model containing interaction terms involving
clinic with time.

Two extended Cox models were considered. The
first used heaviside functions to obtain two dis-
tinct hazard ratios, one for the first year of follow-
up and the other for greater than one year of
follow-up. The model is shown here.

The second extended Cox model used a time-
dependent variable that allowed for the two sur-
vival curves to diverge over time. This model is
shown here.

Both models yielded hazard ratio estimates that
agreed reasonably well with the graph of adjusted
survival curves stratified by clinic.

EXAMPLE 2: Stanford Heart 
Transplant Study 

h(t,X(t)) = h0(t) exp[δ1HT(t) + δ2TMS(t)
+ δ3AGE(t)]

Goals: Do patients receiving transplants 
survive longer than patients not receiv- 
ing transplants?

Exposure variable

The second example considered results obtained
in the Stanford Heart Transplant Study. The goal
of the study was to assess whether patients receiv-
ing transplants survived longer than patients not
receiving transplants.

The analysis of these data involved an extended
Cox model containing three time-dependent vari-
ables. One of these, the exposure variable, and
called HT(t), was an indicator of transplant sta-
tus at time t. The other two variables, TMS(t) and
AGE(t), gave tissue mismatch scores and age for
transplant patients when time t occurred after re-
ceiving a transplant. The value of each of these
variables was 0 at times prior to receiving a trans-
plant.
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EXAMPLE (continued)

HR = exp[ −3.1718 + 0.4442 TMSi
+ 0.0552 AGEi]

ˆ

ˆ

Results: HT(t) highly significant, i.e., 
transplants have better prognosis than 
nontransplants.
Hazard ratio estimate problematic: 

HR = eδ̂1 = 1
23.98

More appropriate formula:

The results from fitting the above extended Cox
model yielded a highly significant effect of the ex-
posure variable, thus indicating that survival prog-
nosis was better for transplants than for nontrans-
plants.

From these data, we first presented an inappropri-
ate formula for the estimated hazard ratio. This
formula used the exponential of the coefficient of
the exposure variable, which gave an estimate of
1 over 23.98. A more appropriate formula con-
sidered the values of the covariates TMS(t) and
AGE(t) at time t. Using the latter, the hazard ratio
estimate varied with the tissue mismatch scores
and age of each transplant patient.

Chapters This presentation is now complete. We suggest
that the reader review the detailed outline that fol-
lows and then answer the practice exercises and
test that follow the outline.

A key property of Cox models is that the distri-
bution of the outcome, survival time, is unspec-
ified. In the next chapter, parametric models are
presented in which the underlying distribution of
the outcome is specified. The exponential, Weibull,
and log-logistic models are examples of paramet-
ric models.

1. Introduction to Survival
Analysis

2. Kaplan–Meier Curves and the
Log–Rank Test

3. The Cox Proportional Hazards
Model

4. Evaluating the Proportional
Hazards Assumption

5. The Stratified Cox Procedure
✓ 6. Extension of the Cox

Proportional Hazards Model
for Time-Dependent Variables




�

�



Next:

7. Parametric models
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Detailed
Outline

I. Preview (page 214)
II. Review of the Cox PH Model (pages 214–216)

A. The formula for the Cox PH model:

h(t,X) = h0(t) exp
[ p∑

i=1
βi Xi

]
B. Formula for hazard ratio comparing two

individuals:

X∗ = (X ∗
1, X ∗

2, . . . , X ∗
p) and X = (X1, X2, . . . , X p) :

h(t,X∗)
h(t,X)

= exp

[
p∑

i=1

βi (X ∗
i − Xi )

]

C. The meaning of the PH assumption:� Hazard ratio formula shows that the hazard
ratio is independent of time:

h(t,X∗)
h(t,X)

= θ

� Hazard ratio for two X ’s are proportional:

h(t,X∗) = θh(t,X)

D. Three methods for checking the PH assumption:
i. Graphical: Compare ln–ln survival curves or

observed versus predicted curves
ii. Time-dependent covariates: Use product (i.e.,

interaction) terms of the form X × g (t).
iii. Goodness-of-fit test: Use a large sample Z

statistic.
E. Options when the PH assumption is not met:

i. Use a stratified Cox procedure.
ii. Use an extended Cox model containing a

time-dependent variable of the form X × g (t).
III. Definition and Examples of Time-Dependent

Variables (pages 216–219)
A. Definition: any variable whose values differ over

time
B. Examples of defined, internal, and ancillary

time-dependent variables



Detailed Outline 247

IV. The Extended Cox Model for Time-Dependent
Varibles (pages 219–221)

A. h(t,X(t)) = h0(t) exp

[
p1∑

i=1
βi Xi +

p2∑
j=1

δ j X j (t)

]

where X(t) = (X1, X2, . . . , X p1, X1(t), X2(t), . . . ,
X p2 (t)) denotes the entire collection of predictors
at time t, Xi denotes the ith time-independent
variable, and X j (t) denotes the jth time-dependent
variable.

B. ML procedure used to estimate regression
coefficients.

C. List of computer programs for the extended Cox
model.

D. Model assumes that the hazard at time t depends
on the value of X j (t) at the same time.

E. Can modify model for lag-time effect.
V. The Hazard Ratio Formula for the Extended Cox

Model (pages 221–223)

A.

HR(t) = exp
[ p1∑

i=1
β̂i

[
X ∗

i − Xi
]

+
p2∑

j=1
δ̂ j

[
X ∗

j (t) − X j (t)
]]

B. Because HR(t) is a function of time, the PH
assumption is not satisfied.

C. The estimated coefficient of X j (t) is
time-independent, and represents an “overall”
effect of X j (t).

VI. Assessing Time-Independent Variables That Do
Not Satisfy the PH Assumption (pages 224–229)
A. General formula for assessing PH assumption:

h(t,X(t)) = h0(t) exp
[ p∑

i=1
βi Xi +

p∑
i=1

δi Xi gi (t)
]

B. gi (t) is a function of time corresponding to Xi

C. Test H0: δ1 = δ2 = . . . = δp = 0
D. Heaviside function:

g (t) =
{

1 if t ≥ t0
0 if t < t0
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E. The model with a single heaviside function:

h(t,X(t)) = h0(t) exp[βE + δEg (t)]

F. The model with two heaviside functions:

h(t,X(t)) = h0(t) exp[δ1 Eg1(t) + δ2 Eg2(t)]

where

g1(t) =
{

1 if t ≥ t0
0 if t < t0

and g2(t) =
{

1 if t < t0
0 if t ≥ t0

G. The hazard ratios:

t ≥ t0 : ĤR = exp(β̂ + δ̂) = exp(δ̂1)

t < t0 : ĤR = exp(β̂) = exp(δ̂2)

H. Several heaviside functions: examples given with
four time-intervals:� Extended Cox model contains either

{E, E × g1(t), E × g2(t), E × g3(t)} or
{E × g1(t), E × g2(t), E × g3(t), E × g4(t)}� The model using four product terms and no
main effect of E:

h(t,X(t)) = h0(t) exp[δ1 Eg1(t) + δ2 Eg2(t)
+ δ3 Eg3(t) + δ4 Eg4(t)]

where

gi (t) =
{

1 if t is within interval i
0 if otherwise

VII. An Application of the Extended Cox Model to an
Epidemiologic Study on the Treatment of Heroin
Addiction (pages 230–234)
A. 1991 Australian study of heroin addicts� two methadone maintenance clinics� addicts dataset file� clinic variable did not satisfy PH assumption
B. Clinic 2 has consistently higher retention

probabilities than clinic 1, with a more
pronounced difference in clinics after one year of
treatment.

C. Two extended Cox models were considered:� Use heaviside functions to obtain two distinct
hazard ratios, one for less than one year and the
other for greater than one year.� Use a time-dependent variable that allows for
the two survival curves to diverge over time.
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VIII. An Application of the Extended Cox Model to the
Analysis of the Stanford Heart Transplant Data
(pages 235–239)
A. The goal of the study was to assess whether

patients receiving transplants survived longer than
patients not receiving transplants.

B. We described an extended Cox model containing
three time-dependent variables:

h(t,X(t)) = h0(t) exp[δ1HT(t) + δ2TMS(t) + δ3AGE(t)]

C. The exposure variable, called HT(t), was an
indicator of transplant status at time t. The other
two variables, TMS(t) and AGE(t), gave tissue
mismatch scores and age for transplant patients
when time t occurred after receiving a transplant.

D. The results yielded a highly significant effect of the
exposure variable.

E. The use of a hazard ratio estimate for this data was
problematical.� An inappropriate formula is the exponential of

the coefficient of HT(t), which yields 1/23.98.� An alternative formula considers the values of
the covariates TMS(t) and AGE(t) at time t.

IX. Extended Cox Likelihood (pages 239–242)
A. Review of PH likelihood (Chapter 3).
B. Barry, Gary, Larry, example of Cox likelihood.

X. Summary (pages 242–245)

Practice
Exercises

The following dataset called “anderson.dat” consists of remis-
sion survival times on 42 leukemia patients, half of whom
receive a new therapy and the other half of whom get a stan-
dard therapy (Freireich et al., Blood, 1963). The exposure vari-
able of interest is treatment status (Rx = 0 if new treatment,
Rx = 1 if standard treatment). Two other variables for con-
trol are log white blood cell count (i.e., log WBC) and sex.
Failure status is defined by the relapse variable (0 if censored,
1 if failure). The dataset is listed as follows:

Subj Surv Relapse Sex log WBC Rx

1 35 0 1 1.45 0
2 34 0 1 1.47 0
3 32 0 1 2.2 0
4 32 0 1 2.53 0
5 25 0 1 1.78 0
6 23 1 1 2.57 0

(Continued on next page)
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Subj Surv Relapse Sex log WBC Rx

7 22 1 1 2.32 0
8 20 0 1 2.01 0
9 19 0 0 2.05 0

10 17 0 0 2.16 0
11 16 1 1 3.6 0
12 13 1 0 2.88 0
13 11 0 0 2.6 0
14 10 0 0 2.7 0
15 10 1 0 2.96 0
16 9 0 0 2.8 0
17 7 1 0 4.43 0
18 6 0 0 3.2 0
19 6 1 0 2.31 0
20 6 1 1 4.06 0
21 6 1 0 3.28 0
22 23 1 1 1.97 1
23 22 1 0 2.73 1
24 17 1 0 2.95 1
25 15 1 0 2.3 1
26 12 1 0 1.5 1
27 12 1 0 3.06 1
28 11 1 0 3.49 1
29 11 1 0 2.12 1
30 8 1 0 3.52 1
31 8 1 0 3.05 1
32 8 1 0 2.32 1
33 8 1 1 3.26 1
34 5 1 1 3.49 1
35 5 1 0 3.97 1
36 4 1 1 4.36 1
37 4 1 1 2.42 1
38 3 1 1 4.01 1
39 2 1 1 4.91 1
40 2 1 1 4.48 1
41 1 1 1 2.8 1
42 1 1 1 5 1

The following edited printout gives computer results for fit-
ting a Cox PH model containing the three predictives Rx, log
WBC, and Sex.

Cox regression [95% Conf.
Analysis time t: survt Coef. Std. Err. p > |z| Haz. Ratio Interval] P(PH)

Sex 0.263 0.449 0.558 1.301 0.539 3.139 0.042
log WBC 1.594 0.330 0.000 4.922 2.578 9.397 0.714
Rx 1.391 0.457 0.002 4.018 1.642 9.834 0.500

No. of subjecs = 42 Log likelihood = −72.109
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1. Which of the variables in the model fitted above are time-
independent and which are time-dependent?

2. Based on this printout, is the PH assumption satisfied for the
model being fit? Explain briefly.

3. Suppose you want to use an extended Cox model to assess
the PH assumption for all three variables in the above model.
State the general form of an extended Cox model that will
allow for this assessment.

4. Suppose you wish to assess the PH assumption for the Sex
variable using a heaviside function approach designed to
yield a constant hazard ratio for less than 15 weeks of follow-
up and a constant hazard ratio for 15 weeks or more of follow-
up. State two equivalent alternative extended Cox models that
will carry out this approach, one model containing one heav-
iside function and the other model containing two heaviside
functions.

5. The following is an edited printout of the results obtained
by fitting an extended Cox model containing two heaviside
functions:

Time-Dependent Cox Regression Analysis

Analysis [95% Conf.
time t: survt Coef. Std. Err. p > |z| Haz. Ratio Interval]

log WBC 1.567 0.333 0.000 4.794 2.498 9.202
Rx 1.341 0.466 0.004 3.822 1.533 9.526
0–15 wks 0.358 0.483 0.459 1.430 0.555 3.682
15+ wks −0.182 0.992 0.855 0.834 0.119 5.831

No. of subjects = 42 Log likelihood = −71.980

Using the above computer results, carry out a test of hypoth-
esis, estimate the hazard ratio, and obtain 95% confidence
interval for the treatment effect adjusted for log WBC and
the time-dependent Sex variables. What conclusions do you
draw about the treatment effect?

6. We now consider an alternative approach to controlling for
Sex using an extended Cox model. We define an interaction
term between sex and time that allows for diverging survival
curves over time.

For the situation just described, write down the extended Cox
model, which contains Rx, log WBC, and Sex as main effects
plus the product term sex × time.
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7. Using the model described in question 6, express the hazard
ratio for the effect of Sex adjusted for Rx and log WBC at 8
and 16 weeks.

8. The following is an edited printout of computer results
obtained by fitting the model described in question 6.

Time-Dependent Cox Regression Analysis

Analysis [95% Conf.
time t: survt Coef. Std. Err. p > |z| Haz. Ratio Interval]

Sex 1.820 1.012 0.072 6.174 0.849 44.896
log WBC 1.464 0.336 0.000 4.322 2.236 8.351
Rx 1.093 0.479 0.022 2.984 1.167 7.626
Sex × Time −0.345 0.199 0.083 0.708 0.479 1.046

No. of subjects = 42 Log likelihood = −70.416

Based on the above results, describe the hazard ratio estimate
for the treatment effect adjusted for the other variables in the
model, and summarize the results of the significance test and
interval estimate for this hazard ratio. How do these results
compare with the results previously obtained when a heavi-
side function approach was used? What does this comparison
suggest about the drawbacks of using an extended Cox model
to adjust for variables not satisfying the PH assumption?

9. The following gives an edited printout of computer results
using a stratified Cox procedure that stratifies on the Sex
variable but keeps Rx and log WBC in the model.

Stratified Cox regression

Analysis [95% Conf.
time t: survt Coef. Std. Err. p > |z| Haz. Ratio Interval]

log WBC 1.390 0.338 0.000 4.016 2.072 7.783
Rx 0.931 0.472 0.048 2.537 1.006 6.396

No. of subjects = 42 Log likelihood = −57.560 Stratified by sex

Compare the results of the above printout with previously
provided results regarding the hazard ratio for the effect of
Rx. Is there any way to determine which set of results is more
appropriate? Explain.
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Test The following questions consider the analysis of data from a
clinical trial concerning gastric carcinoma, in which 90 pa-
tients were randomized to either chemotherapy (coded as 2)
alone or to a combination of chemotherapy and radiation
(coded as 1). See Stablein et al., “Analysis of Survival Data
with Nonproportional Hazard Functions,” Controlled Clini-
cal Trials, vol. 2, pp. 149–159 (1981). A listing of the dataset
(called chemo) is given at the end of the presentation.

1. A plot of the log–log Kaplan–Meier curves for each
treatment group is shown below. Based on this plot, what
would you conclude about the PH assumption regarding
the treatment group variable? Explain.

2

2
2

2
2

2

1
1

1
1

1
1

1
2

0 200 400 600 800 1000 1200 1400

Log–log Survival Curves for
Each Treatment Group

4.0

2.0

0.0

−2.0

Number at risk

45

45 40 25 17 10 7 6 2

26 20 11 10 7 5 2

2. The following is an edited printout of computer results
obtained when fitting the PH model containing only the
treatment group variable. Based on these results, what
would you conclude about the PH assumption regarding
the treatment group variable? Explain.

Cox regression
Analysis time t: [95% Conf.
survt Coef. Std. Err. p > |z| Haz. Ratio Interval] P(PH)

Tx −0.267 0.233 0.253 0.766 0.485 1.21 0

No. of subjects = 90 Log likelihood = −282.744

3. The following printout shows the results from using a
heaviside function approach with an extended Cox model
to fit these data. The model used product terms of the
treatment variable (Tx) with each of three heaviside func-
tions. The first product term (called Time1) involves a
heaviside function for the period from 0 to 250 days,
the second product term (i.e., Time2) involves the period
from 250 to 500 days, and the third product term (i.e.,
Time3) involves the open-ended period from 500 days and
beyond.
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Time-Dependent Cox Regression Analysis

Analysis [95% Conf.
time t: survt Coef. Std. Err. p > |z| Haz. Ratio Interval]

Time1 −1.511 0.461 0.001 0.221 0.089 0.545
Time2 0.488 0.450 0.278 1.629 0.675 3.934
Time3 0.365 0.444 0.411 1.441 0.604 3.440

No. of subjects = 90 Log likelihood = −275.745

Write down the hazard function formula for the extended
Cox model being used, making sure to explicitly define the
heaviside functions involved.

4. Based on the printout, describe the hazard ratios in each
of the three time intervals, evaluate each hazard ratio for
significance, and draw conclusions about the extent of the
treatment effect in each of the three time intervals consid-
ered.

5. Inspection of the printout provided in question 3 indicates
that the treatment effect in the second and third intervals
appears quite similar. Consequently, another analysis was
considered that uses only two intervals, from 0 to 250 days
versus 250 days and beyond. Write down the hazard func-
tion formula for the extended Cox model that considers
this situation (i.e., containing two heaviside functions).
Also, write down an equivalent alternative hazard func-
tion formula which contains the main effect of treatment
group plus one heaviside function variable.

6. For the situation described in question 5, the computer
results are provided below. Based on these results,
describe the hazard ratios for the treatment effect below
and above 250 days, summarize the inference results
for each hazard ratio, and draw conclusions about the
treatment effect within each time interval.

Time-Dependent Cox Regression Analysis

Analysis time t: survt
Column
name Coeff StErr p-value HR 0.95 CI

Time1 −1.511 0.461 0.001 0.221 0.089 0.545
Time2 0.427 0.315 0.176 1.532 0.826 2.842

No. of subjects = 90 Log likelihood = −275.764
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Answers to
Practice
Exercises

1. All three variables in the model are time-independent vari-
bles.

2. The computer results indicate that the Sex variables do not
satisfy the PH assumption because the P(PH) value is 0.042,
which is significant at the 0.05 level.

3. h(t,X(t)) = h0(t) exp[β1(sex) + β2(log WBC) + β3(Rx)
+ δ1(sex)g1(t) + δ2(log WBC)g2(t)
+δ3(Rx)g3(t)]

where the gi (t) are functions of time.

4. Model 1 (one heaviside function)

h(t,X(t)) = h0(t) exp[β1(sex) + β2(log WBC) + β3(Rx)

+ δ1(sex)g1(t)]

where

g1(t) =
{

1 if 0 ≤ t < 15 weeks
0 if t ≥ 15 weeks

Model 2 (two heaviside functions):

h(t,X(t)) = h0(t) exp[β2(log WBC) + β3(Rx) + δ1(sex)g1(t)

+ δ2(sex)g2(t)]

where

g1(t) =
{

1 if 0 ≤ t < 15 weeks
0 if t ≥ 15 weeks

and

g2(t) =
{

0 if t ≥ 15 weeks
1 if 0 ≤ t < 15 weeks

5. The estimated hazard ratio for the effect of Rx is 3.822; this
estimate is adjusted for log WBC and for the Sex variable
considered as two time-dependent variables involving heav-
iside functions. The Wald test for significance of Rx has a
p-value of 0.004, which is highly significant. The 95% confi-
dence interval for the treatment effect ranges between 1.533
and 9.526, which is quite wide, indicating considerable un-
reliability of the 3.822 point estimate. Nevertheless, the re-
sults estimate a statistically significant treatment effect of
around 3.8.

6. h(t,X(t)) = h0(t) exp[β1(sex) + β2(log WBC) + β3(Rx)
+ δ1(sex × t)]
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7. The hazard ratio for the effect of Sex in each time interval,
controlling for Rx and log WBC is given as follows:

t = 8 weeks ĤR = exp[β̂1 + 8δ̂1]
t = 16 weeks ĤR = exp[β̂1 + 16δ̂1]

8. Using the model containing Sex, log WBC, Rx, and Sex ×
Time, the estimated hazard ratio for the treatment effect is
given by 2.984, with a p-value of 0.022 and a 95% confi-
dence interval ranging between 1.167 and 7.626. The point
estimate of 2.984 is quite different from the point estimate
of 3.822 for the heaviside function model, although the con-
fidence intervals for both models are wide enough to in-
clude both estimates. The discrepancy between point esti-
mates demonstrates that when a time-dependent variable
approach is to be used to account for a variable not satis-
fying the PH assumption, different results may be obtained
from different choices of time-dependent variables.

9. The stratified Cox analysis yields a hazard ratio of 2.537 with
a p-value of 0.048 and a 95% CI ranging between 1.006 and
6.396. The point estimate is much closer to the 2.984 for
the model containing the Sex × Time product term than to
the 3.822 for the model containing two heaviside functions.
One way to choose between models would be to compare
goodness-of-fit test statistics for each model; another way is
to compare graphs of the adjusted survival curves for each
model and determine by eye which set of survival curves fits
the data better.


