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Review of Last lecture (1)

» A lifetime or survival time is the time until some specified
event occurs. This event may be death, the appearance of a
tumor, the development of some disease, recurrence of a
disease, equipment breakdown, cessation of breast feeding,
and so on.

» Survival random variable: A random variable X is a
survival random variable if an observed outcome x of X is
always positive.

» Several functions characterize the distribution of a survival
random variable: probability density function (pdf) f(x),
cumulative distribution function (cdf) F(x) survival function
(sf) S(x), hazard function (hf) h(x), cumulative hazard
function H(x), and mean residual lifetime mri(x) at time x,
respectively.
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Review of Last lecture (2)

Implication of these functions:

» The survival function S(x) is the probability of an individual
surviving to time x.

» The hazard function h(x), sometimes termed risk function, is
the chance an individual of time x experiences the event in
the next instant in time when he has not experienced the
event at x.

> A related quantity to the hazard function is the cumulative
hazard function H(x), which describes the overall risk rate
from the onset to time x.

» The mean residual lifetime at age x, mrl(x), is the mean time
to the event of interest, given the event has not occurred at x.
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Relationship Summary

We only need to know one of these functions, the rest can be
derived. In particular,

» S(x)=1— F(x = X F(t)dt, S(x) = [T (¢
> f(X) _ dF(x) _ dS(x)

dx dx
> h(x) = 563, H(x) =[5 h(t)dt, h(x) = <)

» mrl(x) = J= (ts(xx))f(t - ig;)dt and
S(x) = pdte™ i o
> The key relation is S(x) = exp(— 5 h(t)dt) = exp(—H(x)).
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Discrete Case

» Suppose that X takes values x;,j =1,2,3, - --

» The probability mass function (pmf) p(x;) = Pr(X = Xx;),
Jj=1,2,--- where xy < Xp < --- <X <---

» The survival function is defined as
S(x) =Pr(X > x) = 35 P(X)

» Example: X with pmf p(x;) =Pr(X =) =1/3,j=1,2,3,
then the survival function is
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Plot of the Survival Function for Discrete Case
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Hazard Function for the Discrete Case

» The hf is defined as
h(g) = Pr(X = X|X > X)) = gy j = 1,2, with
S(xo) =1

» Because p(x;) = S(xj—1) — S(x;), thus

S(xi_1)—S(x)) S(x7)
h(X) = sy =1~ 860

» The survival function can be written as the product of the
conditional survival probabilities.

S(x) = TTyex S(4)/S(x-1)
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Relationship between h(x;) and S(x)

» Note that,

S(x) =Pr(X > x) = Pr(X > x|X > x;)Pr(X > x;)
=Pr(X > x|X > x;)Pr(X > x;|X > Xj_1)Pr(X > Xj_1)

v

Because Pr(X > x;|X > xj_1) = S(X;)/S(Xj-1)

Thus S(x) = Hx,-gx“ — h(x;)], which provides the basis for
the Kaplan-Meier estimator of the survival function

The cumulative hazard function is defined as

H(X) = 5 <x ()

Note that S(x) = exp[—H(x)], which could be used to
provide an alternative estimator for the survival function

v

v

v
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Relationship Summary for Discrete Lifetimes

Interrelationships between the various quantities for discrete
lifetimes X may be summarized as

> S(x) = 2yox P(x) = T <xl1 — h0x)],
> p(x;) = S(x) — S(xj-1) = h(x;)S(xj-1),) = 1,2,.. .,
> ) = 0y,

> mrl(x) = (X"“’X)S(Xf)*%ft)z(Tl(Xf“’Xf)s(xj), for x; < x < Xjy1.
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Parametric Distributions

» We mainly use nonparametric and semiparametric models
and methods in this class

» Parametric models are useful and widely used in some
area, such as reliability data analysis, engineer statistics

» The main purpose of survival analysis is to interpret data,
for example, what is the population life distribution, what is
treatment effect on the survival distribution, based on data
collected

» In reliability, often it is needed to make prediction for the
fraction failing of a product after three year based on
one-year data. Thus extrapolation is needed and
parametric models are used

» In reliability, the use of parametric models can be justified
by physical/chemical principles or engineering knowledge,
but it is hard to make this justification for human body
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The Exponential

v

The sfis S(x) = exp(—Ax),A >0,x >0
The pdf is f(x) = Aexp(—Ax)

The hfis A

The mean and sdis 1/

The lack of memory property, which means
Pr(X > x+ z|x > x) =Pr(X > 2)

v

v

v

v
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The Exponential (2)

Property: An important feature of the exponential distribution is
the ‘'memoryless property’, P(X > x + z| X > x) = P(X > z).
That is, on reaching any age, the probability of surviving z more
units of time is the same as it was at age zero.

Example: For a component with an exponential distributed
lifetime, the probability that a one-year-old component lasts 3
more months in operation is the same as the probability that a
ten-year-old component lasts 3 more months in operations.

Implication: It indicates that the component'’s lifetime does not

pass through a period of ‘old ages’, where there is an increased risk
of mortality.
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The Exponential (3)

Application: The exponential probability model is one of the most
commonly used probability models for modeling lifetimes of
components. However, its constant hazard rate appears too
restrictive in health and some industrial applications.

Parameter: The parameter 3 is an important scale parameter, we
have the following conclusion: If X ~ exp()\), then AX ~ exp(1).
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The Weibull Distribution

» Widely used in reliability

» The sfis S(x) = exp(—Ax“)

» \is a scale parameter and « is a shape parameter

» The hfis Aax®~1, which is more flexible, allows different
shapes of the hazard

» In particular, « determines the shape of the hazard
function
» «a > 1, increasing
» a =1, constant
» a < 1, decreasing

» Let Z =In(AX?), then sf of Z is exp[— exp(Zz)], which is
called the standard smallest extreme value distribution
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The Weibull Hazard Function
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Several Comments on Weibull Model

» The Weibull model has a very simple hazard function and
survival function.

> It is a very useful model in many engineering context. Its two
parameters make the Weibull a very flexible model in a wide
variety of situations: increasing hazards, decreasing hazards,
and constant hazards.
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Several Comments on Weibull Model (2)

» An understanding of the hazard rate may provide insight as to
what is causing the failures:

» A decreasing hazard rate would suggest "infant mortality”.
That is, defective items fail early and the failure rate decreases
over time as they fall out of the population.

» A constant hazard rate suggests that items are failing from
random events.

» An increasing hazard rate suggests "wear out” - parts are more
likely to fail as time goes on.

» However, the mean and variance of the distribution are more
difficult to determine.

Wenge Guo Chapter 2 Basic Quantities and Models



The Log Normal Distribution

Since many lifetimes are measured on the logarithm scale, and
such transformations often increase the symmetry in data, it is
important to examine the log normal distribution where the
transformed data are normally distributed.

A positive valued survival variable X has a log normal distribution
and we write X ~ lognormal(u, o) if Y =In(X) ~ N(u, o).

Suppose @ is the cumulative distribution function of the standard
normal random variable, the survival function of
X ~ lognormal(p, o) is

S(x) = P(X > x) = P(In(X) > In(x)) = 1 — cb('““i‘”),

from which the density and hazard may be obtained by
differentiating S(x).
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The Log Normal Distribution (2)

The features of the hazard rate: the hazard function of the
lognormal is hump-shaped. It initially increases, reaches a
maximum and then decreases toward 0 as lifetimes become larger
and larger.

» The model is not suitable for lifetime modeling where hazards
increase with old age.

» By using a part of the distribution, we can model the onset of
some disease.

For the log normal distribution, the mean lifetime is given by
exp(p + 02) and the variance by [exp(c?) — 1]exp(2u + o2).
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Lognormal Hazard Function

Hazard Function
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Log Logistic Distribution

Log-logistic distribution: mimic lognormal distribution
properties, but it has closed-form hazard and survival functions.

A positive valued survival variable X has a log logistic distribution
and we write X ~ loglogistic(, o) with two parameters p and o if
Y = In(X) follows a logistic distribution with survival function
1
1+ exp[—(¥51)]

Sy(y)=1
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Log Logistic Distribution (2)

The survival function of the log logistic distribution is

1 1

Sx(x)=1-— = ,
X( ) 1—|—€X,D[ (In (x)— ,u)] 1+ Ax@

where a = 1 > 0 and A = exp(—L).

The hazard function is

alx®

hx(x) = A+ oy’

which is similar in shape to the log normal hazard, but it is
considerably easier to manipulate.
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Regression Models

v

To adjust the survival function to account for the
covariate/explanatory variables

» Examples:
» Quantitative variables: blood pressure, temperature, age,
weight
» Qualitative variables: gender, race, treatments, disease
status
» The explanatory variable is denoted z = (z, - - - , Zp)!

v

Two approaches in regression:

» Modeling Y = In(X), accelerated failure time model
» Modeling the hazard function h(x)

» Multiplicative hazard rate models
» Additive hazard rate models
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Accelerated Failure Time Model

» The first approach is analogous to the classical linear
regression approach
» Y =In(X) = u+~'z+ oW where v is the regression
coefficient vector, W is the error distribution
» If the error distribution is normal, then the regression
model is a lognormal
» If the error distribution is the smallest extreme value
distribution, then the regression model is the Weibull
» This model is called accelerated failure time model
» Let Syp(x) denote the sf of X when z = 0, then
S(x|z) = So[x exp(—~'2)]
» If exp(—~'z) > 1 the time scale is accelerated
» If exp(—~!2) < 1 the time scale is decelerated
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Example

v

Assume X is a Weibull distribution, Y = In(X)
The regression model is Y = y!z+ oW
The sf under baseline is Sy(x) = exp(—x“)

v

v

The sfunder z is
S(x|z) = exp{—[x exp(—~'2)]*} = So[x exp(—+'2)]

v
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Multiplicative Hazard Model

» The Second approach is to model the hazard function as a
function of covariate

» The first class of model in this approach is called the
multiplicative hazard rate model

» In particular, the conditional hazard rate of an individual
with covariate z is a product of the baseline hazard and a
non-negative function of the covariate ¢(3'z), that is
h(x|z) = ho(x)c(5'2)

» For Cox model, ¢(3!z) = exp(3'z)

» A key feature of this class of model is proportional hazard

e hx|z) _ h(x)o(B'z;) _ c(5'z;)
when zisfixed 752 ) = B (o(aizs) = o(0z2)

» The sf under z is S(x|z) = Sp(x)%(#'2)
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Example

» Consider the baseline hazard to be a Weibull, that is
ho(x) = a x>
> h(x|z) = axx*¢(B'2)
» If Cox model is used h(x|z) = aXx*~" exp(5'2)
» The sfunder z is
S(x|z) = exp[~Ax*]*P(7'2) = exp[—(x exp[5'2/a])?]
» This is in the form of the accelerated failure time model

» The Weibull is the only continuous distribution which has
the property of being both an accelerated failure time and
a multiplicative hazards model
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Additive Hazard Model

» The second class of models for the hazard rate is the
family of additive hazard rate model

» The condition hazard function is modeled by

o
h(x|2) = ho(x) + ) z(x)B;(x)

=1

» More details are in Chapter 10 (will not cover)
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