Nonparametric Regression and Bonferroni joint
confidence intervals
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Simultaneous Inferences

> In chapter 2, we know how to construct confidence interval for

Bo and B1.

» If we want a confidence level of 95% of both 3y and 31

» One could construct a separate confidence interval for 5y and
(B1. BUT, then the probability of both happening is below
95%.

» How to create a joint confidence interval?



Bonferroni Joint Confidence Intervals

» Calculation of Bonferroni joint confidence intervals is a
general technique
» We highlight its application in the regression setting
» Joint confidence intervals for 5y and S;
> Intuition

» Set each statement confidence level to larger than 1 — « so
that the family coefficient is at least 1 — «
» BUT how much larger?



Ordinary Confidence Intervals
» Start with ordinary confidence intervals for 8y and (31
bo £ t(1 — a/2;n —2)s{bo}
b1 £ t(]. — a/2; n— 2)S{b1}

» And ask what the probability that one or both of these
intervals is incorrect

Remember

s?{bg} = MSE 1+L
o5 = n S (X — X)?
2(b) - MSE

(X = X)?



General Procedure

» Let A; denote the event that the first confidence interval does
not cover fy, i.e. P(A1) =«

» Let A, denote the event that the second confidence interval
does not cover (1, i.e. P(A2) =«

» We want to know the probability that both estimates fall in
their respective confidence intervals, i.e. P(A; N Az)

» How do we get there from what we know?



Venn Diagram

1—A— A1+ A1 NAs




Bonferroni inequality

» We can see that
P(A1NA2) =1— P(A2) — P(A1) + P(A1 N Az)
» Size of set is equal to area is equal to probability in a Venn
diagram.
» It also is clear that P(A; N Ap) >0
» So, P(A1 N Ay) > 1 — P(Ay) — P(A;) which is the Bonferroni
inequality.
> In words, in our example
P(A1) = « is the probability that S5 is not in A;
P(Az) = a is the probability that ; is not in Ay
P(A; N A2)_is the probability that 5y is in A; and (31 is in A
So P(AlﬂAz) > 1 -2«
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Using the Bonferroni inequality

» Forward (less interesting) :

» If we know that 3y and 3; are lie within intervals with 95%
confidence, the Bonferroni inequality guarantees us a family
confidence coefficient (i.e. the probability that both random
variables lie within their intervals simultaneously) of at least
90% (if both intervals are correct). This is

P(/z\lﬁ/_42)21—205

» Backward (more useful):

» If we know what to specify a family confidence interval of
90%, the Bonferroni procedure instructs us how to adjust the
value of « for each interval to achieve the overall family
confidence desired



Using the Bonferroni inequality cont.

» To achieve a 1 — « family confidence interval for 8y and 31
(for example) using the Bonferroni procedure we know that
both individual intervals must shrink.

» Returning to our confidence intervals for 8y and (31 from
before

bo + t(1 — /2;n — 2)s{bo}
b1 £ t(1 —a/2;n—2)s{b1}

» To achieve a 1 — o family confidence interval these intervals
must widen to

bo+t(l—a/4;n—2)s{by}
b1 £ t(]. — a/4; n— 2)S{b1}

> Thgn B
P(AlﬂAg) > l—P(A2)—P(A]_) = ].—04/4—(1/4: 1—a/2



Using the Bonferroni inequality cont.

» The Bonferroni procedure is very general. To make joint
confidence statements about multiple simultaneous
predictions remember that

Yy, £ t(1—«/2;n—2)s{pred}

2 _ 1, (X=X)?
s*{pred} = MSE |1+ ”+Z;(Xi—)_()2

> If one is interested in a 1 — « confidence statement about g
predictions then Bonferroni says that the confidence interval
for each individual prediction must get wider (for each h in
the g predictions)

Yy £+ t(1—a/2g;n—2)s{pred}

Note: if a sufficiently large number of simultaneous predictions are
made, the width of the individual confidence intervals may become
so wide that they are no longer useful.



The Toluca Example

» Say, we want to get a 90 percent confidence interval for (3
and (1 simultaneously.

» Then we require B = t(1 —.1/4;23) = t(.975,23) = 2.069

» Then we have the joint confidence interval:
bg + B % S(bo)

and
by + B xs(by)



Confidence Band for Regression Line

» Remember in Chapter 2.5, we get the confidence interval for
E{Yp} to be

Yy 4 t(1—a/2;n—2)s{Vy}

» Now, we want to get a confidence band for the entire
regression line E{Y'} = Sy + /1 X.
» So called Working-Hotelling 1 — « confidence band is

\A/hﬂ: W x S{\A/h}

here W2 = 2F(1 — ;2,n — 2).
» Same form as before, except the t multiple is replaced with
the W multiple.



Example: toluca company

» Say we want to estimate the boundary value for the band at
Xn = 30,65, 100.

» We have

Xh Ph S{?h}

30 169.5 16.97
65 294.4 9.918
100 419.4 14.27

» Looking up the table,
W2 =2F(1 —«;2,n—2) =2F(.9;2,23) = 5.098.
R code:

w2 = 2 * gf(1-0.1,2,23)



Now we have the confidence band for the three points are

131.2 = 169.5 — 2.258(16.97) < E{Y,} < 169.5 + 2.258(16.97) = 207.8
272.0 = 294.4 — 2.258(9.918) < E{Y,} < 294.4 + 2.258(9.918) = 316.8
387.2 = 419.4 — 2.258(14.27) < E{Y,} < 419.4 4 2.258(14.27) = 451.6



Example confidence band
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Compare with Bonferroni Procedure
» Say we want to simultaneously estimate response for
Xn = 30,65, 100.

» Then the simultaneous confidence intervals are
Vi 4 t(1—o/(2g); n —2)s{ ¥y}

» We have
B=t(1-—a/(2g);n—2)=1t(1-.1/(2%3),23) =2.263, the
confidence intervals are
131.1 = 169.5 — 2.263(16.97) < E{Y,} < 169.5 + 2.263(16.97) = 207.9

272.0 = 294.4 — 2.263(9.918) < E{(Y,} < 294.4 + 2.263(9.918) = 316.8
387.1 = 419.4 — 2.263(14.27) < E{Y} < 419.4 + 2.263(14.27) = 451.7



Bonferroni v.s. Working-Hotelling

» This instance, working-hotelling confidence limits are slighter
tighter(better) than bonferroni limits

» However, in larger families (more X) to be considered
simultaneously, working-hotelling is always tighter, since W
stays the same for any number of statements but B becomres
larger.

» The levels of predictor variables are sometimes not known in
advance. In such cases, it is better to use Working-Hotelling

procedure since the family encompasses all possible levels of
X.

131.1 = 169.5 — 2.263(16.97) < E{¥,} < 169.5 ++ 2.263(16.97) = 207.9
272.0 = 294.4 — 2.263(9.918) < E{Y,} < 294.4 + 2.263(9.918) = 316.8
387.1 = 419.4 — 2.263(14.27) < E{Y,} < 419.4 + 2.263(14.27) = 451.7



Regression through the origin

Model
Yi=p1Xi+ €

» Sometimes it is known that the regression function is linear
and that it must go through the origin.

» (31 is parameter

» X; are known constants

> ¢ are i.i.d N(0,0?).

» The least squares and maximum likelihood estimators for 3;

coincide as before, the estimator is b; = %



Regression through the origin, Cont

> In regression through the origin there is only one free
parameter (1) so the number of degrees of freedom of the

MSE n
Se? (Y- Y)?

2
= MSE = —
° s n—1 n—1

is increased by one.

» This is because this is a “reduced” model in the general linear
test sense and because the number of parameters estimated
from the data is less by one.

Estimate of Estimated Variance Confidence Limits
MSE
B s?{b} = X by + tsiby} (4.18)
X2MSE
E{Yp) (P} = ,ixiz Pn+ts{Pp) (4.19)
2
Yioew) s2{pred} = MSE(I + ZX ;(2> 1 + ts{pred} (4.20)

where: t =t(1 —a/2;n—1)



A few notes on regression through the origin

>

>

> e # 0 in general now. Only constraint is Y Xje; = 0.
SSE may exceed the total sum of squares SSTO. In the case

of a curvilinear pattern or linear pattern with a intercept away
from the origin.

Therefore, R? = 1 — SSE/SSTO may be negative!

Generally, it is safer to use the original model opposed with
regression-through-the-origin model.

Otherwise, it is the wrong model to start with!



