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Simultaneous Inferences

I In chapter 2, we know how to construct confidence interval for
β0 and β1.

I If we want a confidence level of 95% of both β0 and β1
I One could construct a separate confidence interval for β0 and
β1. BUT, then the probability of both happening is below
95%.

I How to create a joint confidence interval?



Bonferroni Joint Confidence Intervals

I Calculation of Bonferroni joint confidence intervals is a
general technique

I We highlight its application in the regression setting
I Joint confidence intervals for β0 and β1

I Intuition
I Set each statement confidence level to larger than 1− α so

that the family coefficient is at least 1− α
I BUT how much larger?



Ordinary Confidence Intervals

I Start with ordinary confidence intervals for β0 and β1

b0 ± t(1− α/2; n − 2)s{b0}
b1 ± t(1− α/2; n − 2)s{b1}

I And ask what the probability that one or both of these
intervals is incorrect

Remember

s2{b0} = MSE

[
1

n
+

X̄ 2∑
(Xi − X̄ )2

]
s2{b1} =

MSE∑
(Xi − X̄ )2



General Procedure

I Let A1 denote the event that the first confidence interval does
not cover β0, i.e. P(A1) = α

I Let A2 denote the event that the second confidence interval
does not cover β1, i.e. P(A2) = α

I We want to know the probability that both estimates fall in
their respective confidence intervals, i.e. P(Ā1 ∩ Ā2)

I How do we get there from what we know?



Venn Diagram



Bonferroni inequality

I We can see that
P(Ā1 ∩ Ā2) = 1− P(A2)− P(A1) + P(A1 ∩ A2)

I Size of set is equal to area is equal to probability in a Venn
diagram.

I It also is clear that P(A1 ∩ A2) ≥ 0

I So, P(Ā1 ∩ Ā2) ≥ 1− P(A2)− P(A1) which is the Bonferroni
inequality.

I In words, in our example
I P(A1) = α is the probability that β0 is not in A1

I P(A2) = α is the probability that β1 is not in A2

I P(Ā1 ∩ Ā2) is the probability that β0 is in A1 and β1 is in A2

I So P(Ā1 ∩ Ā2) ≥ 1− 2α



Using the Bonferroni inequality

I Forward (less interesting) :
I If we know that β0 and β1 are lie within intervals with 95%

confidence, the Bonferroni inequality guarantees us a family
confidence coefficient (i.e. the probability that both random
variables lie within their intervals simultaneously) of at least
90% (if both intervals are correct). This is

P(Ā1 ∩ Ā2) ≥ 1− 2α

I Backward (more useful):
I If we know what to specify a family confidence interval of

90%, the Bonferroni procedure instructs us how to adjust the
value of α for each interval to achieve the overall family
confidence desired



Using the Bonferroni inequality cont.

I To achieve a 1− α family confidence interval for β0 and β1
(for example) using the Bonferroni procedure we know that
both individual intervals must shrink.

I Returning to our confidence intervals for β0 and β1 from
before

b0 ± t(1− α/2; n − 2)s{b0}
b1 ± t(1− α/2; n − 2)s{b1}

I To achieve a 1− α family confidence interval these intervals
must widen to

b0 ± t(1− α/4; n − 2)s{b0}
b1 ± t(1− α/4; n − 2)s{b1}

I Then
P(Ā1 ∩ Ā2) ≥ 1−P(A2)−P(A1) = 1−α/4−α/4 = 1−α/2



Using the Bonferroni inequality cont.

I The Bonferroni procedure is very general. To make joint
confidence statements about multiple simultaneous
predictions remember that

Ŷh ± t(1− α/2; n − 2)s{pred}

s2{pred} = MSE

[
1 +

1

n
+

(Xh − X̄ )2∑
i (Xi − X̄ )2

]
I If one is interested in a 1− α confidence statement about g

predictions then Bonferroni says that the confidence interval
for each individual prediction must get wider (for each h in
the g predictions)

Ŷh ± t(1− α/2g ; n − 2)s{pred}

Note: if a sufficiently large number of simultaneous predictions are
made, the width of the individual confidence intervals may become
so wide that they are no longer useful.



The Toluca Example

I Say, we want to get a 90 percent confidence interval for β0
and β1 simultaneously.

I Then we require B = t(1− .1/4; 23) = t(.975, 23) = 2.069

I Then we have the joint confidence interval:

b0 ± B ∗ s(b0)

and
b1 ± B ∗ s(b1)



Confidence Band for Regression Line

I Remember in Chapter 2.5, we get the confidence interval for
E{Yh} to be

Ŷh ± t(1− α/2; n − 2)s{Ŷh}

I Now, we want to get a confidence band for the entire
regression line E{Y } = β0 + β1X .

I So called Working-Hotelling 1− α confidence band is

Ŷh ±W × s{Ŷh}

here W 2 = 2F (1− α; 2, n − 2).

I Same form as before, except the t multiple is replaced with
the W multiple.



Example: toluca company

I Say we want to estimate the boundary value for the band at
Xh = 30, 65, 100.

I We have

I Looking up the table,
W 2 = 2F (1− α; 2, n − 2) = 2F (.9; 2, 23) = 5.098.
R code:

w2 = 2 * qf(1-0.1,2,23)



Now we have the confidence band for the three points are



Example confidence band



Compare with Bonferroni Procedure

I Say we want to simultaneously estimate response for
Xh = 30, 65, 100.

I Then the simultaneous confidence intervals are

Ŷh ± t(1− α/(2g); n − 2)s{Ŷh}

I We have
B = t(1− α/(2g); n − 2) = t(1− .1/(2 ∗ 3), 23) = 2.263, the
confidence intervals are



Bonferroni v.s. Working-Hotelling

I This instance, working-hotelling confidence limits are slighter
tighter(better) than bonferroni limits

I However, in larger families (more X ) to be considered
simultaneously, working-hotelling is always tighter, since W
stays the same for any number of statements but B becomres
larger.

I The levels of predictor variables are sometimes not known in
advance. In such cases, it is better to use Working-Hotelling
procedure since the family encompasses all possible levels of
X .



Regression through the origin

Model
Yi = β1Xi + εi

I Sometimes it is known that the regression function is linear
and that it must go through the origin.

I β1 is parameter

I Xi are known constants

I εi are i.i.d N(0, σ2).

I The least squares and maximum likelihood estimators for β1
coincide as before, the estimator is b1 =

∑
XiYi∑
X 2
i



Regression through the origin, Cont

I In regression through the origin there is only one free
parameter (β1) so the number of degrees of freedom of the
MSE

s2 = MSE =

∑
e2i

n − 1
=

∑
(Yi − Ŷi )

2

n − 1

is increased by one.

I This is because this is a “reduced” model in the general linear
test sense and because the number of parameters estimated
from the data is less by one.



A few notes on regression through the origin

I
∑

ei 6= 0 in general now. Only constraint is
∑

Xiei = 0.

I SSE may exceed the total sum of squares SSTO. In the case
of a curvilinear pattern or linear pattern with a intercept away
from the origin.

I Therefore, R2 = 1− SSE/SSTO may be negative!

I Generally, it is safer to use the original model opposed with
regression-through-the-origin model.

I Otherwise, it is the wrong model to start with!


