Nonparametric Regression and Bonferroni joint confidence intervals

Simultaneous Inferences

- In chapter 2, we know how to construct confidence interval for β_{0} and β_{1}.
- If we want a confidence level of 95% of both β_{0} and β_{1}
- One could construct a separate confidence interval for β_{0} and β_{1}. BUT, then the probability of both happening is below 95\%.
- How to create a joint confidence interval?

Bonferroni Joint Confidence Intervals

- Calculation of Bonferroni joint confidence intervals is a general technique
- We highlight its application in the regression setting
- Joint confidence intervals for β_{0} and β_{1}
- Intuition
- Set each statement confidence level to larger than $1-\alpha$ so that the family coefficient is at least $1-\alpha$
- BUT how much larger?

Ordinary Confidence Intervals

- Start with ordinary confidence intervals for β_{0} and β_{1}

$$
\begin{aligned}
& b_{0} \pm t(1-\alpha / 2 ; n-2) s\left\{b_{0}\right\} \\
& b_{1} \pm t(1-\alpha / 2 ; n-2) s\left\{b_{1}\right\}
\end{aligned}
$$

- And ask what the probability that one or both of these intervals is incorrect

Remember

$$
\begin{aligned}
s^{2}\left\{b_{0}\right\} & =M S E\left[\frac{1}{n}+\frac{\bar{X}^{2}}{\sum\left(X_{i}-\bar{X}\right)^{2}}\right] \\
s^{2}\left\{b_{1}\right\} & =\frac{M S E}{\sum\left(X_{i}-\bar{X}\right)^{2}}
\end{aligned}
$$

General Procedure

- Let A_{1} denote the event that the first confidence interval does not cover β_{0}, i.e. $P\left(A_{1}\right)=\alpha$
- Let A_{2} denote the event that the second confidence interval does not cover β_{1}, i.e. $P\left(A_{2}\right)=\alpha$
- We want to know the probability that both estimates fall in their respective confidence intervals, i.e. $P\left(\bar{A}_{1} \cap \bar{A}_{2}\right)$
- How do we get there from what we know?

Venn Diagram

Bonferroni inequality

- We can see that $P\left(\bar{A}_{1} \cap \bar{A}_{2}\right)=1-P\left(A_{2}\right)-P\left(A_{1}\right)+P\left(A_{1} \cap A_{2}\right)$
- Size of set is equal to area is equal to probability in a Venn diagram.
- It also is clear that $P\left(A_{1} \cap A_{2}\right) \geq 0$
- So, $P\left(\bar{A}_{1} \cap \bar{A}_{2}\right) \geq 1-P\left(A_{2}\right)-P\left(A_{1}\right)$ which is the Bonferroni inequality.
- In words, in our example
- $P\left(A_{1}\right)=\alpha$ is the probability that β_{0} is not in A_{1}
- $P\left(A_{2}\right)=\alpha$ is the probability that β_{1} is not in A_{2}
- $P\left(\bar{A}_{1} \cap \bar{A}_{2}\right)$ is the probability that β_{0} is in A_{1} and β_{1} is in A_{2}
- So $P\left(\bar{A}_{1} \cap \bar{A}_{2}\right) \geq 1-2 \alpha$

Using the Bonferroni inequality

- Forward (less interesting) :
- If we know that β_{0} and β_{1} are lie within intervals with 95% confidence, the Bonferroni inequality guarantees us a family confidence coefficient (i.e. the probability that both random variables lie within their intervals simultaneously) of at least 90% (if both intervals are correct). This is

$$
P\left(\bar{A}_{1} \cap \bar{A}_{2}\right) \geq 1-2 \alpha
$$

- Backward (more useful):
- If we know what to specify a family confidence interval of 90%, the Bonferroni procedure instructs us how to adjust the value of α for each interval to achieve the overall family confidence desired

Using the Bonferroni inequality cont.

- To achieve a $1-\alpha$ family confidence interval for β_{0} and β_{1} (for example) using the Bonferroni procedure we know that both individual intervals must shrink.
- Returning to our confidence intervals for β_{0} and β_{1} from before

$$
\begin{aligned}
& b_{0} \pm t(1-\alpha / 2 ; n-2) s\left\{b_{0}\right\} \\
& b_{1} \pm t(1-\alpha / 2 ; n-2) s\left\{b_{1}\right\}
\end{aligned}
$$

- To achieve a $1-\alpha$ family confidence interval these intervals must widen to

$$
\begin{aligned}
& b_{0} \pm t(1-\alpha / 4 ; n-2) s\left\{b_{0}\right\} \\
& b_{1} \pm t(1-\alpha / 4 ; n-2) s\left\{b_{1}\right\}
\end{aligned}
$$

- Then

$$
P\left(\bar{A}_{1} \cap \bar{A}_{2}\right) \geq 1-P\left(A_{2}\right)-P\left(A_{1}\right)=1-\alpha / 4-\alpha / 4=1-\alpha / 2
$$

Using the Bonferroni inequality cont.

- The Bonferroni procedure is very general. To make joint confidence statements about multiple simultaneous predictions remember that

$$
\begin{aligned}
\hat{Y}_{h} & \pm t(1-\alpha / 2 ; n-2) s\{\text { pred }\} \\
s^{2}\{\text { pred }\} & =M S E\left[1+\frac{1}{n}+\frac{\left(X_{h}-\bar{X}\right)^{2}}{\sum_{i}\left(X_{i}-\bar{X}\right)^{2}}\right]
\end{aligned}
$$

- If one is interested in a $1-\alpha$ confidence statement about g predictions then Bonferroni says that the confidence interval for each individual prediction must get wider (for each h in the g predictions)

$$
\hat{Y}_{h} \pm t(1-\alpha / 2 g ; n-2) s\{\text { pred }\}
$$

Note: if a sufficiently large number of simultaneous predictions are made, the width of the individual confidence intervals may become so wide that they are no longer useful.

The Toluca Example

- Say, we want to get a 90 percent confidence interval for β_{0} and β_{1} simultaneously.
- Then we require $B=t(1-.1 / 4 ; 23)=t(.975,23)=2.069$
- Then we have the joint confidence interval:

$$
b_{0} \pm B * s\left(b_{0}\right)
$$

and

$$
b_{1} \pm B * s\left(b_{1}\right)
$$

Confidence Band for Regression Line

- Remember in Chapter 2.5, we get the confidence interval for $E\left\{Y_{h}\right\}$ to be

$$
\hat{Y}_{h} \pm t(1-\alpha / 2 ; n-2) s\left\{\hat{Y}_{h}\right\}
$$

- Now, we want to get a confidence band for the entire regression line $E\{Y\}=\beta_{0}+\beta_{1} X$.
- So called Working-Hotelling $1-\alpha$ confidence band is

$$
\hat{Y}_{h} \pm W \times s\left\{\hat{Y}_{h}\right\}
$$

here $W^{2}=2 F(1-\alpha ; 2, n-2)$.

- Same form as before, except the t multiple is replaced with the W multiple.

Example: toluca company

- Say we want to estimate the boundary value for the band at $X_{h}=30,65,100$.
- We have

X_{h}	$\hat{\boldsymbol{\gamma}}_{h}$	$s\left\{\hat{\boldsymbol{\gamma}}_{h}\right\}$
30	169.5	16.97
65	294.4	9.918
100	419.4	14.27

- Looking up the table, $W^{2}=2 F(1-\alpha ; 2, n-2)=2 F(.9 ; 2,23)=5.098$.
R code:

$$
\mathrm{w} 2=2 * \mathrm{qf}(1-0.1,2,23)
$$

Now we have the confidence band for the three points are

$$
\begin{aligned}
& 131.2=169.5-2.258(16.97) \leq E\left\{Y_{h}\right\} \leq 169.5+2.258(16.97)=207.8 \\
& 272.0=294.4-2.258(9.918) \leq E\left\{Y_{h}\right\} \leq 294.4+2.258(9.918)=316.8 \\
& 387.2=419.4-2.258(14.27) \leq E\left\{Y_{h}\right\} \leq 419.4+2.258(14.27)=451.6
\end{aligned}
$$

Example confidence band

Compare with Bonferroni Procedure

- Say we want to simultaneously estimate response for $X_{h}=30,65,100$.
- Then the simultaneous confidence intervals are

$$
\hat{Y}_{h} \pm t(1-\alpha /(2 g) ; n-2) s\left\{\hat{Y}_{h}\right\}
$$

- We have $B=t(1-\alpha /(2 g) ; n-2)=t(1-.1 /(2 * 3), 23)=2.263$, the confidence intervals are

$$
\begin{aligned}
& 131.1=169.5-2.263(16.97) \leq E\left\{Y_{h}\right\} \leq 169.5+2.263(16.97)=207.9 \\
& 272.0=294.4-2.263(9.918) \leq E\left\{Y_{h}\right\} \leq 294.4+2.263(9.918)=316.8 \\
& 387.1=419.4-2.263(14.27) \leq E\left\{Y_{h}\right\} \leq 419.4+2.263(14.27)=451.7
\end{aligned}
$$

Bonferroni v.s. Working-Hotelling

- This instance, working-hotelling confidence limits are slighter tighter(better) than bonferroni limits
- However, in larger families (more X) to be considered simultaneously, working-hotelling is always tighter, since W stays the same for any number of statements but B becomres larger.
- The levels of predictor variables are sometimes not known in advance. In such cases, it is better to use Working-Hotelling procedure since the family encompasses all possible levels of X.

$$
\begin{aligned}
& 131.1=169.5-2.263(16.97) \leq E\left\{Y_{h}\right\} \leq 169.5+2.263(16.97)=207.9 \\
& 272.0=294.4-2.263(9.918) \leq E\left\{Y_{h}\right\} \leq 294.4+2.263(9.918)=316.8 \\
& 387.1=419.4-2.263(14.27) \leq E\left\{Y_{h}\right\} \leq 419.4+2.263(14.27)=451.7
\end{aligned}
$$

Regression through the origin

Model

$$
Y_{i}=\beta_{1} X_{i}+\epsilon_{i}
$$

- Sometimes it is known that the regression function is linear and that it must go through the origin.
- β_{1} is parameter
- X_{i} are known constants
- ϵ_{i} are i.i.d $N\left(0, \sigma^{2}\right)$.
- The least squares and maximum likelihood estimators for β_{1} coincide as before, the estimator is $b_{1}=\frac{\sum X_{i} Y_{i}}{\sum X_{i}^{2}}$

Regression through the origin, Cont

- In regression through the origin there is only one free parameter $\left(\beta_{1}\right)$ so the number of degrees of freedom of the MSE

$$
s^{2}=M S E=\frac{\sum e_{i}^{2}}{n-1}=\frac{\sum\left(Y_{i}-\hat{Y}_{i}\right)^{2}}{n-1}
$$

is increased by one.

- This is because this is a "reduced" model in the general linear test sense and because the number of parameters estimated from the data is less by one.

Estimate of	Estimated Variance	Confidence Limits
β_{1}	$s^{2}\left\{b_{1}\right\}=\frac{M S E}{\sum X_{i}^{2}}$	$b_{1} \pm t s\left\{b_{1}\right\}$
$E\left\{Y_{h}\right\}$	\ddots	$s^{2}\left\{\hat{Y}_{h}\right\}=\frac{X_{h}^{2} M S E}{\sum X_{i}^{2}}$
$Y_{h(n e w)}$	$s^{2}\{$ pred $\}=M S E\left(1+\frac{X_{h}^{2}}{\sum X_{i}^{2}}\right)$	$\hat{Y}_{h} \pm t s\left\{\hat{Y}_{h}\right\}$
		where: $t=t(1-\alpha)$

A few notes on regression through the origin

- $\sum e_{i} \neq 0$ in general now. Only constraint is $\sum X_{i} e_{i}=0$.
- SSE may exceed the total sum of squares SSTO. In the case of a curvilinear pattern or linear pattern with a intercept away from the origin.
- Therefore, $R^{2}=1-S S E / S S T O$ may be negative!
- Generally, it is safer to use the original model opposed with regression-through-the-origin model.
- Otherwise, it is the wrong model to start with!

