Nonparametric Regression and Bonferroni joint confidence intervals

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□▶

Simultaneous Inferences

- ▶ In chapter 2, we know how to construct confidence interval for β_0 and β_1 .
- \blacktriangleright If we want a confidence level of 95% of both β_0 and β_1
- One could construct a separate confidence interval for β_0 and β_1 . BUT, then the probability of both happening is below 95%.

How to create a joint confidence interval?

Bonferroni Joint Confidence Intervals

- Calculation of Bonferroni joint confidence intervals is a general technique
- We highlight its application in the regression setting
 - Joint confidence intervals for β_0 and β_1
- Intuition
 - Set each statement confidence level to larger than 1α so that the family coefficient is at least 1α

BUT how much larger?

Ordinary Confidence Intervals

• Start with ordinary confidence intervals for β_0 and β_1

$$b_0 \pm t(1 - \alpha/2; n - 2)s\{b_0\}$$

$$b_1 \pm t(1 - \alpha/2; n - 2)s\{b_1\}$$

 And ask what the probability that one or both of these intervals is incorrect

Remember

$$s^{2} \{b_{0}\} = MSE\left[\frac{1}{n} + \frac{\bar{X}^{2}}{\sum(X_{i} - \bar{X})^{2}}\right]$$
$$s^{2} \{b_{1}\} = \frac{MSE}{\sum(X_{i} - \bar{X})^{2}}$$

General Procedure

- Let A₁ denote the event that the first confidence interval does not cover β₀, i.e. P(A₁) = α
- Let A₂ denote the event that the second confidence interval does not cover β₁, i.e. P(A₂) = α

How do we get there from what we know?

Venn Diagram

◆□▶ ◆□▶ ◆臣▶ ◆臣▶ 三臣 - のへで

Bonferroni inequality

- We can see that $P(\overline{A}_1 \cap \overline{A}_2) = 1 - P(A_2) - P(A_1) + P(A_1 \cap A_2)$
 - Size of set is equal to area is equal to probability in a Venn diagram.
- It also is clear that $P(A_1 \cap A_2) \geq 0$
- So, P(Ā₁ ∩ Ā₂) ≥ 1 − P(A₂) − P(A₁) which is the Bonferroni inequality.
- In words, in our example
 - $P(A_1) = \alpha$ is the probability that β_0 is *not* in A_1
 - $P(\underline{A}_2) = \alpha$ is the probability that β_1 is *not* in A_2
 - $P(\overline{A}_1 \cap \overline{A}_2)$ is the probability that β_0 is in A_1 and β_1 is in A_2

• So $P(\bar{A}_1 \cap \bar{A}_2) \geq 1 - 2\alpha$

Using the Bonferroni inequality

- Forward (less interesting) :
 - If we know that β₀ and β₁ are lie within intervals with 95% confidence, the Bonferroni inequality guarantees us a family confidence coefficient (i.e. the probability that *both* random variables lie within their intervals simultaneously) of at least 90% (if both intervals are correct). This is

$$P(\bar{A}_1 \cap \bar{A}_2) \ge 1 - 2\alpha$$

- Backward (more useful):
 - If we know what to specify a family confidence interval of 90%, the Bonferroni procedure instructs us how to adjust the value of α for each interval to achieve the overall family confidence desired

Using the Bonferroni inequality cont.

- To achieve a 1 α family confidence interval for β₀ and β₁ (for example) using the Bonferroni procedure we know that both individual intervals must shrink.
- ► Returning to our confidence intervals for β₀ and β₁ from before

$$b_0 \pm t(1 - \alpha/2; n - 2)s\{b_0\}$$

$$b_1 \pm t(1 - \alpha/2; n - 2)s\{b_1\}$$

► To achieve a 1 − α family confidence interval these intervals must widen to

$$b_0 \pm t(1 - \alpha/4; n - 2)s\{b_0\}$$

$$b_1 \pm t(1 - \alpha/4; n - 2)s\{b_1\}$$

Then $P(\bar{A}_1 \cap \bar{A}_2) \ge 1 - P(A_2) - P(A_1) = 1 - \alpha/4 - \alpha/4 = 1 - \alpha/2$

Using the Bonferroni inequality cont.

 The Bonferroni procedure is very general. To make joint confidence statements about multiple simultaneous predictions remember that

$$\hat{Y}_{h} \pm t(1 - \alpha/2; n - 2)s\{pred\}$$

 $s^{2}\{pred\} = MSE\left[1 + \frac{1}{n} + \frac{(X_{h} - \bar{X})^{2}}{\sum_{i}(X_{i} - \bar{X})^{2}}\right]$

If one is interested in a 1 – α confidence statement about g predictions then Bonferroni says that the confidence interval for each individual prediction must get wider (for each h in the g predictions)

$$\hat{Y}_h \pm t(1-lpha/2g;n-2)s\{pred\}$$

Note: if a sufficiently large number of simultaneous predictions are made, the width of the individual confidence intervals may become so wide that they are no longer useful.

The Toluca Example

- Say, we want to get a 90 percent confidence interval for β₀ and β₁ simultaneously.
- Then we require B = t(1 .1/4; 23) = t(.975, 23) = 2.069
- Then we have the joint confidence interval:

$$b_0 \pm B * s(b_0)$$

and

$$b_1 \pm B * s(b_1)$$

・ロト ・ 日 ・ モ ト ・ モ ・ うへぐ

Confidence Band for Regression Line

 Remember in Chapter 2.5, we get the confidence interval for E{Y_h} to be

$$\hat{Y}_h \pm t(1-lpha/2;n-2)s\{\hat{Y}_h\}$$

- Now, we want to get a confidence band for the entire regression line E{Y} = β₀ + β₁X.
- So called Working-Hotelling 1α confidence band is

$$\hat{Y}_h \pm W imes s\{\hat{Y}_h\}$$

here
$$W^2 = 2F(1 - \alpha; 2, n - 2)$$
.

Same form as before, except the t multiple is replaced with the W multiple.

Example: toluca company

- Say we want to estimate the boundary value for the band at $X_h = 30,65,100.$
- We have

X _h	Ŷ'n	$s{\hat{Y}_h}$	
30	169.5	16.97	
65	294.4	9.918	
100	419.4	19.4 14.27	

• Looking up the table, $W^2 = 2F(1 - \alpha; 2, n - 2) = 2F(.9; 2, 23) = 5.098.$ R code:

$$w^2 = 2 * qf(1-0.1,2,23)$$

Now we have the confidence band for the three points are

$$\begin{split} &131.2 = 169.5 - 2.258(16.97) \leq E\{Y_h\} \leq 169.5 + 2.258(16.97) = 207.8\\ &272.0 = 294.4 - 2.258(9.918) \leq E\{Y_h\} \leq 294.4 + 2.258(9.918) = 316.8\\ &387.2 = 419.4 - 2.258(14.27) \leq E\{Y_h\} \leq 419.4 + 2.258(14.27) = 451.6 \end{split}$$

Example confidence band

Compare with Bonferroni Procedure

- Say we want to simultaneously estimate response for X_h = 30, 65, 100.
- Then the simultaneous confidence intervals are

$$\hat{Y}_h \pm t(1-lpha/(2g);n-2)s\{\hat{Y}_h\}$$

We have

 $B = t(1 - \alpha/(2g); n - 2) = t(1 - .1/(2 * 3), 23) = 2.263$, the confidence intervals are

 $131.1 = 169.5 - 2.263(16.97) \le E\{Y_h\} \le 169.5 + 2.263(16.97) = 207.9$ $272.0 = 294.4 - 2.263(9.918) \le E\{Y_h\} \le 294.4 + 2.263(9.918) = 316.8$ $387.1 = 419.4 - 2.263(14.27) \le E\{Y_h\} \le 419.4 + 2.263(14.27) = 451.7$

Bonferroni v.s. Working-Hotelling

- This instance, working-hotelling confidence limits are slighter tighter(better) than bonferroni limits
- However, in larger families (more X) to be considered simultaneously, working-hotelling is always tighter, since W stays the same for any number of statements but B becomres larger.
- ► The levels of predictor variables are sometimes not known in advance. In such cases, it is better to use Working-Hotelling procedure since the family encompasses all possible levels of X.

$$\begin{split} &131.1 = 169.5 - 2.263(16.97) \le E\{Y_h\} \le 169.5 + 2.263(16.97) = 207.9 \\ &272.0 = 294.4 - 2.263(9.918) \le E\{Y_h\} \le 294.4 + 2.263(9.918) = 316.8 \\ &387.1 = 419.4 - 2.263(14.27) \le E\{Y_h\} \le 419.4 + 2.263(14.27) = 451.7 \end{split}$$

・ロト・西ト・ヨト・ヨー シタや

Regression through the origin

Model

$$Y_i = \beta_1 X_i + \epsilon_i$$

- Sometimes it is known that the regression function is linear and that it *must* go through the origin.
- β₁ is parameter
- X_i are known constants
- ϵ_i are i.i.d $N(0, \sigma^2)$.
- ► The least squares and maximum likelihood estimators for β_1 coincide as before, the estimator is $b_1 = \frac{\sum X_i Y_i}{\sum X_i^2}$

Regression through the origin, Cont

 In regression through the origin there is only one free parameter (β₁) so the number of degrees of freedom of the MSE

$$s^{2} = MSE = \frac{\sum e_{i}^{2}}{n-1} = \frac{\sum (Y_{i} - \hat{Y}_{i})^{2}}{n-1}$$

is increased by one.

This is because this is a "reduced" model in the general linear test sense and because the number of parameters estimated from the data is less by one.

Estimate of	Estimated Variance	Confidence Limits	
βι	$s^2\{b_1\} = \frac{MSE}{\sum X_i^2}$	$b_1 \pm ts\{b_1\}$	(4.18)
$E\{Y_h\}$	$s^{2}\{\hat{Y}_{h}\} = \frac{X_{h}^{2}MSE}{\sum X_{i}^{2}}$	$\hat{Y}_h \pm ts\{\hat{Y}_h\}$	(4.19)
Y _{h(new)}	s^{2} {pred} = $MSE\left(1 + \frac{X_{h}^{2}}{\sum X_{i}^{2}}\right)$	$\hat{Y}_h \pm ts$ {pred}	(4.20)
	,	where: $t = t(1 - \alpha/2; n - 1)$	

A few notes on regression through the origin

- $\sum e_i \neq 0$ in general now. Only constraint is $\sum X_i e_i = 0$.
- SSE may exceed the total sum of squares SSTO. In the case of a curvilinear pattern or linear pattern with a intercept away from the origin.
- Therefore, $R^2 = 1 SSE/SSTO$ may be negative!
- Generally, it is safer to use the original model opposed with regression-through-the-origin model.

Otherwise, it is the wrong model to start with!