The Bootstrap

- The bootstrap is a flexible and powerful statistical tool that can be used to quantify the uncertainty associated with a given estimator or statistical learning method.
- For example, it can provide an estimate of the standard error of a coefficient, or a confidence interval for that coefficient.
Where does the name came from?

- The use of the term bootstrap derives from the phrase *to pull oneself up by one’s bootstraps*, widely thought to be based on one of the eighteenth century “The Surprising Adventures of Baron Munchausen” by Rudolph Erich Raspe:

 The Baron had fallen to the bottom of a deep lake. Just when it looked like all was lost, he thought to pick himself up by his own bootstraps.

- It is not the same as the term “bootstrap” used in computer science meaning to “boot” a computer from a set of core instructions, though the derivation is similar.
A simple example

- Suppose that we wish to invest a fixed sum of money in two financial assets that yield returns of X and Y, respectively, where X and Y are random quantities.
- We will invest a fraction α of our money in X, and will invest the remaining $1 - \alpha$ in Y.
- We wish to choose α to minimize the total risk, or variance, of our investment. In other words, we want to minimize $\text{Var}(\alpha X + (1 - \alpha)Y)$.

\[\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}} \] where $\sigma_X^2 = \text{Var}(X)$, $\sigma_Y^2 = \text{Var}(Y)$, and $\sigma_{XY} = \text{Cov}(X,Y)$.

A simple example

- Suppose that we wish to invest a fixed sum of money in two financial assets that yield returns of X and Y, respectively, where X and Y are random quantities.
- We will invest a fraction α of our money in X, and will invest the remaining $1 - \alpha$ in Y.
- We wish to choose α to minimize the total risk, or variance, of our investment. In other words, we want to minimize $\text{Var}(\alpha X + (1 - \alpha)Y)$.
- One can show that the value that minimizes the risk is given by
 \[\alpha = \frac{\sigma_Y^2 - \sigma_{XY}}{\sigma_X^2 + \sigma_Y^2 - 2\sigma_{XY}}, \]
 where $\sigma_X^2 = \text{Var}(X)$, $\sigma_Y^2 = \text{Var}(Y)$, and $\sigma_{XY} = \text{Cov}(X, Y)$.
Example continued

• But the values of σ^2_X, σ^2_Y, and σ_{XY} are unknown.

• We can compute estimates for these quantities, $\hat{\sigma}^2_X$, $\hat{\sigma}^2_Y$, and $\hat{\sigma}_{XY}$, using a data set that contains measurements for X and Y.

• We can then estimate the value of α that minimizes the variance of our investment using

$$
\hat{\alpha} = \frac{\hat{\sigma}^2_Y - \hat{\sigma}_{XY}}{\hat{\sigma}^2_X + \hat{\sigma}^2_Y - 2\hat{\sigma}_{XY}}.
$$
Each panel displays 100 simulated returns for investments X and Y. From left to right and top to bottom, the resulting estimates for α are 0.576, 0.532, 0.657, and 0.651.
Example continued

- To estimate the standard deviation of $\hat{\alpha}$, we repeated the process of simulating 100 paired observations of X and Y, and estimating α 1,000 times.
- We thereby obtained 1,000 estimates for α, which we can call $\hat{\alpha}_1, \hat{\alpha}_2, \ldots, \hat{\alpha}_{1000}$.
- The left-hand panel of the Figure on slide 29 displays a histogram of the resulting estimates.
- For these simulations the parameters were set to $\sigma_X^2 = 1, \sigma_Y^2 = 1.25$, and $\sigma_{XY} = 0.5$, and so we know that the true value of α is 0.6 (indicated by the red line).
Example continued

• The mean over all 1,000 estimates for α is

$$\bar{\alpha} = \frac{1}{1000} \sum_{r=1}^{1000} \hat{\alpha}_r = 0.5996,$$

very close to $\alpha = 0.6$, and the standard deviation of the estimates is

$$\sqrt{\frac{1}{1000 - 1} \sum_{r=1}^{1000} (\hat{\alpha}_r - \bar{\alpha})^2} = 0.083.$$

• This gives us a very good idea of the accuracy of $\hat{\alpha}$: $\text{SE}(\hat{\alpha}) \approx 0.083$.

• So roughly speaking, for a random sample from the population, we would expect $\hat{\alpha}$ to differ from α by approximately 0.08, on average.
Left: A histogram of the estimates of α obtained by generating 1,000 simulated data sets from the true population. Center: A histogram of the estimates of α obtained from 1,000 bootstrap samples from a single data set. Right: The estimates of α displayed in the left and center panels are shown as boxplots. In each panel, the pink line indicates the true value of α.
Now back to the real world

- The procedure outlined above cannot be applied, because for real data we cannot generate new samples from the original population.
- However, the bootstrap approach allows us to use a computer to mimic the process of obtaining new data sets, so that we can estimate the variability of our estimate without generating additional samples.
- Rather than repeatedly obtaining independent data sets from the population, we instead obtain distinct data sets by repeatedly sampling observations from the original data set \textit{with replacement}.
- Each of these “bootstrap data sets” is created by sampling \textit{with replacement}, and is the \textit{same size} as our original dataset. As a result some observations may appear more than once in a given bootstrap data set and some not at all.
Example with just 3 observations

A graphical illustration of the bootstrap approach on a small sample containing $n = 3$ observations. Each bootstrap data set contains n observations, sampled with replacement from the original data set. Each bootstrap data set is used to obtain an estimate of α.
• Denoting the first bootstrap data set by \(Z^*^1 \), we use \(Z^*^1 \) to produce a new bootstrap estimate for \(\alpha \), which we call \(\hat{\alpha}^*^1 \).

• This procedure is repeated \(B \) times for some large value of \(B \) (say 100 or 1000), in order to produce \(B \) different bootstrap data sets, \(Z^*^1, Z^*^2, \ldots, Z^*^B \), and \(B \) corresponding \(\alpha \) estimates, \(\hat{\alpha}^*^1, \hat{\alpha}^*^2, \ldots, \hat{\alpha}^*^B \).

• We estimate the standard error of these bootstrap estimates using the formula

\[
\text{SE}_B(\hat{\alpha}) = \sqrt{1 \over B - 1} \sum_{r=1}^{B} (\hat{\alpha}^*^r - \bar{\hat{\alpha}}^*)^2.
\]

• This serves as an estimate of the standard error of \(\hat{\alpha} \) estimated from the original data set. See center and right panels of Figure on slide 29. Bootstrap results are in blue. For this example \(\text{SE}_B(\hat{\alpha}) = 0.087 \).
A general picture for the bootstrap

Real World

Population $P \rightarrow Z = (z_1, z_2, \ldots, z_n)$

Random Sampling Data

Estimate $f(Z)$

Bootstrap World

Estimated Population $\hat{P} \rightarrow Z^* = (z^*_1, z^*_2, \ldots, z^*_n)$

Random Sampling Bootstrap dataset

Bootstrap Estimate $f(Z^*)$
The bootstrap in general

• In more complex data situations, figuring out the appropriate way to generate bootstrap samples can require some thought.

• For example, if the data is a time series, we can’t simply sample the observations with replacement (*why not?*).
The bootstrap in general

- In more complex data situations, figuring out the appropriate way to generate bootstrap samples can require some thought.
- For example, if the data is a time series, we can’t simply sample the observations with replacement (*why not?*).
- We can instead create blocks of consecutive observations, and sample those with replacements. Then we paste together sampled blocks to obtain a bootstrap dataset.
Other uses of the bootstrap

- Primarily used to obtain standard errors of an estimate.
- Also provides approximate confidence intervals for a population parameter. For example, looking at the histogram in the middle panel of the Figure on slide 29, the 5% and 95% quantiles of the 1000 values is (.43, .72).
- This represents an approximate 90% confidence interval for the true α.
Other uses of the bootstrap

- Primarily used to obtain standard errors of an estimate.
- Also provides approximate confidence intervals for a population parameter. For example, looking at the histogram in the middle panel of the Figure on slide 29, the 5% and 95% quantiles of the 1000 values is (.43, .72).
- This represents an approximate 90% confidence interval for the true α. How do we interpret this confidence interval?
Other uses of the bootstrap

- Primarily used to obtain standard errors of an estimate.
- Also provides approximate confidence intervals for a population parameter. For example, looking at the histogram in the middle panel of the Figure on slide 29, the 5% and 95% quantiles of the 1000 values is (.43, .72).
- This represents an approximate 90% confidence interval for the true α. *How do we interpret this confidence interval?*
- The above interval is called a *Bootstrap Percentile* confidence interval. It is the simplest method (among many approaches) for obtaining a confidence interval from the bootstrap.