Math 644, Fall 2012

Solution for Homework 2

Problem 1.

(a) the 99% CI (confidence interval) is

$$b_1 \pm t(1 - 0.01/2, 118) * s(b_1) = 0.03883 \pm 2.62 * 0.01277 = [0.0053726, 0.0722874]$$

It does not include 0 (or we have 99% confidence to believe it is not 0). If it is not 0, a student's PCA can be predicted by his ACT. In other word, ACT can be an indicator for universities to evaluate a students and to decide whether a student should be admitted.

(b)

$$H_0: \beta_1 = 0 \quad H_1: \beta_1 \neq 0$$

From the calculation

$$|t| = |0.03883/0.01277| = |3.040| > t(0.995, 118) = 2.62$$

Thus, we reject H_0 , i.e. there is significant linear association between ACT and GPA when $\alpha = 0.01$

(c) Because

$$p - value = 0.00292 < 0.01$$

we also reject the H_0 above

- (a) [3.061384, 3.341033] on average, with 95% confidence, the mean freshman GPA is between 3.061384 and 3.341033 when their ACT test scores are 28
- (b) [1.959355, 4.443063], with 95% confidence her GPA will be between 1.959355 and 4.443063
- (c) Yes

Problem 2.

(a) Set up the ANOVA table

Response: y

source	Df	SS	MS	F-value	p-value
regression(x)	1	3.588	3.588	9.2402	0.002917
Residuals	118	45.818	0.388		
Total	119	49.406			

- (b) conduct an F-test for H₀: β₁ = 0 with α = 0.01
 Since p-value is smaller than α = 0.01, we reject H₀, i.e. β₁ is significantly different from 0.
- (c) what is the absolute magnitude of the reduction in the variation of Y when X is introduced into the model? what is the relative reduction? what is the name for the later measure?
 the absolute magnitude of the reduction in the variation of Y when X is 3.588
 the relative reduction 3.588/SST = 3.588/(3.588+45.818) = 7.262276%
 called R²
- (d) obtain rxy and attach the appropriate sign

$$r_{XY} = +\sqrt{R^2} = 0.2694818$$

(e) which measure R² or r has more clear-cut operational interpretation, explain.
r, because it give clear relationship between x and y.

Problem 3.

The absolute value of the coefficient -1.4 looks different from 0, but its p-value is very big, indicating that the coefficient is not significantly different from 0. Thus, the correlation between X and Y is not strong and the conclusion is not statistically solid.

Problem 4.

the α level used by the analyst was greater than 0.033, If the α level had been 0.01, he shod accept H_0

Problem 5.

(a)
$$\hat{Y} = 10.2 + 4.00X \\ (SE) \quad (0.6633) \quad (0.4690)$$

$$MSE = 2.199289, \quad R^2 = 0.9009, \quad F = 72.73$$

Yes, the linear regression function fits the data well.

(b)

$$\hat{Y} = 10.2 + 4.00 * 1 = 14.2$$

(c) $b_1 \pm t(0.975, 8) * s(b_1) = 4 \pm 2.306 * 0.469 = [2.918486, 5.081514]$

The interval does not include 0, indicating that we have (big) confidence that β_1 is different from 0, i.e. β_1 is not zero, and thus the linear association is significant.

(d) We need to test

$$H_0: \beta_1 = 0$$
 $v.s.H_1: \beta_1 \neq 0$

Note that

$$|t| = \left| \frac{b_1 - 0}{s(b_1)} \right| = 8.528 > t(1 - \alpha/2, n - 2) = 2.306$$

We reject H_0 . In other words, there is significant linear association.

(e)
$$b_0 \pm t(0.975, 8) * s(b_0) = 10.2 \pm 2.306 * 0.6633 = [8.67043, 11.72957]$$

The interval does not include 0, indicating we have (big) confidence that β_0 is different from 0. Even if no shipment, there are still broken ampules (due to the other reasons)

Problem 6.

(a) set up the ANOVA table. which elements are additive?

Response: y

source	Df	SS	MS	F-value	p-value
regression(x)	1	160.0	160.0	72.727	2.749e-05
Residuals	8	17.6	2.2		
Total	9	177.6			

(b)

$$H_0: \beta_1 = 0$$

$$F^* = 72.727 > F(1 - 0.05, 1, 8) = 5.32$$

reject H_0 , there is significant linear association between X and Y

(c)

$$H_0: \beta_1 = 0$$

$$|t^*| = 8.528 > t(1 - 0.05/2, 8) = 2.262$$

reject H_0 , there is significant linear association between X and Y

(d)

$$R^2 = 90.09\%, \qquad r = 0.9491575$$

90.09% of the variation in Y is accounted for by introducing X into the model