
Chapter 0 Basic Prerequisite Knowledge and

Introduction

1 Statistical analysis of one variable

1.1 (Random) Statistical observations

Suppose we observe n subjects from a population. One variable, Y , is measured for each

subject and the values (called n observations) are

Y1, Y2, ..., Yn.

• Sample mean:

Ȳ =
1
n

n∑
i=1

Yi

• sample variance

S2
Y =

1
n − 1

n∑
i=1

(Yi − Ȳ )2

also denoted by s2(Y ).

Simple facts:

n∑
i=1

(Yi − Ȳ ) = 0;

n∑
i=1

(Yi − Ȳ )2 =
n∑

i=1

Y 2
i − nȲ 2

• Standard deviation

SY =

√√√√ 1
n − 1

n∑
i=1

(Yi − Ȳ )2

also denoted by s(Y ).

Example: the observations of heights, denoted by H: 1.84, 1.67, 1.68, 1.42, 1.54,

1.59, 1.60, 1.74, 1.83, 1.65, 1.51, 1.80, 1.64, 1.80, 1.62, 1.67, 1.67, 1.69, 1.74, 1.73
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Then, we have the sample mean

H̄ =
1
20

{1.84 + 1.67 + ... + 1.73} = 1.6715

and sample variance

s2
H =

1
20 − 1

{(1.84−1.6715)2 +(1.67−1.6715)2 + ...+(1.73−1.6715)2} = 0.01169763

standard deviation

sH =
√

s2
H = 0.1081556

• Estimation of population parameters, EY = μY (or μ) and V ar(Y ) = σ2
Y (or σ2, or

σ2(Y )). They can be estimated as

μ̂ = X̄, σ̂2 = S2
Y , σ̂ = SY

or

σ̂2 =
n∑

i=1

(Yi − Ȳ )2/n, σ̂ =

√√√√
n∑

i=1

(Yi − Ȳ )2/n.

Example For the above data, we have

μ̂H = 1.6715, σ̂H = 0.1081556

• Distribution of the observations: Histogram.

For the above data, its histogram is shown below, suggesting that they are normally

distributed
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Figure 1:

Please check the following histograms. Are they normally distributed?
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Figure 2:

• Hypothesis testing: Suppose Y1, ..., Yn are samples from N(μ, σ2). We can test, for

example, H0 : μ = μ0.

– If σ is known, then we use the Z-statistic. Under H0

Z =
Ȳ − μ0

σ/
√

n
∼ N(0, 1)

at significant level α = 0.05 (say),

we accept H0, if |Z| ≤ 1.96

we reject H0, if |Z| > 1.96

– If σ is unknown, then we use the T-statistic. Under H0

T =
Ȳ − μ0

SY /
√

n
∼ t(n − 1)

at significant level α,

we accept H0, if |T | ≤ t1−α/2(n − 1)

we reject H0, if |T | > t1−α/2(n − 1)

Example Suppose we need to test H0 : μH = 1.65 based on the above data at

significant level α = 0.01. Calculate

T =
H̄ − 1.65

0.1082/
√

20
= 0.8886

Since |T | < t0.995(19) = 2.861, we accept H0.
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2 population and random variable

• The distribution of the population and the distribution of Y .

• mean E(Y ), and variance V ar(Y ) (or σ2(Y ))

simple fact: V ar(Y ) = E{(Y − E(Y ))2} = EY 2 − (E(Y ))2

• α-quantile with 0 < α < 1 for Y : qα

P (Y ≤ qα) = α

Example 2.1 Suppose you are a hat manufacturer. You hope to make hats for adult

Singaporean. You design 3 sizes: small, medium and large. Define the smallest quarter

as small, the second and third quarters as medium, and the largest quarter as large.

Then you need to find the quantiles of the head circumferences of Singaporean to make

different sizes of hats.

2.1 Statistical distributions

• Normal: X ∼ N(μ, σ2), where μ and σ are two parameters. Then (X−μ)/σ ∼ N(0, 1)

(standard normal), with p.d.f.

f(x) =
1√
2π

exp(−x2

2
)

See Figure 3. (how to find the quantile (or critical values) in the statistical table? )

We have

P (X ≤ −1.96) = 0.025, P (X ≥ 1.96) = 0.025,

and thus

P (|X| < 1.96) = 0.95

• Student distribution (or t-distribution): t(v), where v ≥ 1 is a parameter [called the

number of degrees of freedom]. The p.d.f. is

f(x) =
Γ{(v + 1)/2}√

vπΓ(v/2)
(1 + x2/v)−(v+1)/2

See Figure 4.

If X ∼ t(v), how to find quantile (or critical value) q such that P (|X| > q) = α

For example, if X ∼ t(2), then P (|X| > 4.303) = 0.05.
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Figure 3: Normal distribution and quantiles (also known as critical values at significant level α)

• χ2 distribution: χ2(v), where v is a parameter [called the number of degrees of free-

dom]. See Figure 5.

Example X ∼ χ2(10), then P (X > 18.31) = 0.05 (How to find the quantiles (or

critical value) in the statistical table?)

• F distribution: F (v1, v2), where v1, v2 > 0 are two parameters [called the numbers of

degrees of freedom]. See Figure 6.

Example X ∼ F (4, 10), then P (X > 3.48) = 0.05 (How to find the quantiles (critical

value) in the statistical table?)
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Figure 4: shapes of t-distribitions
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Figure 5: the shape of the density function for χ2-distribution
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Figure 6: shapes of the density functions for F distribution

3 Statistical analysis for two variables

Suppose we observe n subjects from a population, TWO variables are measured for each

subject. We have n observations

(X1, Y1), (X2, Y2), ..., (Xn, Yn)

from the population, denoted by (X,Y ).

Besides the statistical analysis of each variable separately (see above), we are also in-

terested in the relationship between X and Y

• (Sample) covariance

SXY =
1

n − 1

n∑
i=1

(Xi − X̄)(Yi − Ȳ )

Simple facts
n∑

i=1

(Xi − X̄)Ȳ = 0;
n∑

i=1

(Yi − Ȳ )X̄ = 0;

n∑
i=1

(Xi − X̄)(Yi − Ȳ ) =
n∑

i=1

XiYi − nX̄Ȳ

• (Sample) correlation coefficient

rXY =
∑n

i=1(Xi − X̄)(Yi − Ȳ )√∑n
i=1(Xi − X̄)2

∑n
i=1(Yi − Ȳ )2

=
SXY

SXSY
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Some basic facts

♠ −1 ≤ rXY ≤ 1.

♠ rXY = 0, there is no linear correlation between X and Y

♠ rXY > 0, there is positive linear correlation between X and Y

♠ rXY < 0, there is negative linear correlation between X and Y

♠ rXY = ±1, there is a constant c such that Yi = cXi

Example Suppose the observations for people’s height (H) and weight (W ) are: (1.84,

91.31) (1.67, 88.63) (1.68, 83.94) (1.42, 75.55) (1.54, 79.57) (1.59, 82.68) (1.60 80.41)

(1.74, 82.42) (1.83, 92.21) (1.65, 79.63) (1.51, 71.15) (1.80 95.24) (1.64, 77.38) (1.80

91.67) (1.62, 79.57) (1.67, 80.64) (1.67, 87.26) (1.69, 89.52) (1.74, 93.50) (1.73, 88.57)

we have SH = 0.1082;SW = 6.6527 and SHW = 0.6077

rHW = 0.8442.

Scatter plot of two variables and correlation coefficients
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Discussion on linear Correlation

– “two variables have linear correlation” does not mean that they are causally

related. Often a third variable, a lurking variable, that is not included in the

analysis is responsible (causes) for the first two variables. A lurking variable is a

variable that loiters in the background and affects both of the original variables

– the correlation coefficient can only detect the linear relationship, it may fail to

detect the nonlinear relationships.

Example
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Figure 7: there is strong relationship between Y and X, but the linear correlation coefficient
is 0 (there is no overall trend between Y and X)

• Population covariance

Cov(X,Y ) = E[{X − E(X)}{Y − E(Y )}]

The population correlation coefficient is defined as

ρXY =
Cov(X,Y )√

V ar(X)V ar(Y )
.

Simple facts

Cov(X,X) = V ar(X), Cov(X,Y ) = Cov(Y,X)

• Estimation of the correlation coefficient (by sample correlation coefficient)

ρ̂XY = rXY .
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4 Other relationship

• (deterministic) functional relationship [not discussed in this module]. For the (two)

variables, X and Y , we hope to predict one variable based on the other(s). A functional

(mathematical) relation allow us to make accurate/exact prediction.

Example: for a circle, the circumference Y and its diameter X has a deterministic

functional relation

Y = πX

and its area Z has a relation with X as

Y =
1
4
πX2

See Figure 8.
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Figure 8: two examples of deterministic functional relationships

• Regressive relationship (regression analysis). However, for most statistical

problems, we cannot predict the ”true” value because of random effect. We can

only predict the “expected” value, i.e. E(Y ) = f(X). A simple case is

E(Y ) = a + bX

called (simple) linear regression model.

10



0 2 4 6
1

2

3

4

x

y

0 2 4 6
1

2

3

4

x

y

(X
i
, Y

i
)

fitted line

Figure 9: An example of linear regression model

♠ If (X,Y ) have joint normal distribution, then the their relation can be modeled

by

E(Y ) = a + bX

or

Y = a + bX + ε (1)

where ε is independent of X. Model (1) is also called linear regression model.

The model can also be written as

Y1 = a + bX1 + ε1

Y2 = a + bX2 + ε2

...

Yn = a + bXn + εn
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♠ Why do we call the model “regression”? The response variable Y tends to

“revert” or “regress” to the mean of Y .

Figure 10: A figure showing why the model is called “regression model”: Sir Francis Galton’s (1889)
data shows the relationship between offspring height (928 individuals) as a function of mean parent
height (205 sets of parent). The dashed line is for (Height of offspring) = (Height of parents), and
the solid line is the regression funciton.

why linear regression is popular? and why it is widely used in practice?

∗ Liner regression relationship is easy to investigate and is stable

∗ If the joint distribution is normal, then their relationship is linear.

∗ Liner regression relationship is a good approximation, especially locally.

♠ Nonlinear regression

Yi = f(Xi) + ε
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See Figure 11.
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Figure 11: Two examples showing the nonlinear regression relationships

Example 4.1 Suppose you are a T-shirt manufacturer. You hope to make hats for adult

Singaporean. You 3 sizes are produced: small, medium and large. Define the smallest

quarter of shoulder width as small, the second and third quarters as medium, and the largest

quarter as large. Then you need to find the quantiles of the shoulder width to design different

sizes (for shoulder width). You also need to know the relation between the shoulder width

with the seat heights of Singaporen for the lengths of the T-shirt.

5 More about Expectation, variance and covariance

Suppose a0, a1, ..., ak are constants, and ε1, ..., εk are random variables, then

•
E(a0 + a1ε1 + ... + akεk) = a0 + a1E(ε1) + ... + akE(εk)

•
V ar(a0 + a1ε1 + ... + akεk) =

k∑
i=1

k∑
j=1

aiajCov(εi, εj)

•
Cov(a1ε1 + ... + akεk, b1ξ1 + ... + b�ξ�) =

k∑
i=1

�∑
j=1

aibjCov(εi, ξj)

where b1, ..., b� are constants and ξ1, ..., ξ� are random variables.
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• if ε1, ..., εk are mutually independent, then

V ar(a0 + a1ε1 + ... + akεk) =
k∑

i=1

a2
i V ar(εi)

• if ε1, ..., εk are IID (independent and identically distributed), then

V ar(ε̄) =
1
k

V ar(ε1)

where ε̄ = (ε1 + ... + εk)/k

• Suppose ξi ∼ N(μi, σ
2
i ), i = 1, ..., n are independent and that a0, a1, ..., an are con-

stants. Then

a0 + a1ξ1 + ... + anξn ∼ N(μ̃, σ̃2)

where μ̃ = a0 + a1μ1 + ... + anμn and σ̃2 = a2
1σ

2
1 + .... + a2

nσ2
n

Example Suppose Ui, i = 1, ..., n are random samples from U with EU = μ and

V ar(U) = σ2. Let

S2
U =

1
n − 1

n∑
i=1

(Ui − Ū)2

where Ū = (U1 + ... + Un)/n. Prove

ES2
U = σ2

Thus

E{ 1
n

n∑
i=1

(Ui − Ū)2} �= σ2

[Proof: Let Vi = Ui − μ and V̄ = (V1 + ... + Vn)/n = Ū − μ. Then

S2
U =

1
n − 1

n∑
i=1

(Ui − μ − (Ū − μ))2 =
1

n − 1

n∑
i=1

(Vi − V̄ )2 =
1

n − 1
{

n∑
i=1

V 2
i − nV̄ 2}

Since EVi = 0 and EV̄ = 0, we have

EV 2
i = V ar(Vi) = V ar(Ui) = σ2,

and

EV̄ 2 = V ar(V̄ ) = V ar(Ū) =
1
n

σ2.

It follows that

ES2
U =

1
n − 1

{
n∑

i=1

EV 2
i − nEV̄ 2} =

1
n − 1

{nσ2 − n × 1
n

σ2} = σ2 ]
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