Chapter 0 Basic Prerequisite Knowledge and
Introduction

1 Statistical analysis of one variable
1.1 (Random) Statistical observations

Suppose we observe n subjects from a population. One variable, Y, is measured for each

subject and the values (called n observations) are

Y1, Yo, ..., Y,.
e Sample mean:
1 &
Y =— Y;
n
=1
e sample variance
1 < .
S = Y; - Y)?
Y n — 1 ZZI( 1 )

also denoted by s%(Y).

Simple facts:

=1

n n
ST WCRITE
i=1 i=1

e Standard deviation

also denoted by s(Y').

Example: the observations of heights, denoted by H: 1.84, 1.67, 1.68, 1.42, 1.54,
1.59, 1.60, 1.74, 1.83, 1.65, 1.51, 1.80, 1.64, 1.80, 1.62, 1.67, 1.67, 1.69, 1.74, 1.73



Then, we have the sample mean
_ 1
H= 2—0{1.84 +1.67+...+1.73} =1.6715

and sample variance

{(1.84 — 1.6715)% + (1.67 — 1.6715)* + ... + (1.73 — 1.6715)*} = 0.01169763

SH = 1/8%1 = 0.1081556
2 2

Estimation of population parameters, EY = py (or ) and Var(Y) = oy (or 0%, or

02(Y)). They can be estimated as

2
SH =501

standard deviation

=X, 6% = S%, =Sy

or

i=1 i=1

Example For the above data, we have

g = 1.6715, og = 0.1081556

Distribution of the observations: Histogram.

For the above data, its histogram is shown below, suggesting that they are normally

distributed

Histogram of r

Fre

Figure 1:

Please check the following histograms. Are they normally distributed?



Histogram of x Histogram of y

Figure 2:

e Hypothesis testing: Suppose Yi,...,Y,, are samples from N(u,c?). We can test, for

example, Hy : p = .

— If o is known, then we use the Z-statistic. Under Hy

_ Y — o
o/vn

at significant level o = 0.05 (say),

Z

~ N(0,1)

we accept Hy, if |Z| < 1.96

we reject Hy, if |Z] > 1.96

— If ¢ is unknown, then we use the T-statistic. Under H

Y — o

'= 5 vn

~tn—1)
at significant level «,

we accept Ho, if [T] <t_q/o0(n—1)

we reject Ho, if [T'| > t1_4/2(n — 1)

Example Suppose we need to test Hy : py = 1.65 based on the above data at

significant level o = 0.01. Calculate

_ H-165
0.1082//20

Since |T| < tp.995(19) = 2.861, we accept Hy.

= (.8886



2 population and random variable

2.1

e The distribution of the population and the distribution of Y.

e mean E(Y), and variance Var(Y) (or o?(Y))

simple fact: Var(Y) = E{(Y — E(Y))?} = EY? — (E(Y))?
a-quantile with 0 < a < 1 for Y: ¢,

PY <qn) =«

Statistical distributions

Normal: X ~ N(u,0?), where y and o are two parameters. Then (X —u)/o ~ N(0,1)
(standard normal), with p.d.f.

) = (- 5)
x) = xp(——
V21 P
See Figure Bl (how to find the quantile (or critical values) in the statistical table?)
We have
P(X < -1.96) = 0.025,  P(X >1.96) = 0.025,
and thus

P(|X| < 1.96) = 0.95

Student distribution (or t-distribution): ¢(v), where v > 1 is a parameter [called the

number of degrees of freedom]. The p.d.f. is

2 = M{(v+1)/2} 22 Jp)-(+)/2
o) = DB 142

See Figure @l
If X ~ t(v), how to find quantile (or critical value) q such that P(|X| > q) = «

For example, if X ~ ¢(2), then P(|X| > 4.303) = 0.05.
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Figure 3: Normal distribution and quantiles (also known as critical values at significant level «)

e ? distribution: x?(v), where v is a parameter [called the number of degrees of free-

dom]. See Figure

Example X ~ x?(10), then P(X > 18.31) = 0.05 (How to find the quantiles (or

critical value) in the statistical table?)

e I distribution: F'(vy,vs), where vy, v > 0 are two parameters [called the numbers of

degrees of freedom]. See Figure [G

Example X ~ F(4,10), then P(X > 3.48) = 0.05 (How to find the quantiles (critical

value) in the statistical table?)
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Figure 5: the shape of the density function for y2-distribution
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Figure 6: shapes of the density functions for F distribution

3 Statistical analysis for two variables

Suppose we observe n subjects from a population, TWO variables are measured for each

subject. We have n observations
(X17Y1)7 (X27Y2)7 cey (XTL’YTL)

from the population, denoted by (X,Y").

Besides the statistical analysis of each variable separately (see above), we are also in-

terested in the relationship between X and Y

e (Sample) covariance

Simple facts

n

i=1 i=1
e (Sample) correlation coefficient
> (X — X)(Y; - Y)

S - DT =0 31X
i i=1

(X = X)(Y;—Y) = ZXY —nXY

Sxy

Xy =

7

\/Zf;l(Xi X2 (Y - V)2 ~ SxSy



Some basic facts

& —1<rxy <1

& rxy = 0, there is no linear correlation between X and Y

& rxy > 0, there is positive linear correlation between X and Y’

& rxy < 0, there is negative linear correlation between X and Y

& ryy = %1, there is a constant ¢ such that Y; = cXj;
Example Suppose the observations for people’s height (H) and weight (W) are: (1.84,
91.31) (1.67, 88.63) (1.68, 83.94) (1.42, 75.55) (1.54, 79.57) (1.59, 82.68) (1.60 80.41)
(1.74, 82.42) (1.83, 92.21) (1.65, 79.63) (1.51, 71.15) (1.80 95.24) (1.64, 77.38) (1.80

91.67) (1.62, 79.57) (1.67, 80.64) (1.67, 87.26) (1.69, 89.52) (1.74, 93.50) (1.73, 88.57)
we have Sy = 0.1082; Sy = 6.6527 and Syy = 0.6077

THW = 0.8442.

Scatter plot of two variables and correlation coefficients
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Discussion on linear Correlation

— “two variables have linear correlation” does not mean that they are causally
related. Often a third variable, a lurking variable, that is not included in the
analysis is responsible (causes) for the first two variables. A lurking variable is a

variable that loiters in the background and affects both of the original variables

— the correlation coefficient can only detect the linear relationship, it may fail to

detect the nonlinear relationships.

Example
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Figure 7: there is strong relationship between Y and X, but the linear correlation coefficient
is 0 (there is no overall trend between Y and X)

e Population covariance
Cov(X,Y)=F{X - EX)H{Y — E(Y)}]

The population correlation coefficient is defined as
B Cov(X,Y)
VVar(X)Var(Y)

PXY

Simple facts
Cov(X,X) = Var(X), Cov(X,Y)=Cov(Y,X)
e Estimation of the correlation coefficient (by sample correlation coefficient)

PXYy =TXY-



4 Other relationship

e (deterministic) functional relationship [not discussed in this module]. For the (two)
variables, X and Y, we hope to predict one variable based on the other(s). A functional

(mathematical) relation allow us to make accurate/exact prediction.

Example: for a circle, the circumference Y and its diameter X has a deterministic
functional relation

Y=nX

and its area Z has a relation with X as

Y = ZnXx?
4
See Figure 8
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Figure 8: two examples of deterministic functional relationships

e Regressive relationship (regression analysis). However, for most statistical
problems, we cannot predict the ”true” value because of random effect. We can

only predict the “expected” value, i.e. E(Y) = f(X). A simple case is

E(Y)=a+bX

called (simple) linear regression model.

10
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Figure 9: An example of linear regression model
& If (X,Y) have joint normal distribution, then the their relation can be modeled

by

E(Y)=a+bX

or

Y=a+0X +¢ (1)

where ¢ is independent of X. Model (I]) is also called linear regression model.

The model can also be written as

lea—l-le-l-el

§/2:a+bX2+€2

Y,=a+bX, +¢e,

11



& Why do we call the model “regression”? The response variable Y tends to

“revert” or “regress” to the mean of Y.

why linear regression is popular? and why it is widely used in practice?

x Liner regression relationship is easy to investigate and is stable

x If the joint distribution is normal, then their relationship is linear.

x Liner regression relationship is a good approximation, especially locally.

& Nonlinear regression
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The motorcycle data set
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Figure 11: Two examples showing the nonlinear regression relationships

More about Expectation, variance and covariance

Suppose ag, ai, ..., a are constants, and €1, ..., e are random variables, then

E(ao +a1e1 + ... + aksk) =ag + CL1E(€1) + ...+ akE(sk)

k k

Var(ap + areq + ... + ageg) = Z ZaiajC’ov(ei,sj)

Cov(aiey + ... + ageg, b1&1 + ...

i=1 j=1

k /L
+ bgfé) — Z Z aib]’COU(Eia f])

i=1 j=1

where by, ..., by are constants and &y, ..., & are random variables.

13
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e if £1,...,, are mutually independent, then
k
Var(ag+ are1 + ... + age) = Za?Var(Ei)
i=1

e if £1,...,e; are IID (independent and identically distributed), then
1
Var(g) = EVar(sl)
where € = (e1 + ... + ex)/k

e Suppose & ~ N(pi,02),i = 1,...,n are independent and that ag,ay, ...,a, are con-
stants. Then
ao + a1é1 + ... + an&y ~ N(fi,5°)

where i = ag + a1p1 + ... + appy and 52 = a%a% + o+ a%o,%

14


wguo
Text Box


	Statistical analysis of one variable
	(Random) Statistical observations

	population and random variable
	Statistical distributions

	Statistical analysis for two variables
	Other relationship
	More about Expectation, variance and covariance

