
Chapter 1 Simple Linear Regression
(Part 1)

1 Simple linear regression model

Suppose for each subject, we observe/have two variables X and Y . We want to make

inference (e.g. prediction) of Y based on X. Because of random effect, we cannot predict

Y accurately . Instead, we can only predict its “expected/mean” value, i.e. E(Y ) = f(X)

or E(Y |X) = f(X). A simple functional form is f(X) = β0 + β1X with β0 and β1 being

unknown, i.e.

E(Y |X) = β0 + β1X

In statistics, people like to write it as

Y = β0 + β1X + ε

which is called the “linear regression model”. In the model,

• X is called: independent variable(s); covariate or predictor(s).

• Y is called: dependent variable; response.

• ε is called random error with Eε = 0, which is not observable and not estimable. Thus

E(Y ) = β0 + β1X

or

E(Y |X) = β0 + β1X

• β0 and β1 are unknown, called regression coefficients. β0 is also called intercept (value

of EY when X = 0); β1 is called slope indicating the change of Y on average when

X increases one unit.
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Suppose we have observed n subjects. We have n observations

(X1, Y1), (X2, Y2), ..., (Xn, Yn)

The linear regression model also means

Y1 = β0 + β1X1 + ε1,

Y2 = β0 + β1X2 + ε2,
...

Yn = β0 + β1Xn + εn.

In the model,

• Xi is known, observable, and non-random,

• εi is called random error (unobservable).

• Thus Yi is random.

Assumptions and features of the model

• Xi is non-random, but εi is random. Thus the first part of Yi: β0 + β1Xi is due to

regression on (X); the second part: εi is due to the random effect.

• [Mean of random errors] Eεi = 0, thus

E{Yi} = E{β0 + β1Xi + εi}
= β0 + β1Xi + Eεi

= β0 + β1Xi

• [Homogeneity of Variance] V ar(εi) = σ2

• [independence (no serial correlation)] Cov(εi, εj) = 0 for any i �= j.

• Thus (please prove it based on the previous point), V ar(Yi) = σ2 and Cov(Yi, Yj) = 0

for any i �= j. Thus Yi and Yj are uncorrelated. (Do you think it is reasonable?)

Parameters in the model: β0, β1 and σ2. They need to be estimated.
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2 The estimation of the parameters and the model

2.1 Least Squares Estimation (LSE)

The deviation of Yi from its expected value is

εi = Yi − (β0 + β1Xi).

Since β0, β1 are unknown, “Good” estimators of β0, β1, denoted by b0 and b1, should mini-

mize the overall deviations, e.g.

L =
n∑

i=1

|εi| =
n∑

i=1

|Yi − b0 − b1Xi|,

leading to the Least Absolute Deviation (LAD) Estimator. This is not our interest in this

module (due to its complexity). Another approach to find “good” b0 and b1 is to minimize

Q =
n∑

i=1

ε2
i =

n∑

i=1

{Yi − b0 − b1Xi}2,

called the (ordinary) least squares estimation (LSE, or OLS).
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Figure 1: An example of linear regression model (see the example below)

By calculus, we have

∂Q

∂b0
= −2

n∑

i=1

{Yi − b0 − b1Xi},

∂Q

∂b1
= −2

n∑

i=1

Xi{Yi − b0 − b1Xi}.
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The solution of (b0, b1) that minimize Q is such that

−2
n∑

i=1

{Yi − b0 − b1Xi} = 0,

−2
n∑

i=1

Xi{Yi − b0 − b1Xi} = 0.

The least squares estimators b0, b1 are calculated by solving normal equations:

−2
n∑

i=1

(Yi − b0 − b1Xi) = 0

−2
n∑

i=1

Xi(Yi − b0 − b1Xi) = 0

Finally, we have the LSE (least squares estimators)

b1 =
∑n

i=1(Xi − X̄)(Yi − Ȳ )∑n
i=1(Xi − X̄)2

,

b0 =
1
n
{

n∑

i=1

Yi − b1

n∑

i=1

Xi} = Ȳ − b1X̄.

The estimators are sometimes written as β̂1 and β̂0 respectively.

[Proof:

]

Terminology for the estimation

• The estimated/fitted model is

Ŷ = b0 + b1X

(Note that we use Ŷ , to denote the predicted/fitted value of Y for a given X)

• The fitted values for the n observations are

Ŷi = b0 + b1Xi, i = 1, ..., n

(for a new subject with X = X ′, we also call the fitted value Ŷ ′ = b0 + b1X
′ predicted

value)

• The fitted residuals for the n subjects are respectively

ei = Yi − Ŷi, i = 1, 2, ..., n.
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Example 2.1 Data
Obs. X Y

1 1.0 0.60
2 1.5 2.00
3 2.1 1.06
4 2.9 3.44
5 3.2 1.17
6 3.9 3.54

By simple calculation,

X̄ = 2.4333, Ȳ = 1.9683,
6∑

i=1

(Xi − X̄)(Yi − Ȳ ) = 4.6143,
6∑

i=1

(Xi − X̄)2 = 5.9933

Thus,

b1 = 0.7699, b0 = 0.0949.

The estimated model is

Ŷ = 0.0949 + 0.7699X

Obs. X Y fitted Y : Ŷ residuals
1 1.0 0.60 0.8648 -0.2648
2 1.5 2.00 1.2497 0.7503
3 2.1 1.06 1.7117 -0.6517
4 2.9 3.44 2.3276 1.1124
5 3.2 1.17 2.5586 -1.3886
6 3.9 3.54 3.0975 0.4425

The model indicates that Y increase with X. As X increases one unit, Y increases 0.7699

unit.
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Suppose we have a new subject with X = 3, then our prediction of Y is Ŷ = 0.0949 +

0.7699 ∗ 3 = 2.4046.
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