
Chapter 1 Simple Linear Regression

(Part 3)

1 Write an Estimated model

Statisticians/Econometricians usually write an estimated model together with some infer-

ence statistics, the following are some formats people write a model

(i)
Ŷ = b0 + b1 X

(S.E.) (s(b0)) (s(b1))

σ̂2(or MSE) = ..., R2 = ...,
F-statistic = ... (and others)

(ii)
Ŷ = b0 + b1X

(t-values) (t0) (t1)

σ̂2(or MSE) = ..., R2 = ...,
F-statistic = ... (and others)

(iii)
Ŷ = b0 + b1X

(p-values) (p0) (p1)

σ̂2(or MSE) = ..., R2 = ...,
F-statistic = ... (and others)

For simple linear regression model, a plot showing the regression is also necessary.

Example 1.1 The Toluca Company manufactures refrigeration equipments as well as many

replacement parts. In the past, one of the replacement parts has been produced periodically

in lots of varying sizes. When a cost improvement program was undertaken, company

officials wished to determine the optimum lot size for producing this part. The production
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of this part involves setting up the production process (which must be done no matter

what is the lot size) and machining and assembly operations. One key input for the model

to ascertain the optimum lot size was the relationship between lot size and labour hours

required to produce the lot. To determine this relationship, data on lot size and work hours

for 25 recent production runs were utilized. The production conditions were stable during

the six-month period in which the 25 runs were made and were expected to continue to be

the same during the next three years, the planning period for which the cost improvement

program was being conducted. The data was collected and listed in (data010301.dat).

Let X denote the lot size and Y work hours. Based on the problem, we consider the

following regression model for the n = 25 observations

Yi = β0 + β1Xi + εi, i = 1, 2, ...,

The estimated model is (see (R code))

Ŷ = 62.366 + 3.570X
(S.E.) (26.177) (0.347)

MSE = 2383.392, R2 = 0.8215, F-statistic = 105.9

2 Interval Prediction (Estimation) of E(Y ) (also called nar-
row intervals)

Recall the model is

Y = β0 + β1X︸ ︷︷ ︸
predictable

+ ε︸︷︷︸
unpredictable

Note that EY = β0 + β1X. In other words, only the mean of Y can be predicted.

Based on n observations, (X1, Y1), ..., (Xn, Yn) we have estimator

b1 =
∑n

i=1(Xi − X̄)(Yi − Ȳ )∑n
i=1(Xi − X̄)2

, b0 = Ȳ − b1X̄.

The fitted model

Ŷ = b0 + b1X
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is actually a prediction of the mean E(Y ). We call it point prediction (estimation) of EY

(for a new X) (but non-statisticians also call it “prediction of Y ”).

Sample distribution of Ŷ : For the simple linear regression model with independent

identical normal error assumptions (i.e. model (1) in part 2 of Chapter 1), we have

Ŷ ∼ N(EY, σ2
[ 1
n

+
(X − X̄)2∑n
i=1(Xi − X̄)2

]
)

[Proof: Since Ŷ is linear combination of IID normal distributed random variables. We only

to check its mean and variance. We know

EŶ = β0 + β1X = EY

Let

ki =
Xj − X̄∑n

j=1(Xj − X̄)2

and then
∑n

i=1 ki = 0, and

b1 = β1 +
n∑

i=1

kiεi.

Thus

Ŷ = b0 + b1X = Ȳ − b1X̄ + b1X = β0 + β1X̄ +
1
n

n∑
i=1

εi + (X − X̄)b1

= β0 + β1X̄ +
1
n

n∑
i=1

εi + (X − X̄)(β1 +
n∑

i=1

kiεi)

= β0 + β1X +
n∑

i=1

[
1
n

+ (X − X̄)ki]εi

and

V ar(Ŷ ) = V ar(
n∑

i=1

[
1
n

+ (X − X̄)ki]εi)

=
n∑

i=1

[
1
n

+ (X − X̄)ki]2σ2

=
n∑

i=1

[
1
n2

+ 2
1
n

(X − X̄)ki + (X − X̄)2k2
i ]σ

2

= [
1
n

+
(X − X̄)2∑n
i=1(Xi − X̄)2

]σ2
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]

Since σ2 is unknown, we need to replace σ2 by MSE and define

s2(Ŷ ) = MSE
[ 1
n

+
(X − X̄)2∑n
i=1(Xi − X̄)2

]
.

Sample distribution of (Ŷ − EŶ )/s(Ŷ ) : For the simple linear regression model with

independent identical normal error assumptions (i.e. model (1) in part 2 of Chapter 1), we

have
Ŷ − EY

s(Ŷ )
∼ t(n − 2)

Confidence interval for E(Y ) with confidence 1 − α (also called narrow intervals), we

have

Ŷ ± t(1 − α/2, n − 2)s(Ŷ )

Prediction interval for Y with new X (called wide intervals): Although we can not

predict the value of Y , but we can find its possible range. Consider the distribution of

Ŷ − Y

Write

Ŷ − Y = Ŷ − (β0 + β1X + ε) = [Ŷ − EY ] − ε

It is easy to see it follows normal distribution. Its mean is

E(Ŷ − Y ) = [EŶ − EY ] − Eε = 0

Note that Y is a new sample

Y = β0 + β1X + ε

with ε being uncorrelated with ε1, ..., εn and Var(ε) = σ2. The variance is

Var(Ŷ − Y ) = Var(Ŷ − EY − ε) = Var(Ŷ − EY ) + Var(ε) = Var(Ŷ ) + σ2

= [
1
n

+
(X − X̄)2∑n
i=1(Xi − X̄)2

]σ2 + σ2
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Thus

Ŷ − Y ∼ N(0, [1 +
1
n

+
(X − X̄)2∑n
i=1(Xi − X̄)2

]σ2)

Again, we need to replace σ by

s2(pred) = MSE
[
1 +

1
n

+
(X − X̄)2∑n
i=1(Xi − X̄)2

]

And
Ŷ − Y

s(pred)
∼ t(n − 2) (1)

With confidence 1 − α, the confidence interval is

Ŷ ± t(1 − α/2, n − 2) ∗ s(pred).

R code

predict(object, newdata, interval = "none"/"confidence"/"prediction"︸ ︷︷ ︸
select one

,

level = 0.95)

Pointwise confidence bands

Letting X go through a range, then the confidence interval

Ŷ ± t(1 − α/2, n − 2)s(Ŷ ) (narrow confidence band)

or

Ŷ ± t(1 − α/2, n − 2) ∗ s(pred) (wide confidence band)

forms a band, called confidence band.

Example 2.1 For the example 1.1, with confidence level 0.95

(a) For a new point X = 4, predict the expected work hours E(Y ) and confidence interval

(b) For a new point X = 4, calculate the confidence interval for Y .

(c) Draw the (narrow) pointwise confidence band

Solution: (See (R code))
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(a) 76.64667; [25.14723, 128.1461].

(b) [-36.72411, 190.0174].

(c) see Figure 1

20 40 60 80 100 120

10
0

20
0

30
0

40
0

50
0

X

Y

regression analysis for the Toluca Company data

Figure 1: The 95% narrow pointwise confidence band for EY

Global confidence band [not our interest]
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