Chapter 1 Simple Linear Regression
(part 5)

1 Diagnostics for regression model
For the simple linear regression model
Yi= 0o+ 5iXi+ei
the assumptions are
(L) Linearity of Regression function: E(Y;) = [y + (1 X; or equivalently Fe; = 0
(N) Normality of Error Terms: ¢; ~ N(0,02)
(I) Independent/ uncorrelated Error Terms: Cov(e;,e5) =0, if @ #j

(E) Equal (constant) Error Variance: Var{e;} = o2

We should always check fitted models to make sure that these assumptions have not been

violated. If some assumptions, then (1) the efficiency of estimators cannot be guaranteed;

(2) some statistical inference (e.g. the test) is no longer correct; (3) the conclusions may

not be correct.

e if nonlinearity exists, the parameter estimates are NOT valid. Solution: One can

include polynomial terms to improve the fitting.

e if the variance is unequal, parameter estimates are valid, but the confidence intervals

are misleading. Solution: We can consider the weighted Least squares estimation

° OutliersEI far from the pattern of the rest of the Xs may affect the line. Solution: We

can remove the outliers to improve the estimation

Lan outlier is an observation that is numerically distant from the rest of the data.



e dependent observations may reduce the efficiency of the parameters estimator, but

again parameter estimates are valid.

e distribution of the random errors are not normally distributed: parameters estimates

are still correct, but the confidence intervals are misleading. Solutions:

— Including additional predictors sometimes solves this problem
— Another solution is to transform Y

* In(Y) or VY draws in data skewed to high values
% 1/Y or 1/V/Y draws in data skewed to low values
% use transformed Y instead of original Y

x interpret parameters according to transformed Y!

However, the violation and departures from the underlying assumptions cannot be de-
tected using any of the summary statistics we’ve examined so far such as the t or F statistics
or R?. In fact, tests based on these statistics may lead to incorrect inference since they are

based on many of the assumptions above.

2 How do you check the assumptions?
In general ... plot your data!

e Simply plotting the data can be one of the most powerful model checking techniques

e From a simple plot of Y on X that includes the fitted regression line, we can check:

(1) linearity; (2) normality; (3) equal (constant) variance; (4) outliers, etc.
2.1 Linear relationship
e Is the model correct?

— Is this the right line?

— Are there outliers for which the model may be wrong?


wguo
Text Box


e Assess with graphs: plot Y against X and the fitted line/model

2.2

2.3

2.4

2.5

— If there are repeated observation on the each X;: Note that the observations with
the same X; forms a sub-sample. We can estimate its mean. If the sub-sample
mean is obviously different from the regression line, then the linear relationship

may be violated.

— If there is no repeated observation on each X;, we can slice of the region of X

and take each slice as from one sub-sample.
Independent observations/indivisuals
Are all the individuals surveyed independent from one another?
Cannot be assessed graphically or statistically

Must know how the data were collected, for example, when the data are collected over

time.
Normally distributed errors

At every value of X, the observed points should follow a roughly normal distribution

centered at the fitted value of Y.
Assess with residual plots

Equal variance

At every value of X, the observed points should follow a roughly normal distribution

with the same variance across all Xs
Assess with residual plots

4 types of assumption violations; see figure [I]


wguo
Text Box


Non-Linear Qutlier

0 PR
000’ N
[ °g

R 10

2 B o
> 4 . > 5
-4 4 0{%
‘s
61 ‘ : S ‘ ‘ ‘
2 0 2 0 10 20 30
X X

Non-Normal Non-Constant Variance
6 . 15 1
44 10 1

a0
> 2 > 51 ik —

0 0
-2 1 T -5 1 T T

2 8 1 1.2

X

Figure 1:

3 Residual Analysis:

3.1 Standardized residuals

e Since our model states: &; ~ N(0,0?),the standardized residuals,

=0 here 6 = MSE

should follow (roughly) a standard normal distribution (more exactly ¢-distribution)

3.2 Residual Analysis

If the model fits the data well, we expect:
e A histogram of the standardized residuals should look normal.
e Check for asymmetry and outliers.

e A plot of the residuals vs. X should look like a random scatter (no systematic rela-

tionship)

e A plot of the residuals vs. Y; (the fitted values) should also look like a random scatter.



3.3 Residual Analysis: Example plots

Example: Relationship between health status and pollution in 20 geographic areas; see

figure
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Figure 2:

Conclusion for the example

e Regression scatterplot looks good

Standard Residuals appear fairly normally distributed

Standard Residuals vs X appear randomly scattered (i.e. no apparent patterns & no

extreme outliers)

Standardized Residuals vs predicted values appear randomly scattered (i.e. no appar-

ent patterns & no extreme outliers)

Example: Nonlinear Example plots; see figure 3]

Conclusion for the example

e Regression scatterplot shows non-linear relationship

Standardized Residuals dont look normally distributed

Standardized Residuals vs X shows nonlinear relationship

Standardized Residuals vs predicted values shows non-linear relationship
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Outlier Histogram of Standardized Residuals
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Example: Outlier Example plots; see figure [4]

Conclusion for the example

Regression scatterplot shows outlier

Standardized Residuals look normal but large residual present
Standardized Residuals vs X shows a pattern & the outlier

Standardized Residuals vs Y shows a pattern & the outlier

Example: Non-Normal Example plots; see figure

Conclusion for the example
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Figure 5:

e Regression scatterplot shows non-even spread

Standardized Residuals dont look normally distributed

Standardized Residuals vs X shows noneven spread

Standardized Residuals vs predicted values shows non-even spread

Example: Unequal Variance Example plots; see figure
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Figure 6:
Conclusion for the example
e Regression scatterplot shows increasing variability
e Standardized Residuals do look normally distributed

e Standardized Residuals vs X shows increasing variability



e Standardized Residuals vs predicted values shows increasing variability

Example 3.1 ((Data), (R code)) bus transit map example
Y - increase of daily bus ridership; X - number of free distributed bus transit maps
conclusion: the linearity assumption cannot be accepted; see figure [
R code
busmap=read.table(file="busmap.dat")
reg=1m(busmapl,1] ~ busmapl[,2]) # or reg=lm(busmap$Vl ~ busmap$V2)
plot(busmapl[,2], busmap[,1], xlab="maps distributed",
ylab="increase in ridership",
xlim = c(80, 240), ylim=c(0, 8) )
lines(busmapl[,2], reg$fitted)
plot(busmapl[,2], reg$residuals, xlab="maps distributed",
ylab="fitted residuals",
xlim = c(80, 240), ylim=c(-1, 1) )
lines(c (80, 240), c(0, 0))
Plot of Y against X and Plot residuals against X
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Figure 7:

Example 3.2 Wage Data; see figure

)A/Z- = 8.38 + 0.04 x Ezxperience;

Conclusion


http://www.stat.nus.edu.sg/~staxyc/busmap.dat
http://www.stat.nus.edu.sg/~staxyc/busmap.R
http://www.stat.nus.edu.sg/~staxyc/wagesmicrodata.xls
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Figure 8:

There seems to be a residual pattern for people with very little experience. (could

add polynomials to allow for non-linearity)

There is one outlier. (should check data entry and information for that person, or

remove it from the data)

The variance is unequal.

The random errors are not normally distributed. here is the reason: consider

€
vVMSE

— Standardized residual > 2 standard deviations from 0 should happen only 5%

Standardized residual =

of the time

— Standardized residual > 3 standard deviations from 0 should happen only 1%

of the time

e The data were collected by randomly sampling workers, so independence can be as-

sumed.
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