
Chapter 1 Simple Linear Regression

(part 5)

1 Diagnostics for regression model

For the simple linear regression model

Yi = β0 + β1Xi + εi

the assumptions are

(L) Linearity of Regression function: E(Yi) = β0 + β1Xi or equivalently Eεi = 0

(N) Normality of Error Terms: εi ∼ N(0, σ2)

(I) Independent/ uncorrelated Error Terms: Cov(εi, εj) = 0, if i �= j

(E) Equal (constant) Error Variance: Var{εi} = σ2

We should always check fitted models to make sure that these assumptions have not been

violated. If some assumptions, then (1) the efficiency of estimators cannot be guaranteed;

(2) some statistical inference (e.g. the test) is no longer correct; (3) the conclusions may

not be correct.

• if nonlinearity exists, the parameter estimates are NOT valid. Solution: One can

include polynomial terms to improve the fitting.

• if the variance is unequal, parameter estimates are valid, but the confidence intervals

are misleading. Solution: We can consider the weighted Least squares estimation

• Outliers1 far from the pattern of the rest of the Xs may affect the line. Solution: We

can remove the outliers to improve the estimation
1an outlier is an observation that is numerically distant from the rest of the data.

1



• dependent observations may reduce the efficiency of the parameters estimator, but

again parameter estimates are valid. Solution: (to be discussed later)

• distribution of the random errors are not normally distributed: parameters estimates

are still correct, but the confidence intervals are misleading. Solutions:

– Including additional predictors sometimes solves this problem

– Another solution is to transform Y

∗ ln(Y ) or
√

Y draws in data skewed to high values

∗ 1/Y or 1/
√

Y draws in data skewed to low values

∗ use transformed Y instead of original Y

∗ interpret parameters according to transformed Y!

However, the violation and departures from the underlying assumptions cannot be de-

tected using any of the summary statistics we’ve examined so far such as the t or F statistics

or R2. In fact, tests based on these statistics may lead to incorrect inference since they are

based on many of the assumptions above.

2 How do you check the assumptions?

In general ... plot your data!

• Simply plotting the data can be one of the most powerful model checking techniques

• From a simple plot of Y on X that includes the fitted regression line, we can check:

(1) linearity; (2) normality; (3) equal (constant) variance; (4) outliers, etc.

2.1 Linear relationship

• Is the model correct?

– Is this the right line?

– Are there outliers for which the model may be wrong?
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• Assess with graphs: plot Y against X and the fitted line/model

– If there are repeated observation on the each Xi: Note that the observations with

the same Xi forms a sub-sample. We can estimate its mean. If the sub-sample

mean is obviously different from the regression line, then the linear relationship

may be violated.

– If there is no repeated observation on each Xi, we can slice of the region of X

and take each slice as from one sub-sample.

2.2 Independent observations/indivisuals

• Are all the individuals surveyed independent from one another?

• Cannot be assessed graphically or statistically

• Must know how the data were collected, for example, when the data are collected over

time. (we shall discuss this later in Chapter 2)

2.3 Normally distributed errors

• At every value of X, the observed points should follow a roughly normal distribution

centered at the fitted value of Y.

• Assess with residual plots

2.4 Equal variance

• At every value of X, the observed points should follow a roughly normal distribution

with the same variance across all Xs

• Assess with residual plots

2.5 4 types of assumption violations; see figure 1
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Figure 1:

3 Residual Analysis:

3.1 Standardized residuals

• Since our model states: εi ∼ N(0, σ2),the standardized residuals,

ei − 0
σ̂

where σ̂ = MSE

should follow (roughly) a standard normal distribution (more exactly t-distribution)

3.2 Residual Analysis

If the model fits the data well, we expect:

• A histogram of the standardized residuals should look normal.

• Check for asymmetry and outliers.

• A plot of the residuals vs. X should look like a random scatter (no systematic rela-

tionship)

• A plot of the residuals vs. Ŷi (the fitted values) should also look like a random scatter.
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3.3 Residual Analysis: Example plots

Example: Relationship between health status and pollution in 20 geographic areas; see

figure 2
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Figure 2:

Conclusion for the example

• Regression scatterplot looks good

• Standard Residuals appear fairly normally distributed

• Standard Residuals vs X appear randomly scattered (i.e. no apparent patterns & no

extreme outliers)

• Standardized Residuals vs predicted values appear randomly scattered (i.e. no appar-

ent patterns & no extreme outliers)

Example: Nonlinear Example plots; see figure 3

Conclusion for the example

• Regression scatterplot shows non-linear relationship

• Standardized Residuals dont look normally distributed

• Standardized Residuals vs X shows nonlinear relationship

• Standardized Residuals vs predicted values shows non-linear relationship
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Figure 4:

Example: Outlier Example plots; see figure 4

Conclusion for the example

• Regression scatterplot shows outlier

• Standardized Residuals look normal but large residual present

• Standardized Residuals vs X shows a pattern & the outlier

• Standardized Residuals vs Y shows a pattern & the outlier

Example: Non-Normal Example plots; see figure 5

Conclusion for the example
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Figure 5:

• Regression scatterplot shows non-even spread

• Standardized Residuals dont look normally distributed

• Standardized Residuals vs X shows noneven spread

• Standardized Residuals vs predicted values shows non-even spread

Example: Unequal Variance Example plots; see figure 6
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Figure 6:

Conclusion for the example

• Regression scatterplot shows increasing variability

• Standardized Residuals do look normally distributed

• Standardized Residuals vs X shows increasing variability
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• Standardized Residuals vs predicted values shows increasing variability

Example 3.1 ((Data), (R code)) bus transit map example

Y - increase of daily bus ridership; X - number of free distributed bus transit maps

conclusion: the linearity assumption cannot be accepted; see figure 7

R code

busmap=read.table(file="busmap.dat")

reg=lm(busmap[,1] ∼ busmap[,2]) # or reg=lm(busmap$V1 ∼ busmap$V2)

plot(busmap[,2], busmap[,1], xlab="maps distributed",

ylab="increase in ridership",

xlim = c(80, 240), ylim=c(0, 8) )

lines(busmap[,2], reg$fitted)

plot(busmap[,2], reg$residuals, xlab="maps distributed",

ylab="fitted residuals",

xlim = c(80, 240), ylim=c(-1, 1) )

lines(c(80, 240), c(0, 0))

Plot of Y against X and Plot residuals against X
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Figure 7:

Example 3.2 Wage Data; see figure 8

Ŷi = 8.38 + 0.04 × Experiencei

Conclusion
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Figure 8:

• There seems to be a residual pattern for people with very little experience. (could

add polynomials to allow for non-linearity)

• There is one outlier. (should check data entry and information for that person, or

remove it from the data)

• The variance is unequal.

• The random errors are not normally distributed. here is the reason: consider

Standardized residual =
ei√

MSE

– Standardized residual > 2 standard deviations from 0 should happen only 5%

of the time

– Standardized residual > 3 standard deviations from 0 should happen only 1%

of the time

• The data were collected by randomly sampling workers, so independence can be as-

sumed.
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