Chapter 2 Multiple Regression 1
(Part 1)

1 Regression several predictor variables

The response Y depends on several predictor variables X1, ..., X,

response  predictor variables

A~
% X1, X2, .., X,
Observations (or Design)
obs Y X1 X2 cee Xp
1 Y: X117 X9 .. le
2 Y Xo1  Xoo Xop
n Y2 an Xng e an

Thus, generally for individual 4,
the response is: Y;

the predictors variables are: X;1, X;o,..., X

2 Linear regression model with Two predictor variables

The linear regression model assumes that for any subject/individual with response Y; and

predictor X;1, X;o satisfies
Yi= 0o+ b5 X+ f2Xia +&i
where Ee; = 0, or equivalently
E(Y;) = 8o + 1 Xi1 + B2 Xio
Sometimes, it is also written as,

Y =60+ 51 X1+ B Xo + ¢



where Ee = (. or equivalently
E(Y) =00+ 51 X1 + (2 X2

where 3y, 81, B2 are called regression coefficient
0Bo is called intercept
(1 is called coeflicient of X7; (9 is called coefficient of Xs

For example: (height in inch)
(Expected height of girl) = —2.5 + 0.5(Farther’s height) + 0.5(Mother’s height)

(Expected height of boy) = 2.5 4+ 0.5(Farther’s height) + 0.5(Mother’s height)

Meaning of the regression coefficients

(1 indicate the change in the mean response EY per unit increase in X7 when X5 holds
constant.

(o indicate the change in the mean response EY per unit increase in X5 when X; holds
constant.

Note that X; and X5 have some correlation, thus you need to know the difference in
statistical and mathematical models [in mathematical model, X; and X5 can be really free

the change, but statistical model may not completely free]

3 Linear regression model with p predictor variables

The linear regression model assumes that for any subject/individual with response Y; and

predictor X;i, ..., X, satisfies

Y= fo+ 1 Xin + oo+ BpXip + &
—~—
predictable unpredictable

where Ee; = 0, or equivalently
E(Y)) = fo + 51X + - + BpXip

This means for each individual, the expected value of the response is a functional relationship
with the independent variables. But the ”real” value has random error ¢; from the
expected value.

Sometimes, the model is written as

Y:ﬁo—l-ﬂle-l-...-Fﬂpo-l-E



where Ee = 0, or equivalently
E(Y) =0+ 1 X1+ ...+ ﬁpo

which is called a hyperplane, where 3y, 51, ..., 8, are called regression coefficient
Meaning of the regression coefficients
0k indicate the change in the mean response EY per unit increase in X when the other

predictors remain constant.
It is easy to see that we have studied the case p = 1, i.e. simple linear regression model.

We usually make the following assumptions
(L) Linearity (implied in the model)
(I) Independence of Error Terms, thus Cov(ej,e;) =0, if i#j

(N) Normality of Error Terms: ¢ ~ N(0,0?)

(E) Equal/constant Error Variance: Var{e;} = o2

(F) Fixed design: Xj, ..., Xj, are known and nonrandom.

There are p+1 coefficients [, ..., 3,, one common variance o2, they are called parameters

of the model.

4 Some Examples

Here we give some examples that are nonlinear, but can be transformed to linear regression

models.

e Qualitative Predictor variables. It is understandable that the predictors must be
quantitative. But we can also consider qualitative predictor, by denoting the predictor
using dummy variables. For example Y a person’s height, X is his/her father’s height,
Xo his/her mother’s height, S is the gender of the person. We can denote the gender

by
Yoo 1, if the person is male
371 0, if the person is male

Then our model is

Y =060+ 51 X1 + BoXo+ 33X3 + ¢



e Polynomial regression models, for example

Yi = Bo+ B Xi + X} + i,

Y; = o+ B Xi + Bs X7 + ... + B X[ + &,

Yi = Bo + B1Xi1 + B2 Xia + B2 Xis + Ba X7 + 85 X1 Xio + B X5 + i,
Yi = Bo + B1Xi1 + B2 Xia + B2 Xis + BaX] + 85 X1 X2 + B X\ + i,

X;1 X2 are usually called interaction of X; and Xs, how about X;5X;37

e Transformed model (after variable transformation, the model become a linear regres-

sion model). Here are some examples

(a) For model Y; = agexp(B1Xi1 + ... + BpXip)&i, let Z; = log(Y;), €; = log(&;) and
Bo = log(ap). Taking logrithm, the model becomes

Zi = Bo+ 1 Xi1 + .. + B Xip + &5

(b) model Y; = By + 1 Xi1 + B2 Xiz2 + B2 Xis + B XA + B5Xi1 Xio + B X3 + €, can be

written as
Yi = Bo + 51X + B2 Xio + B2 Xis + BaZia + B5Zis + B6Zic + €iy
where Ziy = X2, Zis = Xi1 Xi2 and Zig = X3
5 General linear regression model in matrix terms
Again, our general model can be written as
Y = Bo + 1 Xi1 + ... + BpXip + &4, i=1,...,n
or

Yi =00+ 61X+ ... + BpXip + €1,

Yo = fo + 1 Xo1 + ... + BpXop + €2,

Yn = ﬁO + ﬁanl + ...+ ﬁanp +én

(with the 5 assumptions)



Let

1 XH s Xl,p
L Xor -0 Xgp . .
X =1 . ] , called Design matrix
1 X1 - Xpp
Bo Y1
B ' Yo
0= . called coefficient vector Y = . called response vector
Bp Yo
€1
€2
&= . called random error vector
€n
It is easy to check
1 X1 - Xiy Bo Bo+ 1 X1+ ...+ BpXip
I Xop -+ Xgy Bu| | BotBiXon+ .+ BpXay
1 an e Xn,p ﬂp ﬁO + ﬁan,l + .+ ﬁan,p

The regression model can be written as
Y=X3+¢

The (L-I-N-E) assumptions can be written as

o2 0 0 --- 0
0 o> 0 -+ 0 )
E{¢}=0,Var{€}=| . . . .| =071
0 0 O o?
£ ~ N(0,0°1)
6 Least squares estimation
e Minimize Q(bo, ceey bp) - Z(Y; - b() - leil — e — pri,p)2

i=1
e by calculus, we have the following (p+1) Normal equations: (how?)

n

S (Yi—bo—biXg— ... —bpXip) = 0
=1
D (YVi—bo— b1 X — . = 0pXip)Xin = 0
i=1
S Yi—bo—bi X — .. —bXip)Xyp = 0
i=1



let b = (b, b1, ...,bp)". Then the Normal equations can be written as
X'Xb=X'Y
The solution, i.e. the estimator of the coefficient vector, is
b=(XX)"'XY
The estimated model is
Y =by+ b1 X1 + ... +b,X,

Fitted values
}A/vi:bO‘i’leil—i_"'—i—pr’ip? i:l,...,n

(Fitted) residuals

€; :YZ-—YZ-:Yi—(b0+b1XZ-1+...+prip), 1=1,...n
Estimator of o2, denoted by &2,

n
MSE = Z e2/{n—(p+1)} called Mean squared error
i=1

why (p+1)? (because there are p+1 constraints, p+1 is the number of (free) coeffi-

cients, or more exactly the number of Normal equations).

Dwaine Studios example Y-sales, X;- number of persons aged 16 or less, Xo-

income. 21 observations

1.
174.4 1 685 16.7
164.4 1 452 16.8
166.5 1 523 16.0
2.
21.0  1,302.4  360.0 3,820
X'X = | 1,3024 87,7079 22,609.2 | , XY = | 249,643
360.0 22,609.2 6,190.3 66,073
3. X
21.0  1,3024 3600 ] [ 3,820 —68.85
b= | 1,302.4 87,707.9 22,609.2 249,643 | = | 1.45
360.0 22,609.2 6,190.3 66,073 9.37



4. The estimated model is

Y = —68.85 + 1.45X; + 9.37 X,

5.
obs. Xj X5 Y Fitted }A/; residuals e;
1 68.5 16.7 174.4 187.184 -12.7841
2 452 16.8 164.4 154.229 10.1706
21 523 16.0 166.5 157.064 9.4356
6.

21 2
2L 2 9180.9274

52 — MSE — 2i=1%  _ — 121.1626
n—p—1 21-2-1

7 Unbias of the estimators of coefficients

The estimator of coefficient vector is unbiased, i.e.

E(b) = (
and
Var(b) = ¢?(X'X)~!
In details
E(bi) = B
and

Var(by) = 0% e 41, k=0,1,..,p—1

where ¢y, is the (k, k)th entry in (X'X)~1.
[Proof: Note that EY = X3. Thus

E{b} = E{(X'X)"'X'Y} = {X'X)"'X'E{Y} =13
and

Var(b) = (X'X) ' X'Var(Y)X(X'X)™ = (X'X) ' X'0?IX(X'X) ! = 0?(X'X) !



8

Fitted values and residuals in matrix form

e fitted value

Vi bo + b1X11 + ... + by X1
. Ys bo + b1 Xo1 + ... + b, X2
Y p— . pu— . p— Xb
Yn bo + b1 Xp1 + ... + prn,p
= XX'X)"'X'Y

e fitted residuals
e=Y-Y=(I-XXX)"XY

Denote X(X'X)"'X' by H, we have Y = HY, e= (I-H)Y
Variance-covariance matrix for residuals e

Var{e} = Var{(I- H)Y} = (I - H)Var{Y }(I - H)'

Var{Y} = Var{£} = 021
eI-H'=I-H=I-H
e HH = X(X'X) X' X(X' X)X = X(X'X)"1X'=H

e I-H)I-H)=I-2H+HH=1I-H

Var{e} = 02(I — H), which can be estimated by 2(I — H), where

ee Y(I-H)Y

5% = MSE = =
n—-p—-1 m-p-1)

E6?2 = E(MSE) = 0% [The proof can be ignored]



10 Variance-covariance matrix for b
Recall b = (X'X)'X'Y,
Var{b} = (X' X)"'X Var{Y}X(X'X)" ! = ¢2(X'X)!

where o2 can be estimated by > =MSE. In other word, we estimate Var{b} by 52(X'X)~1,
denoted s(b) = 52(X'X)"!
For the above example,

SSE ee 218093

= = =121.16
n-p—-1 21-2-1 18

MSE =

3,602.0 8.748 —241.43
s?{b} =121.16(X X) ' = | 8748 0.0448 —0.679
—241.43 —0.679 16.514

11 The distribution of estimators
If £ ~ N(0,02I) (i.e. g are IID N(0,0?)), then

e The estimated coefficients

b~ N(3,0*(X'’X)™)
Denote the (i, j)th entry of (X'X)™! by ¢;;, then
bk‘ ~ N(ﬁka U2Ck‘+1,k?+1)7 k= 07 ]-7 P — 1

(where b = (b, b1, ..., bp)")

o Let 5(by) = \/MSE % Cj41 141, called Standard Error (S.E.) for by, (which can be
found in the output of R), then

by, — Br
~tn—p—1
e t-value
by,
t* =
s(br.)



12 Confidence interval for j3;

with 1 — a confidence, the Confidence interval for (; is
[br, —s(bg) *t(l —a/2,n —p—1), b —s(bx)*t(l —a/2,n —p—1)]
For the Dwaine Studios example, the 95% Confidence interval for (35 is
[0.3655 — 4.0640 % 2.101,  9.3655 + 4.0640 % 2.101] = [0.83, 17.90]
where quantile (critical value)
t(1—a/2,n—p—1)=1t(0.975,21 — 3) = 2.101

is used

13 test for G, =0

Our hypothesis is
Ho: B, =0, Hg:fBp#0

under Hy,

b =Bk b
L o % B A

For significant level «, our criterion is

If the calculated [t*| > t(1 — a/2,n —p — 1), reject Hy

If the calculated |t*| < t(1 — a/2,n —p — 1), accept Hy
Similarly, we can do the test based on the p-value

If p-value < a, reject Hy

If p-value > «, accept Hy

For the Dwaine Studios example, test
Hy:81=0, Hy:81#0
with significance level 5%, since
|t*] =6.868 > t(1l —a/2,n —p—1) =2.101

we reject Hy. (in other words, (31 is significantly different from 0.)
Similarly,
Hy : By = 0 can be accepted
Hy : B = 0 should be rejected

10



14 Prediction

For any new individual with X,y = (21,...,2p) ", the predict mean response is

Ynew = X'b
where
X = (1,21, xp)

We have
EYnew = EYnew

Note that if normal errors are assumed, i.e. g; are IID N(0,0?), then

~

Yiew ~ N(EYpew, X' (X'X) "1 X0?)

Let
§2(Vnew) = X' (X'X)1X6% = X/(X'X)7'X « MSE
We have .
Ynew T EYnew ~ t(n —p— 1)
S(Ynew)

With confidence 100(1 — )%, the C.I. for E(Y,¢,) is

A

[Yiew — s( Anew) xt(1—a/2,n—p—1), ffnew + s( Anew) xt(1—a/2,n—p—1)]

What about the prediction interval (P.I.) for the value Y;,c,,? With confidence 100(1 —
a)%, the P.I. for Y, is

[Ynew — s(pred) *t(1 —a/2,n —p — 1), ffnew + s(pred) xt(1 — a/2,n —p —1)]

where

s (pred) = MSE + s*(YVnew) = MSE{1 + X'(X'X) 71X}

15 R code

e regression=1m(y ~ x1 + x2 + ... + )

summary (regression)

e Xnew = data.frame(xl=c(...), x2=c(...), ..., xp=c(...))

predict(regression, Xnew, interval = "confidence"/"prediction", level=0.95)
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