
Chapter 2 Multiple Regression I

(Part 1)

1 Regression several predictor variables

The response Y depends on several predictor variables X1, ...,Xp

response︷︸︸︷
Y

predictor variables︷ ︸︸ ︷
X1, X2, ..., Xp

Observations (or Design)

obs. Y X1 X2 ... Xp

1 Y1 X11 X12 ... X1p

2 Y2 X21 X22 ... X2p
...
n Y2 Xn1 Xn2 ... Xnp

Thus, generally for individual i,

the response is: Yi

the predictors variables are: Xi1,Xi2, ...,Xip

2 Linear regression model with Two predictor variables

The linear regression model assumes that for any subject/individual with response Yi and

predictor Xi1,Xi2 satisfies

Yi = β0 + β1Xi1 + β2Xi2 + εi

where Eεi = 0, or equivalently

E(Yi) = β0 + β1Xi1 + β2Xi2

Sometimes, it is also written as,

Y = β0 + β1X1 + β2X2 + ε
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where Eε = 0. or equivalently

E(Y ) = β0 + β1X1 + β2X2

where β0, β1, β2 are called regression coefficient

β0 is called intercept

β1 is called coefficient of X1; β2 is called coefficient of X2

For example: (height in inch)

(Expected height of girl) = −2.5 + 0.5(Farther’s height) + 0.5(Mother’s height)

(Expected height of boy) = 2.5 + 0.5(Farther’s height) + 0.5(Mother’s height)

Meaning of the regression coefficients

β1 indicate the change in the mean response EY per unit increase in X1 when X2 holds

constant.

β2 indicate the change in the mean response EY per unit increase in X2 when X1 holds

constant.

Note that X1 and X2 have some correlation, thus you need to know the difference in

statistical and mathematical models [in mathematical model, X1 and X2 can be really free

the change, but statistical model may not completely free]

3 Linear regression model with p predictor variables

The linear regression model assumes that for any subject/individual with response Yi and

predictor Xi1, ...,Xip satisfies

Yi = β0 + β1Xi1 + ... + βpXip︸ ︷︷ ︸
predictable

+ εi︸︷︷︸
unpredictable

where Eεi = 0, or equivalently

E(Yi) = β0 + β1Xi1 + ... + βpXip

This means for each individual, the expected value of the response is a functional relationship

with the independent variables. But the ”real” value has random error εi from the

expected value.

Sometimes, the model is written as

Y = β0 + β1X1 + ... + βpXp + ε
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where Eε = 0, or equivalently

E(Y ) = β0 + β1X1 + ... + βpXp

which is called a hyperplane, where β0, β1, ..., βp are called regression coefficient

Meaning of the regression coefficients

βk indicate the change in the mean response EY per unit increase in Xk when the other

predictors remain constant.

It is easy to see that we have studied the case p = 1, i.e. simple linear regression model.

We usually make the following assumptions

(L) Linearity (implied in the model)

(I) Independence of Error Terms, thus Cov(εi, εj) = 0, if i �= j

(N) Normality of Error Terms: ε ∼ N(0, σ2)

(E) Equal/constant Error Variance: Var{εi} = σ2

(F) Fixed design: Xi1, ...,Xip are known and nonrandom.

There are p+1 coefficients β0, ..., βp, one common variance σ2, they are called parameters

of the model.

4 Some Examples

Here we give some examples that are nonlinear, but can be transformed to linear regression

models.

• Qualitative Predictor variables. It is understandable that the predictors must be

quantitative. But we can also consider qualitative predictor, by denoting the predictor

using dummy variables. For example Y a person’s height, X1 is his/her father’s height,

X2 his/her mother’s height, S is the gender of the person. We can denote the gender

by

X3 =
{

1, if the person is male
0, if the person is male

Then our model is

Y = β0 + β1X1 + β2X2 + β3X3 + ε
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• Polynomial regression models, for example

Yi = β0 + β1Xi + β2X
2
i + εi,

Yi = β0 + β1Xi + β3X
2
i + ... + βkX

k
i + εi,

Yi = β0 + β1Xi1 + β2Xi2 + β2Xi3 + β4X
2
i1 + β5Xi1Xi2 + β6X

3
i3 + εi,

Yi = β0 + β1Xi1 + β2Xi2 + β2Xi3 + β4X
2
i1 + β5Xi1Xi2 + β6X

4
i1 + εi,

Xi1Xi2 are usually called interaction of X1 and X2, how about Xi2Xi3?

• Transformed model (after variable transformation, the model become a linear regres-

sion model). Here are some examples

(a) For model Yi = a0 exp(β1Xi1 + ... + βpXip)ξi, let Zi = log(Yi), εi = log(ξi) and

β0 = log(a0). Taking logrithm, the model becomes

Zi = β0 + β1Xi1 + ... + βpXip + εi

(b) model Yi = β0 + β1Xi1 + β2Xi2 + β2Xi3 + β4X
2
i1 + β5Xi1Xi2 + β6X

3
i3 + εi, can be

written as

Yi = β0 + β1Xi1 + β2Xi2 + β2Xi3 + β4Zi4 + β5Zi5 + β6Zi6 + εi,

where Zi4 = X2
i1, Zi5 = Xi1Xi2 and Zi6 = X3

i3.

5 General linear regression model in matrix terms

Again, our general model can be written as

Yi = β0 + β1Xi1 + ... + βpXip + εi, i = 1, ..., n

or

Y1 = β0 + β1X11 + ... + βpX1p + ε1,

Y2 = β0 + β1X21 + ... + βpX2p + ε2,

...

Yn = β0 + β1Xn1 + ... + βpXnp + εn

(with the 5 assumptions)
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Let

X =

⎡
⎢⎢⎢⎣

1 X11 · · · X1,p

1 X21 · · · X2,p
...

...
...

1 Xn1 · · · Xn,p

⎤
⎥⎥⎥⎦ , called Design matrix

β =

⎡
⎢⎢⎢⎣

β0

β1
...

βp

⎤
⎥⎥⎥⎦ called coefficient vector Y =

⎡
⎢⎢⎢⎣

Y1

Y2
...

Yn

⎤
⎥⎥⎥⎦ called response vector

E =

⎡
⎢⎢⎢⎣

ε1

ε2
...

εn

⎤
⎥⎥⎥⎦ called random error vector

It is easy to check⎡
⎢⎢⎢⎣

1 X11 · · · X1,p

1 X21 · · · X2,p
...

...
...

1 Xn1 · · · Xn,p

⎤
⎥⎥⎥⎦

⎡
⎢⎢⎢⎣

β0

β1
...

βp

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

β0 + β1X1,1 + ... + βpX1,p

β0 + β1X2,1 + ... + βpX2,p
...

β0 + β1Xn,1 + ... + βpXn,p

⎤
⎥⎥⎥⎦

The regression model can be written as

Y = Xβ + E

The (L-I-N-E) assumptions can be written as

E{E} = 0,Var{E} =

⎡
⎢⎢⎢⎣

σ2 0 0 · · · 0
0 σ2 0 · · · 0
...

...
...

...
0 0 0 · · · σ2

⎤
⎥⎥⎥⎦ = σ2I

E ∼ N(0, σ2I)

6 Least squares estimation

• Minimize Q(b0, ..., bp) =
n∑

i=1
(Yi − b0 − b1Xi1 − ... − bpXi,p)2

• by calculus, we have the following (p+1) Normal equations: (how?)
n∑

i=1

(Yi − b0 − b1Xi1 − ... − bpXi,p) = 0

n∑
i=1

(Yi − b0 − b1Xi1 − ... − bpXi,p)Xi1 = 0

...
n∑

i=1

(Yi − b0 − b1Xi1 − ... − bpXi,p)Xip = 0
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• let b = (b0, b1, ..., bp)′. Then the Normal equations can be written as

X
′
Xb = X

′
Y

• The solution, i.e. the estimator of the coefficient vector, is

b = (X
′
X)−1X

′
Y

• The estimated model is

Ŷ = b0 + b1X1 + ... + bpXp

• Fitted values

Ŷi = b0 + b1Xi1 + ... + bpXip, i = 1, ..., n

• (Fitted) residuals

ei = Yi − Ŷi = Yi − (b0 + b1Xi1 + ... + bpXip), i = 1, ..., n

• Estimator of σ2, denoted by σ̂2,

MSE =
n∑

i=1

e2
i /{n − (p + 1)} called Mean squared error

why (p+1)? (because there are p+1 constraints, p+1 is the number of (free) coeffi-

cients, or more exactly the number of Normal equations).

• Dwaine Studios example Y -sales, X1- number of persons aged 16 or less, X2-

income. 21 observations

1.

Y =

⎡
⎢⎢⎢⎣

174.4
164.4

...
166.5

⎤
⎥⎥⎥⎦ ; X =

⎡
⎢⎢⎢⎣

1 68.5 16.7
1 45.2 16.8
...

...
...

1 52.3 16.0

⎤
⎥⎥⎥⎦

2.

X
′
X =

⎡
⎣ 21.0 1, 302.4 360.0

1, 302.4 87, 707.9 22, 609.2
360.0 22, 609.2 6, 190.3

⎤
⎦ ,X

′
Y =

⎡
⎣ 3, 820

249, 643
66, 073

⎤
⎦

3.

b =

⎡
⎣ 21.0 1, 302.4 360.0

1, 302.4 87, 707.9 22, 609.2
360.0 22, 609.2 6, 190.3

⎤
⎦
−1 ⎡

⎣ 3, 820
249, 643
66, 073

⎤
⎦ =

⎡
⎣ −68.85

1.45
9.37

⎤
⎦

6



4. The estimated model is

Ŷ = −68.85 + 1.45X1 + 9.37X2

5.

obs. X1 X2 Y Fitted Ŷi residuals ei

1 68.5 16.7 174.4 187.184 -12.7841
2 45.2 16.8 164.4 154.229 10.1706
...

...
...

...
...

...
21 52.3 16.0 166.5 157.064 9.4356

6.

σ̂2 = MSE =
∑21

i=1 e2
i

n − p − 1
=

2180.9274
21 − 2 − 1

= 121.1626

7 Unbias of the estimators of coefficients

The estimator of coefficient vector is unbiased, i.e.

E(b) = β

and

Var(b) = σ2(X′X)−1

In details

E(bk) = βk

and

Var(bk) = σ2ck+1,k+1, k = 0, 1, ..., p − 1

where ckk is the (k, k)th entry in (X′X)−1.

[Proof: Note that EY = Xβ. Thus

E{b} = E{(X′X)−1X′Y} = {(X′X)−1X′E{Y} = β

and

Var(b) = (X′X)−1X′Var(Y)X(X′X)−1 = (X′X)−1X′σ2IX(X′X)−1 = σ2(X′X)−1 ]
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8 Fitted values and residuals in matrix form

• fitted value

Ŷ =

⎡
⎢⎢⎢⎣

Ŷ1

Ŷ2
...

Ŷn

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

b0 + b1X11 + ... + bpX1,p

b0 + b1X21 + ... + bpX2,p
...

b0 + b1Xn1 + ... + bpXn,p

⎤
⎥⎥⎥⎦ = Xb

= X(X
′
X)−1X

′
Y

• fitted residuals

e = Y − Ŷ = (I − X(X
′
X)−1X

′
)Y

Denote X(X
′
X)−1X

′
by H, we have Ŷ = HY, e = (I − H)Y

9 Variance-covariance matrix for residuals e

• Var{e} = Var{(I − H)Y} = (I − H)Var{Y}(I − H)
′

• Var{Y} = Var{E} = σ2I

• (I − H)
′
= I

′ − H
′
= I − H

• HH = X(X
′
X)−1X

′
X(X

′
X)−1X

′
= X(X

′
X)−1X

′
= H

• (I − H)(I − H) = I − 2H + HH = I − H

• Var{e} = σ2(I − H), which can be estimated by σ̂2(I − H), where

σ̂2 = MSE =
e′e

n− p − 1
=

Y′(I − H)Y
(n − p− 1)

• Eσ̂2 = E(MSE) = σ2 [The proof can be ignored]
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10 Variance-covariance matrix for b

Recall b = (X
′
X)−1X

′
Y,

Var{b} = (X
′
X)−1X

′
Var{Y}X(X

′
X)−1 = σ2(X

′
X)−1

where σ2 can be estimated by σ̂2 =MSE. In other word, we estimate Var{b} by σ̂2(X
′
X)−1,

denoted s(b) = σ̂2(X
′
X)−1

For the above example,

MSE =
SSE

n− p− 1
=

e
′
e

21− 2 − 1
=

2,180.93
18

= 121.16

s2{b} = 121.16(X
′
X)−1 =

⎡
⎣ 3, 602.0 8.748 −241.43

8.748 0.0448 −0.679
−241.43 −0.679 16.514

⎤
⎦

11 The distribution of estimators

If E ∼ N(0, σ2I) (i.e. εi are IID N(0, σ2)), then

• The estimated coefficients

b ∼ N(β, σ2(X′X)−1)

Denote the (i, j)th entry of (X′X)−1 by cij , then

bk ∼ N(βk, σ
2ck+1,k+1), k = 0, 1, ..., p − 1

(where b = (b0, b1, ..., bp)′)

• Let s(bk) =
√

MSE ∗ ck+1,k+1, called Standard Error (S.E.) for bk (which can be

found in the output of R), then

bk − βk

s(bk)
∼ t(n − p − 1)

• t-value

t∗ =
bk

s(bk)
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12 Confidence interval for βk

with 1 − α confidence, the Confidence interval for βk is

[bk − s(bk) ∗ t(1 − α/2, n − p − 1), bk − s(bk) ∗ t(1 − α/2, n − p − 1)]

For the Dwaine Studios example, the 95% Confidence interval for β2 is

[9.3655 − 4.0640 ∗ 2.101, 9.3655 + 4.0640 ∗ 2.101] = [0.83, 17.90]

where quantile (critical value)

t(1 − α/2, n − p − 1) = t(0.975, 21 − 3) = 2.101

is used

13 test for βk = 0

Our hypothesis is

H0 : βk = 0, Ha : βk �= 0

under H0,

t =
bk − βk

s(bk)
=

bk

s(bk)
=∼ t(n − p − 1)

For significant level α, our criterion is

If the calculated |t∗| > t(1 − α/2, n − p − 1), reject H0

If the calculated |t∗| ≤ t(1 − α/2, n − p − 1), accept H0

Similarly, we can do the test based on the p-value

If p-value < α, reject H0

If p-value ≥ α, accept H0

For the Dwaine Studios example, test

H0 : β1 = 0, Ha : β1 �= 0

with significance level 5%, since

|t∗| = 6.868 > t(1 − α/2, n − p − 1) = 2.101

we reject H0. (in other words, β1 is significantly different from 0.)

Similarly,

H0 : β0 = 0 can be accepted

H0 : β2 = 0 should be rejected
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14 Prediction

For any new individual with Xnew = (x1, ..., xp)�, the predict mean response is

Ŷnew = X ′b

where

X = (1, x1, ..., xp)′

We have

EŶnew = EYnew

Note that if normal errors are assumed, i.e. εi are IID N(0, σ2), then

Ŷnew ∼ N(EYnew,X ′(X′X)−1Xσ2)

Let

s2(Ŷnew) = X ′(X′X)−1X σ̂2 = X ′(X′X)−1X ∗ MSE

We have
Ŷnew − EYnew

s(Ŷnew)
∼ t(n − p − 1)

With confidence 100(1 − α)%, the C.I. for E(Ynew) is

[Ŷnew − s(Ŷnew) ∗ t(1 − α/2, n − p − 1), Ŷnew + s(Ŷnew) ∗ t(1 − α/2, n − p − 1)]

What about the prediction interval (P.I.) for the value Ynew? With confidence 100(1 −
α)%, the P.I. for Ynew is

[Ŷnew − s(pred) ∗ t(1 − α/2, n − p − 1), Ŷnew + s(pred) ∗ t(1 − α/2, n − p − 1)]

where

s2(pred) = MSE + s2(Ŷnew) = MSE{1 + X ′(X′X)−1X}

15 R code

• regression=lm(y ∼ x1 + x2 + ... + xp)

summary(regression)

• Xnew = data.frame(x1=c(...), x2=c(...), ..., xp=c(...))

predict(regression, Xnew, interval = "confidence"/"prediction", level=0.95)

11


	Regression several predictor variables
	Linear regression model with Two predictor variables
	Linear regression model with p predictor variables
	Some Examples 
	 General linear regression model in matrix terms
	 Least squares estimation
	Unbias of the estimators of coefficients
	 Fitted values and residuals in matrix form
	Variance-covariance matrix for residuals e
	Variance-covariance matrix for b
	The distribution of estimators
	Confidence interval for  k
	test for  k = 0 
	Prediction
	 R code

