Chapter 2 Multiple Regression (Part 2)

1 Analysis of Variance in multiple linear regression

Recall the model again

$$Y_i = \underbrace{\beta_0 + \beta_1 X_{i1} + \ldots + \beta_p X_{ip}}_{\text{predictable}} + \underbrace{\varepsilon_i}_{\text{unpredictable}}, \quad i = 1, ..., n$$

For the fitted model $\hat{Y}_i = b_0 + b_1 X_{i1} + ... + b_p X_{ip}$,

$$Y_i = \hat{Y}_i + e_i \quad i = 1, ..., n$$

$$\underbrace{Y_i - \bar{Y}}_{\text{Total deviation}} = \underbrace{\hat{Y}_i - \bar{Y}}_{\text{Deviation}} + \underbrace{e_i}_{\text{Deviation}}$$
Deviation due to the error

	deviation of	deviation of	deviation of
obs	Y_i	$\hat{Y}_i = b_0 + b_1 X_{i1} + \dots + b_p X_{ip}$	$e_i = Y_i - \hat{Y}_i$
1	$Y_1 - \bar{Y}$	$\hat{Y}_1 - ar{Y}$	$e_1 - \bar{e} = e_1$
2	$Y_2 - \bar{Y}$	$\hat{Y}_2 - ar{Y}$	$e_2 - \bar{e} = e_2$
:	:	:	:
n	$Y_n - \bar{Y}$	$\hat{Y}_n - \bar{Y}$	$e_n - \bar{e} = e_n$
Sum of	$\sum_{i=1}^{n} (Y_i - \bar{Y})^2$	$\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2$	$\sum_{i=1}^{n} e_i^2$
squares	Total Sum	Sum of squares	Sum of squares
	of squares	due to regression	of error/residuals
	(SST)	(SSR)	(SSE)

We have

$$\underbrace{\sum_{i=1}^{n} (Y_i - \bar{Y})^2}_{\text{SST}} = \underbrace{\sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})^2}_{\text{SSR}} + \underbrace{\sum_{i=1}^{n} e_i^2}_{\text{SSE}}$$

[Proof:

$$\sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y} + Y_i - \hat{Y}_i)^2$$

$$= \sum_{i=1}^{n} \{ (\hat{Y}_i - \bar{Y})^2 + (Y_i - \hat{Y}_i)^2 + 2(\hat{Y}_i - \bar{Y})(Y_i - \hat{Y}_i) \}$$

$$= SSR + SSE + 2 \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})(Y_i - \hat{Y}_i)$$

$$= SSR + SSE + 2 \sum_{i=1}^{n} (\hat{Y}_i - \bar{Y})e_i$$

$$= SSR + SSE$$

where $\sum_{i=1}^{n} \hat{Y}_i e_i = 0$ and $\sum_{i=1}^{n} e_i = 0$ are used, which follow from the Normal equations.

 $SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2 = \mathbf{Y'Y} - \frac{1}{n}\mathbf{Y'JY} = \mathbf{Y'}(\mathbf{I} - \frac{1}{n}\mathbf{J})\mathbf{Y}$

Degree of freedom? n-1 (with n being the number of observations)

 $SSE = \sum_{i=1}^{n} e_i^2 = \mathbf{e'e} = (\mathbf{Y} - \mathbf{Xb})'(\mathbf{Y} - \mathbf{Xb}) = \mathbf{Y}'(\mathbf{I} - \mathbf{H})\mathbf{Y}$

Degree of freedom? n-p-1 (with p+1 being the number of coefficients)

• Let $\mathbf{H} = \mathbf{X}(\mathbf{X}'\mathbf{X})^{-1}\mathbf{X}$ and and $\mathbf{J} = \mathbf{1}\mathbf{1}'/\mathbf{n}$. Note that

$$\hat{\mathbf{Y}} = \mathbf{H}\mathbf{Y}$$

and by the fact $\sum_{i=1}^{n} e_i = 0$ (see the normal equations),

$$\bar{\hat{Y}} = \bar{Y} = \mathbf{1}'\mathbf{Y}/n.$$

Thus

$$SSR = (\hat{\mathbf{Y}} - \bar{Y})' * (\hat{\mathbf{Y}} - \bar{Y}) = \mathbf{Y}'(\mathbf{H} - \mathbf{J}/n)'(\mathbf{H} - \mathbf{J}/n)'\mathbf{Y}$$
$$= \mathbf{Y}'(\mathbf{H} - \mathbf{J}/n)\mathbf{Y}.$$

Degree of freedom? **p** (the number of variables).

[Another Proof:1

$$\hat{\mathbf{Y}} - \bar{Y} = \mathbf{HY} - \mathbf{1}'/\mathbf{nY} = (\mathbf{H} - \mathbf{J}/\mathbf{n})\mathbf{Y}.$$

¹please ignore this proof

Write $\mathbf{X} = (\mathbf{1} \div \mathbf{X_1})$. Then

$$H(\mathbf{1} \stackrel{.}{\cdot} \mathbf{X_1}) = \mathbf{X}(\mathbf{X}^{\top} \mathbf{X})^{-1} \mathbf{X}^{\top} \mathbf{X} = \mathbf{X} = (\mathbf{1} \stackrel{.}{\cdot} \mathbf{X_1})^{\top}$$

Thus

$$H(1 : \mathbf{X}_1) = 1$$

Similarly, $\mathbf{1}'\mathbf{H} = \mathbf{1}'$. Thus

$$(H - J/n)'(H - J/n)' = H - J/nH - HJ/n + J/n = H - J/n$$

]

• It follows that

$$SST = SSR + SSE$$

We further define

$$MSR = \frac{SSR}{p}$$
 called **regression mean square**

$$MSE = \frac{SSE}{n-p-1}$$
 called error mean square (or mean squared error)

2 ANOVA table

Source of Variation	SS	df	MS	F-statistic
Regression	$SSR = \mathbf{Y}'(\mathbf{H} - \mathbf{J}/n)\mathbf{Y}$	p	$MSR = \frac{SSR}{p}$	MSR/MSE
Error	$SSE = \mathbf{Y}'(\mathbf{I} - \mathbf{H})\mathbf{Y}$	n-p-1	$MSE = \frac{SSE}{n-p-1}$	
Total	$SST = \mathbf{Y}'(\mathbf{I} - \mathbf{J}/n)\mathbf{Y}$	n-1		

3 F test for regression relation

- $H_0: \beta_1 = \beta_2 = ... = \beta_p = 0$ versus $H_a:$ not all $\beta_k (k=1,...,p)$ equal zero
- Under H_0 , the reduced model: $Y_i = \beta_0 + \varepsilon_i$

$$SSE(R) = SST = \sum_{i=1}^{n} (Y_i - \bar{Y})^2$$

degrees of freedom n-1

• Full model: $Y_i = \beta_0 + \beta_1 X_{i1} + ... + \beta_p X_{ip} + \varepsilon_i$

$$SSE(F) = SSE = e'e = (\mathbf{Y} - \mathbf{X}b)'(\mathbf{Y} - \mathbf{X}b)$$

degrees of freedom n-p-1

• F test statistic (also called F-test for the model)

$$F^* = \frac{(SSE(R) - SSE(F))/(df(R) - df(F))}{SSE(F)/df(F)} = \frac{SSR/p}{SSE/(n-p-1)}$$

• If $F^* \leq F(1 - \alpha; p, n - p - 1)$, conclude(accept) H_0 If $F^* > F(1 - \alpha; p, n - p - 1)$, conclude H_a (reject H_0)

4 R^2 and the adjusted R^2

- SSR = SST SSE is the part of variation explained by regression model
- Thus, define coefficient of multiple determination

$$R^2 = \frac{SSR}{SST} = 1 - \frac{SSE}{SST}$$

which is the proportion of variation in the response that can be explained by the regression model (or that can be explained by the predictors $X_1, ..., X_p$ linearly)

- $0 \le R^2 \le 1$
- with more predictor variables, SSE is smaller and R^2 is larger. To evaluate the contribution of the predictors fair, we define the adjusted R^2 :

$$R_a^2 = 1 - \frac{\frac{SSE}{n-p-1}}{\frac{SST}{n-1}} = 1 - (\frac{n-1}{n-p-1})\frac{SSE}{SST}$$

More discussion will be given later about R_a^2 .

- For two models with the same number of predictor variables, R^2 can be used to indicate which model is better.
- If model A include more predictor variables than model B, then the R^2 of A must be equal or greater than that of model B. In that case, it is better to use the adjusted R^2 .

5 Dwaine studios example

- Y-sales, X_1 number of persons aged 16 or less, X_2 income
- n = 21, p = 3
- SST = 26, 196.21, SSE = 2, 180.93, SSR = 26, 196.21 2, 180.93 = 24, 015.28
- $F^* = \frac{24,015.28/2}{2,180.93/18} = 99.1$

For $H_0: \beta_1 = \beta_2 = 0$ with $\alpha = 0.05, F(0.95; 2, 18) = 3.55$. because

$$F^* > F(0.95; 2, 18)$$

we reject H_0

•

$$R^2 = \frac{24,015.28}{26.196.21} = 0.917, \qquad R_a^2 = 0.907$$

Writing a fitted regression model

Coefficients: Estimate Std. Error t value Pr(>|t|)(Intercept) -68.8571 60.0170 -1.1470.2663 6.868 x11.4546 0.2118 2e-06 *** 4.0640 x29.3655 2.305 0.0333

Residual standard error: 11.01 on 18 degrees of freedom Multiple R-squared: 0.9167, Adjusted R-squared: 0.9075 F-statistic: 99.1 on 2 and 18 DF, p-value: 1.921e-10

The fitted model is

$$\hat{Y} = -68.86 + 1.45X_1 + 9.937X_2$$

(S.E.) (60.02) (0.21) (4.06)

 $R^2 = 0.9167, \quad R_a^2 = 0.9075, \quad \text{F-statistic: } 99.1 \text{ on } 2 \text{ and } 18 \text{ DF},$