
Chapter 2 Multiple Regression

(Part 4)

1 The effect of multi-collinearity

Now, we know to find the estimator

(X ′X)−1 must exist!

Therefore, n must be great or at least equal to p + 1 (WHY?) However, even n ≥ p + 1 we

the inverse may still not exist when there is multi-collinearity in the predictors.

Multi-collinearity means the correlation coefficients between predictor variables are close

to +1 or -1 (positive or negative). In that case, the design matrix X will be ill-conditioned,

i.e. the determination, det(X ′X) is close to 0, or the inverse of X ′X is not stable. It also

cause other problems. below are some discussions

1.1 An example in which two predictor variables are perfectly uncorre-
lated

• Work crew size example revisited

Case Crew Size Bonus pay Crew productivity
i X1 X2 Y
1 4 2 42
2 4 2 39
3 4 3 48
4 4 3 51
5 6 2 49
6 6 2 53
7 6 3 61
8 6 3 60

• Effects on Regression Coefficients
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Models b1 b2

Y = β0 + β1X1 + ε 5.375 -
Y = β0 + β2X2 + ε - 9.250

Y = β0 + β1X1 + β2X2 + ε 5.375 9.250

• Extra sums of squares

SSR(X1|X2) SSR(X1) SSR(X2|X1) SSR(X2)

231.125 231.125 171.125 171.125

• Unrelated predictor variables (not practical!)

– correlation coefficient of X1 and X2 is zero. X1 and X2 are uncorrelated

– Regression effect of one predictor variable is independent of whether other pre-

dictor variables are included in the model

– Extra sums of squares are equal to regression sums of squares

– in that case, we can consider each predictor separately!

1.2 An example in which two predictor variables are perfectly correlated

case X1 X2 Y
1 2 6 23
2 8 9 83
3 6 8 63
4 10 10 103

Two fitted lines:

Ŷ = −87 + X1 + 18X2

Ŷ = −7 + 9X1 + 2X2

because X2 = 5 + .5X1

• sometimes regression model can still obtain a good fit for the data

• but best fitted line (least squares estimator) is not unique

• (indicate) larger variability/instabability of estimator

• the common interpretation of regression coefficient is not applicable, we can not vary

one predictor variable while holding other constant.
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1.3 Body fat example revisited

• 20 healthy females 25-34 years old

subject X1 X2 X3 Y
1 19.5 43.1 29.1 11.9
2 24.7 49.8 28.2 22.8
...

...
...

...
...

19 22.7 48.2 27.1 14.8
20 25.2 51.0 27.5 21.1

The correlation matrix is

r X1 X2 X3

X1 1.0 0.924 0.458
X2 0.924 1.0 0.085
X3 0.458 0.085 1.0

• Effects on Regression Coefficients

Models b1 b2

Y = β0 + β1X1 + ε 0.8572 -
Y = β0 + β2X2 + ε - 0.8565

Y = β0 + β1X1 + β2X2 + ε 0.2224 0.6594
Y = β0 + β1X1 + β2X2 + β3X3 + ε 4.334 -2.857

• Inflated variability of estimator

Models s{b1} s{b2}
Y = β0 + β1X1 + ε 0.1288 -
Y = β0 + β2X2 + ε - 0.1100

Y = β0 + β1X1 + β2X2 + ε 0.3034 0.2912
Y = β0 + β1X1 + β2X2 + β3X3 + ε 3.016 2.582

• Extra sums of squares

SSR(X1|X2) SSR(X1) SSR(X2|X1) SSR(X2) SSE(X1,X2)
3.47 352.27 33.17 381.97 109.95

– no unique sum of squares ascribed to any one predictor variable

– must take into account other correlated predictor variables already included in

the model
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1.4 Effect of Multicollinearity

• When the multicollinearity is not strong, i.e. (X′X)−1 exists, we can still use the

model to make prediction.

• However, the multicollinearity will result in instability of the estimated coefficient, i.e.

the S.E. of the estimated coefficient is large. Thus the model is unreliable.

• The interpretation of the coefficient is difficult. For example, β1 for X1 is interpreted

the increasment of EY when X1 increase by 1 unit IF the other predictor variable

hold constant. The real situation is that the other predictor variable CANNOT hold

constant when there is multicollinearity

• However, if the multicollinearity is too serious, e.g. Xi1 = Xi2, for which (X′X)−1 does

not exits. There are other methods (not discussed here) such as the ridge regression

and regression with penalty

2 Polynomial regression models

• General regression model: Y = f(X) + ε, or Y = f(X1,X2, ...,Xp−1) + ε

• Linear regression model: f(X) = β0 + β1X or f(X1,X2, ...,Xp−1) = β0 + β1X1 + ... +

βp−1Xp−1

• Polynomial regression function

f(X) = β0 + β1X + β2X
2 + ... + βkX

k

• reasons for using polynomial regression model:

a. true regression function is a polynomial function

b. better approximation than linear function (k = 1)

• second order

Yi = β0 + β1Xi + β2X
2
i + εi

• Third order: Yi = β0 + β1Xi + β2X
2
i + β3X

3
i + εi

• Higher order: Yi = β0 + β1Xi + β2X
2
i + ... + βkX

k
i + εi

higher order, more parameters (less degrees of freedom)
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• two predictors

Yi = β0 + β1Xi1 + β2Xi2 + β11X
2
i1 + β22X

2
i2 + β12Xi1Xi2 + εi

β12: interaction effect coefficient

• three predictors

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + β11X
2
i1 + β22X

2
i2 + β33X

2
i3

+β12Xi1Xi2 + β13Xi1Xi3 + β23Xi2Xi3 + εi

• interpretation of interaction regression models

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi1Xi2 + εi

regression effects of X1 per unit when holding X2 constant:

β1 + β3X2

regression effects of X2 per unit when holding X1 constant:

β2 + β3X1

• Easy implementation as special case of multiple regression (see the example below)

• Use polynomial regression to test linearity of regression function

First fit a third order model:

Yi = β0 + β1Xi + β11X
2
i + β111X

3
i + εi

then use SSR(X3|X,X2) or SSR(X3,X2|X) to test whether we can drop X3 or

X3,X2

Example 1 Suppose we have data Data with two predictors X1,X2 and response Y .

If we fit a linear regression model (see Code)

(Reduced model) : Y = β0 + β1X1 + β2X2 + ε,

the estimated model is

Ŷ = -543.594 + 61.211X1 - 101.387X2

(S.E.) (228.244) (3.774) (42.099)

R2 = 0.9535, R2
a = 0.948, σ̂ = 170.3

F-value 174.2 with df 2, 17.
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If we consider model

(Full model) : Y = β0 + β1X1 + β2X2 + β11X
2
1 + β12X1X2 + β22X

2
2 + ε

The estimated model is

Ŷ = -1.56 + 1.05X1 - 0.55X2 + 1.00X2
1 - 1.01X1X2 - 0.03X2

2

(S.E.) (0.73) (0.02) (0.28) (.001) (.003) (0.03)

R2 = 0.9999, R2
a = 0.9999, σ̂ = 0.0878, F-value 2.751e+08 with df 5 and 14.

It seems that X2 and X2
2 can be removed from the model. Let consider a test

H0 : β2 = β22 = 0

we have

SSE(F ) = 0.08782 ∗ 14, SSE(R) = 0.19862 ∗ 16

and

F ∗ =
(SSE(R) − SSE(F ))/2

SSE(F )/14
= 33.93 > F (1 − 0.05, 2, 14)

Thus, we reject H0

Thus, we need to remove one variable

H ′
0 : β22 = 0

Under which we consider model

(Reduced model)′ Y = β0 + β1X1 + β2X2 + β11X
2
1 + β12X1X2 + ε.

we have

SSE(R) = 0.088322 ∗ 15

and

F ∗ =
(SSE(R′) − SSE(F ))/1

SSE(F )/14
= 1.178203 < F (1 − 0.05, 1, 14)

concluding H ′
0.

The estimated model is

Ŷ = -0.90 + 1.04X1 - 0.84X2 + 1.00X2
1 - 1.00X1X2

(S.E.) (0.42) (0.02) (0.10) (.001) (.003)
R2 = 0.9999, R2

a = 0.9999, σ̂ = 0.08832, F-value 3.399e+08 with df 4 and 15.

6


	The effect of multi-collinearity 
	An example in which two predictor variables are perfectly uncorrelated
	An example in which two predictor variables are perfectly correlated
	Body fat example revisited
	Effect of Multicollinearity

	 Polynomial regression models

