Chapter 2 Multiple Regression (Part 4)

1 The effect of multi-collinearity

Now, we know to find the estimator

$$(X'X)^{-1}$$
 must exist!

Therefore, n must be great or at least equal to p + 1 (WHY?) However, even $n \ge p + 1$ we the inverse may still not exist when there is multi-collinearity in the predictors.

Multi-collinearity means the correlation coefficients between predictor variables are close to +1 or -1 (positive or negative). In that case, the design matrix X will be ill-conditioned, i.e. the determination, det(X'X) is close to 0, or the inverse of X'X is not stable. It also cause other problems. below are some discussions

1.1 An example in which two predictor variables are perfectly uncorrelated

• Work crew size example revisited

Case	Crew Size	Bonus pay	Crew productivity
i	X_1	X_2	Y
1	4	2	42
2	4	2	39
3	4	3	48
4	4	3	51
5	6	2	49
6	6	2	53
7	6	3	61
8	6	3	60

• Effects on Regression Coefficients

• Extra sums of squares

$$SSR(X_1|X_2)$$
 $SSR(X_1)$ $SSR(X_2|X_1)$ $SSR(X_2)$
231.125 231.125 171.125 171.125

- Unrelated predictor variables (not practical!)
 - correlation coefficient of X_1 and X_2 is zero. X_1 and X_2 are uncorrelated
 - Regression effect of one predictor variable is independent of whether other predictor variables are included in the model
 - Extra sums of squares are equal to regression sums of squares
 - in that case, we can consider each predictor separately!

1.2 An example in which two predictor variables are perfectly correlated

case	X_1	X_2	Y
1	2	6	23
2	8	9	83
3	6	8	63
4	10	10	103

Two fitted lines:

$$\hat{Y} = -87 + X_1 + 18X_2$$

$$\hat{Y} = -7 + 9X_1 + 2X_2$$

because $X_2 = 5 + .5X_1$

- sometimes regression model can still obtain a good fit for the data
- but best fitted line (least squares estimator) is not unique
- (indicate) larger variability/instabability of estimator
- the common interpretation of regression coefficient is not applicable, we can not vary one predictor variable while holding other constant.

1.3 Body fat example revisited

• 20 healthy females 25-34 years old

subject	X_1	X_2	X_3	Y
1	19.5	43.1	29.1	11.9
2	24.7	49.8	28.2	22.8
:	÷	÷	:	:
19	22.7	48.2	27.1	14.8
20	25.2	F1 0	27.5	21.1

The correlation matrix is

r	X_1	X_2	X_3
X_1	1.0	0.924	0.458
X_2	0.924	1.0	0.085
X_3	0.458	0.085	1.0

• Effects on Regression Coefficients

• Inflated variability of estimator

• Extra sums of squares

$SSR(X_{\bullet} X_{\circ})$	$SSR(X_{\epsilon})$	$SSR(X_2 X_1)$	$SSR(X_a)$	$SSE(X_1, X_2)$
SSIC(M1 M2)	DDIC(MI)	$SSIC(M_2 M_1)$	$\operatorname{DDR}(\mathcal{M}_2)$	$\mathrm{DDE}(X_1,X_2)$
3.47	352.27	33.17	381.97	109.95

- no unique sum of squares ascribed to any one predictor variable
- must take into account other correlated predictor variables already included in the model

1.4 Effect of Multicollinearity

- When the multicollinearity is not strong, i.e. $(\mathbf{X}'\mathbf{X})^{-1}$ exists, we can still use the model to make prediction.
- However, the multicollinearity will result in instability of the estimated coefficient, i.e. the S.E. of the estimated coefficient is large. Thus the model is unreliable.
- The interpretation of the coefficient is difficult. For example, β_1 for X_1 is interpreted the increasment of EY when X_1 increase by 1 unit IF the other predictor variable hold constant. The real situation is that the other predictor variable CANNOT hold constant when there is multicollinearity
- However, if the multicollinearity is too serious, e.g. $X_{i1} = X_{i2}$, for which $(\mathbf{X}'\mathbf{X})^{-1}$ does not exits. There are other methods (not discussed here) such as the ridge regression and regression with penalty

2 Polynomial regression models

- General regression model: $Y = f(X) + \epsilon$, or $Y = f(X_1, X_2, ..., X_{p-1}) + \epsilon$
- Linear regression model: $f(X) = \beta_0 + \beta_1 X$ or $f(X_1, X_2, ..., X_{p-1}) = \beta_0 + \beta_1 X_1 + ... + \beta_{p-1} X_{p-1}$
- Polynomial regression function

$$f(X) = \beta_0 + \beta_1 X + \beta_2 X^2 + \dots + \beta_k X^k$$

- reasons for using polynomial regression model:
 - a. true regression function is a polynomial function
 - b. better approximation than linear function (k = 1)
- second order

$$Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \epsilon_i$$

- Third order: $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + \beta_3 X_i^3 + \epsilon_i$
- Higher order: $Y_i = \beta_0 + \beta_1 X_i + \beta_2 X_i^2 + ... + \beta_k X_i^k + \epsilon_i$ higher order, more parameters (less degrees of freedom)

• two predictors

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_{11} X_{i1}^2 + \beta_{22} X_{i2}^2 + \beta_{12} X_{i1} X_{i2} + \epsilon_i$$

 β_{12} : interaction effect coefficient

• three predictors

$$Y_{i} = \beta_{0} + \beta_{1}X_{i1} + \beta_{2}X_{i2} + \beta_{3}X_{i3} + \beta_{11}X_{i1}^{2} + \beta_{22}X_{i2}^{2} + \beta_{33}X_{i3}^{2} + \beta_{12}X_{i1}X_{i2} + \beta_{13}X_{i1}X_{i3} + \beta_{23}X_{i2}X_{i3} + \epsilon_{i}$$

• interpretation of interaction regression models

$$Y_i = \beta_0 + \beta_1 X_{i1} + \beta_2 X_{i2} + \beta_3 X_{i1} X_{i2} + \epsilon_i$$

regression effects of X_1 per unit when holding X_2 constant:

$$\beta_1 + \beta_3 X_2$$

regression effects of X_2 per unit when holding X_1 constant:

$$\beta_2 + \beta_3 X_1$$

- Easy implementation as special case of multiple regression (see the example below)
- Use polynomial regression to test linearity of regression function First fit a third order model:

$$Y_i = \beta_0 + \beta_1 X_i + \beta_{11} X_i^2 + \beta_{111} X_i^3 + \epsilon_i$$

then use $SSR(X^3|X,X^2)$ or $SSR(X^3,X^2|X)$ to test whether we can drop X^3 or X^3,X^2

Example 1 Suppose we have data **Data** with two predictors X_1, X_2 and response Y. If we fit a linear regression model (see **Code**)

(Reduced model):
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \varepsilon$$
,

the estimated model is

$$\hat{Y} = -543.594 + 61.211X_1 - 101.387X_2$$

(S.E.) (228.244) (3.774) (42.099)

$$R^2 = 0.9535, \ R_a^2 = 0.948, \, \hat{\sigma} = 170.3$$
 F-value 174.2 with df 2, 17.

If we consider model

(Full model):
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{11} X_1^2 + \beta_{12} X_1 X_2 + \beta_{22} X_2^2 + \varepsilon$$

The estimated model is

$$\hat{Y} = -1.56 + 1.05X_1 - 0.55X_2 + 1.00X_1^2 - 1.01X_1X_2 - 0.03X_2^2 \\ (S.E.) \quad (0.73) \quad (0.02) \quad (0.28) \quad (.001) \quad (.003) \quad (0.03)$$

 $R^2 = 0.9999, \ \ R_a^2 = 0.9999, \ \hat{\sigma} = 0.0878, \ \text{F-value } 2.751\text{e} + 08 \ \text{with df 5 and } 14.$

It seems that X_2 and X_2^2 can be removed from the model. Let consider a test

$$H_0: \beta_2 = \beta_{22} = 0$$

we have

$$SSE(F) = 0.0878^2 * 14, SSE(R) = 0.1986^2 * 16$$

and

$$F^* = \frac{(SSE(R) - SSE(F))/2}{SSE(F)/14} = 33.93 > F(1 - 0.05, 2, 14)$$

Thus, we reject H_0

Thus, we need to remove one variable

$$H_0': \beta_{22} = 0$$

Under which we consider model

(Reduced model)'
$$Y = \beta_0 + \beta_1 X_1 + \beta_2 X_2 + \beta_{11} X_1^2 + \beta_{12} X_1 X_2 + \varepsilon.$$

we have

$$SSE(R) = 0.08832^2 * 15$$

and

$$F^* = \frac{(SSE(R') - SSE(F))/1}{SSE(F)/14} = 1.178203 < F(1 - 0.05, 1, 14)$$

concluding H'_0 .

The estimated model is