
Chapter 2 Multiple Regression

(Part 5)

1 Overview and Dummy Variable

• qualitative predictor (also called categorical variable)

• How to allocate codes (values) to qualitative predictor

• Interaction between quantitative and qualitative predictors

• Comparison of regression functions

An example: the insurance firm

In the (Data): Y - speed of innovation, X1 – size of a insurance firm, X2 – type of firm:

stock company or mutual company. Predictor variable X2 is qualitative or categorical. It

is obvious we cannot use model Y = β0 + β1X1 + β2X2 + ε because X2 is not real value.

• quantify (assign value to) a qualitative variable

X2 �→ D = { 1, if stock company
0, otherwise

D is called Dummy variables

• Then we can consider Y = β0 + β1X1 + β2D + εi

2 Interpretation of regression coefficients

• Model: Y = β0 + β1X1 + β2D + εi

where X1 = size of firm, D = { 1 if stock company
0 if mutual company

• E{Y } = β0 + β1X1 mutual firms (corresponding to D = 0)

E{Y } = β0 + β2 + β1X1 stock firms (corresponding to D = 0)
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• β2 measures the difference between mutual firms and stock firms

Insurance innovation example

Ŷ = 33.87407 - 0.10174X1 + 8.05547D
(S.E.) (1.81386) (0.00889) (1.45911)

to check whether there is difference in the intercepts, we need to test

H0 : β2 = 0 vs Ha : β2 �= 0:

Because

|t∗| = |8.05547 − 0
1.45911

| = 5.52 ≥ t(0.975; 17) = 2.110,

we conclude Ha: the intercepts are different from one another significantly

3 Qualitative predictor with more than two classes

• Consider an example. Response Y –tool wear, Predictor X1 – tool speed; and predictor

X2–tool model with four classes: M1, M2, M3, M4. X2 is qualitative.

• Quantify the qualitative predictor:

Note that with two classes, we need 2 − 1 = 1 variable, with four classes, we need

4 − 1 = 3 variables

D1 = { 1, if tool model M1
0, otherwise

D2 = { 1, if tool model M2
0, otherwise

D3 = { 1, if tool model M3
0, otherwise

D1,D2,D3 are dummy variables

Thus, we have the following correspondence

X1 ↔ D1 D2 D3

M1 ↔ 1 0 0
M2 ↔ 0 1 0
M3 ↔ 0 0 1
M4 ↔ 0 0 0
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• Generally speaking, if a qualitative predictor has m classes ,we need m − 1 dummy

variables

• why dont we use m dummy variables? We can, but we need to drop the intercept.

For the insurance firm data

D1 = { 1 if stock company
0 if mutual company

D2 = { 0 if stock company
1 if mutual company

Then the model

Y = β1X1 + β2D1 + β3D2 + ε

E{Y |stock company} = β2 + β1X1

E{Y |mutual company} = β3 + β1X1

(IF we dont drop the intercept term, them the inverse (X ′X)−1 does not exist, because

in

X =

⎛
⎜⎜⎝

1 X11 D11 D12

1 X11 D11 D12

...
1 Xn1 Dn1 Dn2

⎞
⎟⎟⎠

the summation of last two columns is the first column.)

interpretation of qualitative predictor with more than two classes

• For the tool wear example, its first-order model: Y = β0 + β1X1 + β2D1 + β3D2 +

β4D3 + ε

• E{Y } = β0 + β1X1 tool model M4 (for D1 = 0,D2 = 0,D3 = 0)

E{Y } = β0 + β2 + β1X1 tool model M1 (for D1 = 1,D2 = 0,D3 = 0)

E{Y } = β0 + β3 + β1X1 tool model M2 (for D1 = 0,D2 = 1,D3 = 0)

E{Y } = β0 + β4 + β1X1 tool model M3 (for D1 = 0,D2 = 0,D3 = 1)

• Interpretation of regression coefficient:

β2: difference between M1 and M4. (Question: how to test whether the intercepts in

the models for M1 and M4 are the same?)

β2−β3: difference between M1 and M2 (Question: how to test whether the intercepts

in the models for M1 and M2 are the same?)
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3.1 Another example

Why cannot we use 1,2,3, ... to denote the categorical variables

• Qualitative predictor: frequency of product use three classes: frequent user, occasional

user and nonuser

• allocate codes X1 by D̃,
class D̃

frequent user 3
occasional user 2

nonuser 1

• Y = β0 + β1D̃ + ε

class E{Y }
frequent user E{Y } = β0 + 3β1

occasional user E{Y } = β0 + 2β1

nonuser E{Y } = β0 + β1

• Key implication and limitation:

E{Y |frequent user} − E{Y |occasional user}
= E{Y |occasional user} − E{Y |nonuser}

Thus, this allocation of code implies something inappropriate.

Indicator variables for quantitative variables

Sometimes it is even useful to use qualitative variables to represent quantitative variables

after grouping. For example, when we consider ’age’

• group ages into four classes: under 21, 21-34, 35-39, above 40. Then, ’age’ becomes

qualitative predictor, and we need three qualitative predictors (but lose three degrees

of freedom)

• advantage: no need to check linearity of regression function

• it is recommended in a large-scale study when the loss of several degrees of freedom

is not much
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Other codes for qualitative variables

• Consider the insurance firms again: Y - speed of innovation, X1 size of firm,

X2 �→ D = { 1 if stock company
0 if mutual company

• alternative code for X2:

X2 �→ D = { 1 if stock company
−1 if mutual company

for stock company: E{Y } = β0 + β2 + β1X1 (for D = 1)

for mutual company: E{Y } = β0 − β2 + β1X1 (for D = −1)

3.2 Interaction between quantitative and qualitative predictors

• Consider the insurance data again,

Y = β0 + β1X1 + β2D + β3D ∗ X1 + ε

X1 = is the size of firm and

D = { 1 if stock company
0 if mutual company

• different regression coefficients

regression model for stock firms: β0 + β2 + (β1 + β3)X1

regression model for mutual firm: β0 + β1X1

β2 is the difference of intercepts for two types of firms

β3 is the difference of regression effects/slope

3.3 More consideration and Comparison of models for different categories

Suppose we have response Y (say son or daughter’s height) with quantitative variables

X1,X2 (Father’s height and mother’s height) and qualitative variable D, say D = 1 for

Son, and D = 0 for daughter.

• If you believe there is no difference between son and daughter’s height and dependence

on their parents, then you may consider a general model

Y = β0 + β1X1 + β2X2 + ε
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• IF you believe their heights differ mainly due of their gender then you may consider

model

Y = β0 + β1X1 + β2X2 + β3D + ε

which is equivalent to

Son: Y = (β0 + β3) + β1X1 + β2X2 + ε
Daughter: Y = β0 + β1X1 + β2X2 + ε

Notice the common coefficients and different coefficients.

• If you believe parents’ heights have different effect on son and daughter respectively,

then consider

Y = β0 + β1X1 + β2X2 + β4D ∗ X1 + β5D ∗ X2 + ε

which is equivalent to

Son: Y = β0 + (β1 + β4)X1 + (β2 + β5)X2 +ε
Daughter: Y = β0 + β1X1 + β2X2 +ε

Notice the common coefficients and different coefficients.

• If you believe son and daughter height are completely different, then consider

Y = β0 + β1X1 + β2X2 + β3X3 + β4X3X1 + β5X3X2 + ε

which is equivalent to

Son: Y = (β0 + β3) + (β1 + β4)X1 + (β2 + β5)X2 +ε
Daughter: Y = β0 + β1X1 + β2X2 +ε

They are actually two completely different models. They are equivalent to fit two

completely models to two data (one for boys and another for girls).

• If you want to answer whether models for boys’ height and girls’ height are the same, it

is equivalent to test H0 : β3 = β4 = β5 = 0; if you want to test whether father’s effect

on both son’s height and daughter’s height are the same, you need to test H0 : β4 = 0;

....

Insurance innovation example
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• For the general model

Y = β0 + β1X1 + β2D + β3DX1 + ε

The estimated model is

Ŷ = 33.8383 - 0.1015X1 + 8.13125D - 0.0004171D ∗ X1

(S.E.) (2.44) (0.013) (3.65) (0.0183)

• Test whether the effect of firm size change with firm type

H0 : β3 = 0, vs Ha : β3 �= 0

t∗ =
b3

s{b3} =
−0.0004171

0.01833
= −0.02,

as |t∗| ≤ t(0.975; 16) = 2.120, conclude H0 and can adopt the model with no interac-

tion term, or the effect of firm size does not change significantly with firm type

4 more than one qualitative predictor

• Consider Y –advertising expenditure; X1–sales; X2–type of firm (incorporated, not

incorporated); X3–quality of sales management (high or low)

for X2, introduce dummy variable D1 = { 1 if firm incorporated
0 otherwise

for X3, introduce dummy variable D2 = { 1 if quality of sales management high
0 otherwise

• A model for the possible intercept difference

Y = β0 + β1X1 + β2D1 + β3D2 + ε

• A model with certain interaction added

Y = β0 + β1X1 + β2D1 + β3D2 + β4D1X1 + β5D2X1 + β6D1D2 + ε

•
X2 X3 E{Y }

incorporated high (β0 + β2 + β3 + β6) + (β1 + β4 + β5)X1

not incorporated high (β0 + β3) + (β1 + β5)X1

incorporated low (β0 + β2) + (β1 + β4)X1

not incorporated low β0 + β1X1

• Question: why dont we consider the cross interaction between different dummy vari-

ables for one categorical predictor? [Because even if you do so, their product is 0]
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4.1 Example 1: Soap production lines example

• Soap production lines example (see (Data)) Y - amount of scrap, X1 - line speed, D

- code for two possible production lines D = 1 or D = 0, 27 observations

• Full model Y = β0 + β1X1 + β2D + β3X1D + ε

• regression function for production 1: (β0 + β2) + (β1 + β3)X

regression function for production 2: β0 + β1X

Test the identity of two regression functions

To test whether two production lines have the same model

Reduced model Yi = β0 + β1Xi1 + εi

Against, two models are different

Full model Yi = β0 + β1Xi1 + β2Di + β3Xi1Di + εi

AOVA for the full model (see R-code)

source SS df MS
X1 149661 1 149661
D 18694 1 18694

DX1 810 1 810
residual 9904 23 431

we have

SSE(F ) = 9904, (DF = 23)

and

SSR(D,DX1|X1) = SSR(D|X1) + SSR(DX1|X1,D)

= 18694 + 810 = 19504, (DF = 21)

• H0 : β2 = β3 = 0

Ha : not both β2 = 0 and β3 = 0

F ∗ =
SSR(D,DX1|X1)

2
÷ SSE(X1,D,DX1)

27 − 4
= 22.65 ≥ F (0.99, 2, 23) = 5.67

conclude Ha, and regression functions for two lines are not identical

Test the equality of slopes of two regression functions
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• H0 : β3 = 0, Ha : β3 �= 0

•

F ∗ =
SSR(DX1|X1,D)

1
÷ SSE(X1,D,DX1)

27 − 4
= 1.88 ≤ F (0.99, 1, 23) = 7.88

conclude H0 and slopes for two regression functions are the same

4.2 Example 2: SENIC

The primary objective of the Study on the Efficacy of Nosocomial Infection Control (SENIC

Project) was to determine whether infection surveillance and control programs have reduced

the rates of nosocomial (hospital-acquired) infection in United States hospitals. This data

set consists of a ramdom sample of 113 hospitals selected from the original 338 hospitals

surveyed.

Each line of the data set has an identification number and provides information on 11

other variables for a single hospital. The data presented here are for the 1975-76 study

period. The 12 variables are:

1 Identification number: 1-113

2 Length of stay: Average length of stay of all patients in hospital (in days)

3 Age: Average age of patients (in years)

4 Infection risk: Average estimated probability of acquiring infection in hospital (in

percent)

5 Routine culturing ratio: Ratio of number of cultures performed to number of patients

without signs or symptoms of hospital-acquired infection, times 100

6 Routine chest X-ray ratio: Ratio of number of X-rays performed to number of patients

without signs or symptoms of pneumonia, times 100

7 Number of beds: Average number of beds in hospital during study period

8 Medical school affiliation: 1=Yes, 2=No
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9 Region: Geographic region, where: 1=NE, 2=NC, 3=S, 4=W

10 Average daily census: Average number of patients in hospital per day during study

period

11 Number of nurses: Average number of full-time equivalent registered and licensed

practical nurses during study period (number full time plus one half the number part

time)

12 Available facilities and services: Percent of 35 potential facilities and services that are

provided by the hospital

For (Data), consider a model of regressing infectious risk Y against age X1, routine

culturing ratio X2, average daily census X3, available facilities and service X4, Medical

school affiliation X5. For each region, we have can find a model

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε,

are the estimated regression functions similar for the four regions? Discuss.

Let D1 = 1 if in region NE; otherwise 0;

Let D2 = 1 if in region NC; otherwise 0;

Let D3 = 1 if in region S; otherwise 0;

We consider full model

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + α1D1 + α1D2 + α1D3

+β11D1X1 + β12D1X2 + β13D1X3 + β14D1X4 + β15D1X5

+β21D2X1 + β22D2X2 + β23D2X3 + β24D2X4 + β25D2X5

+β31D3X1 + β32D3X2 + β23D3X3 + β34D3X4 + β35D3X5

+ε,

If there is no region effect, then the reduced model is

Y = β0 + β1X1 + β2X2 + β3X3 + β4X4 + β5X5 + ε,

For the full model, we have

SSE(F ) = 89.276 DF = 89
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For the reduced model, we have

SSE(R) = 110.933 DF = 107

Thus

F ∗ =
(110.933 − 89.276)/18

89.276/89
= 1.1994 < F (0.95, 18, 89) = 1.73

Thus, we don’t think different regions have different models. See the R-code.

5 Time series application

• For example, Y - quarterly sales, X1 - quarterly advertisement expenditures, X2 -

quarterly personal disposable income.

D1 = { 1, if first quarter
0, otherwise

, D2 = { 1 if second quarter
0 otherwise

,

D3 = { 1, if third quarter
0, otherwise

Yt = β0 + β1Xt1 + β2Xt2 + β3Dt1 + β4Dt2 + β5Dt3 + εt

• another example
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In this example, we can consider a model

Yt = β0 + β1 ∗ t + β2D1 + ... + β11D11 + εt

where D1, ...,D11 are dummy variables denoting the month of a year (how).
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