Chapter 2 Multiple Regression (Part 5)

1 Overview and Dummy Variable

- qualitative predictor (also called categorical variable)
- How to allocate codes (values) to qualitative predictor
- Interaction between quantitative and qualitative predictors
- Comparison of regression functions

An example: the insurance firm
In the (Data) Y - speed of innovation, X_{1} - size of a insurance firm, X_{2} - type of firm: stock company or mutual company. Predictor variable X_{2} is qualitative or categorical. It is obvious we cannot use model $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon$ because X_{2} is not real value.

- quantify (assign value to) a qualitative variable

$$
X_{2} \mapsto D= \begin{cases}1, & \text { if stock company } \\ 0, & \text { otherwise }\end{cases}
$$

D is called Dummy variables

- Then we can consider $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} D+\varepsilon_{i}$

2 Interpretation of regression coefficients

- Model: $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} D+\varepsilon_{i}$
where $X_{1}=$ size of firm, $\quad D= \begin{cases}1 & \text { if stock company } \\ 0 & \text { if mutual company }\end{cases}$
- $E\{Y\}=\beta_{0}+\beta_{1} X_{1}$ mutual firms (corresponding to $D=0$)
$E\{Y\}=\beta_{0}+\beta_{2}+\beta_{1} X_{1}$ stock firms (corresponding to $D=0$)
- β_{2} measures the difference between mutual firms and stock firms

Insurance innovation example

$$
\begin{array}{cccc}
\hat{Y} & =33.87407-\underset{\left(0.10174 X_{1}\right.}{(1.81386)}-\underset{(1.45911)}{8.05547 D} \\
(\text { S.E. })
\end{array}
$$

to check whether there is difference in the intercepts, we need to test

$$
H_{0}: \beta_{2}=0 \text { vs } H_{a}: \beta_{2} \neq 0 \text { : }
$$

Because

$$
\left|t^{*}\right|=\left|\frac{8.05547-0}{1.45911}\right|=5.52 \geq t(0.975 ; 17)=2.110
$$

we conclude H_{a} : the intercepts are different from one another significantly

3 Qualitative predictor with more than two classes

- Consider an example. Response Y-tool wear, Predictor X_{1} - tool speed; and predictor X_{2}-tool model with four classes: M1, M2, M3, M4. X_{2} is qualitative.
- Quantify the qualitative predictor:

Note that with two classes, we need $2-1=1$ variable, with four classes, we need $4-1=3$ variables

$$
\begin{aligned}
D_{1} & = \begin{cases}1, & \text { if tool model M1 } \\
0, & \text { otherwise }\end{cases} \\
D_{2} & = \begin{cases}1, & \text { if tool model M2 } \\
0, & \text { otherwise }\end{cases} \\
D_{3} & =\left\{\begin{array}{lc}
1, & \text { if tool model M3 } \\
0, & \text { otherwise }
\end{array}\right.
\end{aligned}
$$

D_{1}, D_{2}, D_{3} are dummy variables
Thus, we have the following correspondence

X_{1}	\leftrightarrow	D_{1}	D_{2}	D_{3}
M1	\leftrightarrow	1	0	0
M2	\leftrightarrow	0	1	0
M3	\leftrightarrow	0	0	1
M4	\leftrightarrow	0	0	0

- Generally speaking, if a qualitative predictor has m classes, we need $m-1$ dummy variables
- why dont we use m dummy variables? We can, but we need to drop the intercept. For the insurance firm data

$$
\begin{aligned}
D_{1} & = \begin{cases}1 & \text { if stock company } \\
0 & \text { if mutual company }\end{cases} \\
D_{2} & = \begin{cases}0 & \text { if stock company } \\
1 & \text { if mutual company }\end{cases}
\end{aligned}
$$

Then the model

$$
\begin{gathered}
Y=\beta_{1} X_{1}+\beta_{2} D_{1}+\beta_{3} D_{2}+\varepsilon \\
E\{Y \mid \text { stock company }\}=\beta_{2}+\beta_{1} X_{1} \\
E\{Y \mid \text { mutual company }\}=\beta_{3}+\beta_{1} X_{1}
\end{gathered}
$$

(IF we dont drop the intercept term, them the inverse $\left(X^{\prime} X\right)^{-1}$ does not exist, because in

$$
X=\left(\begin{array}{cccc}
1 & X_{11} & D_{11} & D_{12} \\
1 & X_{11} & D_{11} & D_{12} \\
\cdots & & & \\
1 & X_{n 1} & D_{n 1} & D_{n 2}
\end{array}\right)
$$

the summation of last two columns is the first column.)

interpretation of qualitative predictor with more than two classes

- For the tool wear example, its first-order model: $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} D_{1}+\beta_{3} D_{2}+$ $\beta_{4} D_{3}+\varepsilon$
- $E\{Y\}=\beta_{0}+\beta_{1} X_{1}$ tool model M4 (for $D_{1}=0, D_{2}=0, D_{3}=0$)
$E\{Y\}=\beta_{0}+\beta_{2}+\beta_{1} X_{1}$ tool model M1 (for $\left.D_{1}=1, D_{2}=0, D_{3}=0\right)$
$E\{Y\}=\beta_{0}+\beta_{3}+\beta_{1} X_{1}$ tool model M2 (for $\left.D_{1}=0, D_{2}=1, D_{3}=0\right)$
$E\{Y\}=\beta_{0}+\beta_{4}+\beta_{1} X_{1}$ tool model M3 (for $D_{1}=0, D_{2}=0, D_{3}=1$)
- Interpretation of regression coefficient:
β_{2} : difference between M1 and M4. (Question: how to test whether the intercepts in the models for M1 and M4 are the same?)
$\beta_{2}-\beta_{3}$: difference between M1 and M2 (Question: how to test whether the intercepts in the models for M1 and M2 are the same?)

3.1 Another example

Why cannot we use $1,2,3, \ldots$ to denote the categorical variables

- Qualitative predictor: frequency of product use three classes: frequent user, occasional user and nonuser
- allocate codes X_{1} by \tilde{D},

class	\tilde{D}
frequent user	3
occasional user	2
nonuser	1

- $Y=\beta_{0}+\beta_{1} \tilde{D}+\varepsilon$

class	$E\{Y\}$
frequent user	$E\{Y\}=\beta_{0}+3 \beta_{1}$
occasional user	$E\{Y\}=\beta_{0}+2 \beta_{1}$
nonuser	$E\{Y\}=\beta_{0}+\beta_{1}$

- Key implication and limitation:

$$
\begin{aligned}
& E\{Y \mid \text { frequent user }\}-E\{Y \mid \text { occasional user }\} \\
& =E\{Y \mid \text { occasional user }\}-E\{Y \mid \text { nonuser }\}
\end{aligned}
$$

Thus, this allocation of code implies something inappropriate.

Indicator variables for quantitative variables

Sometimes it is even useful to use qualitative variables to represent quantitative variables after grouping. For example, when we consider 'age'

- group ages into four classes: under 21, 21-34, 35-39, above 40 . Then, 'age' becomes qualitative predictor, and we need three qualitative predictors (but lose three degrees of freedom)
- advantage: no need to check linearity of regression function
- it is recommended in a large-scale study when the loss of several degrees of freedom is not much

Other codes for qualitative variables

- Consider the insurance firms again: Y - speed of innovation, X_{1} size of firm,

$$
X_{2} \mapsto D=\left\{\begin{array}{cc}
1 & \text { if stock company } \\
0 & \text { if mutual company }
\end{array}\right.
$$

- alternative code for X_{2} :

$$
X_{2} \mapsto D=\left\{\begin{array}{cc}
1 & \text { if stock company } \\
-1 & \text { if mutual company }
\end{array}\right.
$$

for stock company: $E\{Y\}=\beta_{0}+\beta_{2}+\beta_{1} X_{1}$ (for $D=1$)
for mutual company: $E\{Y\}=\beta_{0}-\beta_{2}+\beta_{1} X_{1}($ for $D=-1)$

3.2 Interaction between quantitative and qualitative predictors

- Consider the insurance data again,

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} D+\beta_{3} D * X_{1}+\varepsilon
$$

$X_{1}=$ is the size of firm and

$$
D=\left\{\begin{array}{lc}
1 & \text { if stock company } \\
0 & \text { if mutual company }
\end{array}\right.
$$

- different regression coefficients
regression model for stock firms: $\beta_{0}+\beta_{2}+\left(\beta_{1}+\beta_{3}\right) X_{1}$
regression model for mutual firm: $\beta_{0}+\beta_{1} X_{1}$
β_{2} is the difference of intercepts for two types of firms
β_{3} is the difference of regression effects/slope

3.3 More consideration and Comparison of models for different categories

Suppose we have response Y (say son or daughter's height) with quantitative variables X_{1}, X_{2} (Father's height and mother's height) and qualitative variable D, say $D=1$ for Son, and $D=0$ for daughter.

- If you believe there is no difference between son and daughter's height and dependence on their parents, then you may consider a general model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon
$$

- IF you believe their heights differ mainly due of their gender then you may consider model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} D+\varepsilon
$$

which is equivalent to

$$
\begin{array}{cl}
\text { Son: } & Y=\left(\beta_{0}+\beta_{3}\right) \\
\text { Daughter: } & Y=\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon \\
\beta_{0} & +\beta_{1} X_{1}+\beta_{2} X_{2}+\varepsilon
\end{array}
$$

Notice the common coefficients and different coefficients.

- If you believe parents' heights have different effect on son and daughter respectively, then consider

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{4} D * X_{1}+\beta_{5} D * X_{2}+\varepsilon
$$

which is equivalent to

$$
\begin{array}{ccccc}
\text { Son: } & Y=\beta_{0}+\left(\beta_{1}+\beta_{4}\right) X_{1} & +\left(\beta_{2}+\beta_{5}\right) X_{2} & +\varepsilon \\
\text { Daughter: } & Y=\beta_{0}+ & \beta_{1} X_{1} & + & \beta_{2} X_{2}
\end{array}+\varepsilon
$$

Notice the common coefficients and different coefficients.

- If you believe son and daughter height are completely different, then consider

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{3} X_{1}+\beta_{5} X_{3} X_{2}+\varepsilon
$$

which is equivalent to

$$
\begin{array}{ccccccc}
\text { Son: } & Y=\left(\beta_{0}+\beta_{3}\right) & + & \left(\beta_{1}+\beta_{4}\right) X_{1} & + & \left(\beta_{2}+\beta_{5}\right) X_{2} & +\varepsilon \\
\text { Daughter: } & Y= & \beta_{0} & + & \beta_{1} X_{1} & + & \beta_{2} X_{2}
\end{array}+
$$

They are actually two completely different models. They are equivalent to fit two completely models to two data (one for boys and another for girls).

- If you want to answer whether models for boys' height and girls' height are the same, it is equivalent to test $H_{0}: \beta_{3}=\beta_{4}=\beta_{5}=0$; if you want to test whether father's effect on both son's height and daughter's height are the same, you need to test $H_{0}: \beta_{4}=0$;

Insurance innovation example

- For the general model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} D+\beta_{3} D X_{1}+\varepsilon
$$

The estimated model is

$$
\begin{array}{ccccc}
\hat{Y} \\
(\mathrm{S.E}) & =\underset{(2.44)}{33.8383}-\underset{(0.013)}{0.1015 X_{1}}+\underset{(3.65)}{8.13125 D}-\underset{(0.0183)}{0.0004171 D} * X_{1}
\end{array}
$$

- Test whether the effect of firm size change with firm type

$$
\begin{gathered}
H_{0}: \beta_{3}=0, \text { vs } H_{a}: \beta_{3} \neq 0 \\
t^{*}=\frac{b_{3}}{s\left\{b_{3}\right\}}=\frac{-0.0004171}{0.01833}=-0.02
\end{gathered}
$$

as $\left|t^{*}\right| \leq t(0.975 ; 16)=2.120$, conclude H_{0} and can adopt the model with no interaction term, or the effect of firm size does not change significantly with firm type

4 more than one qualitative predictor

- Consider Y-advertising expenditure; X_{1}-sales; X_{2}-type of firm (incorporated, not incorporated); X_{3}-quality of sales management (high or low) for X_{2}, introduce dummy variable $D_{1}=\left\{\begin{array}{cc}1 & \text { if firm incorporated } \\ 0 & \text { otherwise }\end{array}\right.$ for X_{3}, introduce dummy variable $D_{2}=\left\{\begin{array}{lc}1 & \text { if quality of sales management high } \\ 0 & \text { otherwise }\end{array}\right.$
- A model for the possible intercept difference

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} D_{1}+\beta_{3} D_{2}+\varepsilon
$$

- A model with certain interaction added

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} D_{1}+\beta_{3} D_{2}+\beta_{4} D_{1} X_{1}+\beta_{5} D_{2} X_{1}+\beta_{6} D_{1} D_{2}+\varepsilon
$$

-

X_{2}	X_{3}	$E\{Y\}$
incorporated	high	$\left(\beta_{0}+\beta_{2}+\beta_{3}+\beta_{6}\right)+\left(\beta_{1}+\beta_{4}+\beta_{5}\right) X_{1}$
not incorporated	high	$\left(\beta_{0}+\beta_{3}\right)+\left(\beta_{1}+\beta_{5}\right) X_{1}$
incorporated	low	$\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{4}\right) X_{1}$
not incorporated	low	$\beta_{0}+\beta_{1} X_{1}$

- Question: why dont we consider the cross interaction between different dummy variables for one categorical predictor? [Because even if you do so, their product is 0]

4.1 Example 1: Soap production lines example

- Soap production lines example (see (Data) Y - amount of scrap, X_{1} - line speed, D - code for two possible production lines $D=1$ or $D=0,27$ observations
- Full model $Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} D+\beta_{3} X_{1} D+\varepsilon$
- regression function for production 1: $\left(\beta_{0}+\beta_{2}\right)+\left(\beta_{1}+\beta_{3}\right) X$ regression function for production 2: $\beta_{0}+\beta_{1} X$

Test the identity of two regression functions
To test whether two production lines have the same model
Reduced model $\quad Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\varepsilon_{i}$
Against, two models are different
Full model $\quad Y_{i}=\beta_{0}+\beta_{1} X_{i 1}+\beta_{2} D_{i}+\beta_{3} X_{i 1} D_{i}+\varepsilon_{i}$
AOVA for the full model (see R-code)

source	SS	df	MS
X1	149661	1	149661
D	18694	1	18694
DX1	810	1	810
residual	9904	23	431

we have

$$
\operatorname{SSE}(F)=9904, \quad(D F=23)
$$

and

$$
\begin{aligned}
\operatorname{SSR}\left(D, D X_{1} \mid X_{1}\right) & =\operatorname{SSR}\left(D \mid X_{1}\right)+\operatorname{SSR}\left(D X_{1} \mid X_{1}, D\right) \\
& =18694+810=19504, \quad(D F=21)
\end{aligned}
$$

- $H_{0}: \beta_{2}=\beta_{3}=0$
$H_{a}:$ not both $\beta_{2}=0$ and $\beta_{3}=0$

$$
\begin{aligned}
F^{*} & =\frac{\operatorname{SSR}\left(D, D X_{1} \mid X_{1}\right)}{2} \div \frac{\operatorname{SSE}\left(X_{1}, D, D X_{1}\right)}{27-4} \\
& =22.65 \geq F(0.99,2,23)=5.67
\end{aligned}
$$

conclude H_{a}, and regression functions for two lines are not identical

Test the equality of slopes of two regression functions

- $H_{0}: \beta_{3}=0, H_{a}: \beta_{3} \neq 0$

$$
\begin{aligned}
F^{*} & =\frac{S S R\left(D X_{1} \mid X_{1}, D\right)}{1} \div \frac{\operatorname{SSE}\left(X_{1}, D, D X_{1}\right)}{27-4} \\
& =1.88 \leq F(0.99,1,23)=7.88
\end{aligned}
$$

conclude H_{0} and slopes for two regression functions are the same

4.2 Example 2: SENIC

The primary objective of the Study on the Efficacy of Nosocomial Infection Control (SENIC Project) was to determine whether infection surveillance and control programs have reduced the rates of nosocomial (hospital-acquired) infection in United States hospitals. This data set consists of a ramdom sample of 113 hospitals selected from the original 338 hospitals surveyed.

Each line of the data set has an identification number and provides information on 11 other variables for a single hospital. The data presented here are for the 1975-76 study period. The 12 variables are:

1 Identification number: 1-113
2 Length of stay: Average length of stay of all patients in hospital (in days)

3 Age: Average age of patients (in years)
4 Infection risk: Average estimated probability of acquiring infection in hospital (in percent)

5 Routine culturing ratio: Ratio of number of cultures performed to number of patients without signs or symptoms of hospital-acquired infection, times 100

6 Routine chest X-ray ratio: Ratio of number of X-rays performed to number of patients without signs or symptoms of pneumonia, times 100

7 Number of beds: Average number of beds in hospital during study period
8 Medical school affiliation: $1=$ Yes, $2=$ No

9 Region: Geographic region, where: $1=\mathrm{NE}, 2=\mathrm{NC}, 3=\mathrm{S}, 4=\mathrm{W}$

10 Average daily census: Average number of patients in hospital per day during study period

11 Number of nurses: Average number of full-time equivalent registered and licensed practical nurses during study period (number full time plus one half the number part time)

12 Available facilities and services: Percent of 35 potential facilities and services that are provided by the hospital

For (Data), consider a model of regressing infectious risk Y against age X_{1}, routine culturing ratio X_{2}, average daily census X_{3}, available facilities and service X_{4}, Medical school affiliation X_{5}. For each region, we have can find a model

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\beta_{5} X_{5}+\varepsilon
$$

are the estimated regression functions similar for the four regions? Discuss.
Let $D_{1}=1$ if in region NE; otherwise 0 ;
Let $D_{2}=1$ if in region NC; otherwise 0 ;
Let $D_{3}=1$ if in region S ; otherwise 0 ;
We consider full model

$$
\begin{aligned}
Y= & \beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\beta_{5} X_{5}+\alpha_{1} D_{1}+\alpha_{1} D_{2}+\alpha_{1} D_{3} \\
& +\beta_{11} D_{1} X_{1}+\beta_{12} D_{1} X_{2}+\beta_{13} D_{1} X_{3}+\beta_{14} D_{1} X_{4}+\beta_{15} D_{1} X_{5} \\
& +\beta_{21} D_{2} X_{1}+\beta_{22} D_{2} X_{2}+\beta_{23} D_{2} X_{3}+\beta_{24} D_{2} X_{4}+\beta_{25} D_{2} X_{5} \\
& +\beta_{31} D_{3} X_{1}+\beta_{32} D_{3} X_{2}+\beta_{23} D_{3} X_{3}+\beta_{34} D_{3} X_{4}+\beta_{35} D_{3} X_{5} \\
& +\varepsilon,
\end{aligned}
$$

If there is no region effect, then the reduced model is

$$
Y=\beta_{0}+\beta_{1} X_{1}+\beta_{2} X_{2}+\beta_{3} X_{3}+\beta_{4} X_{4}+\beta_{5} X_{5}+\varepsilon
$$

For the full model, we have

$$
S S E(F)=89.276 \quad D F=89
$$

For the reduced model, we have

$$
S S E(R)=110.933 \quad D F=107
$$

Thus

$$
F^{*}=\frac{(110.933-89.276) / 18}{89.276 / 89}=1.1994<F(0.95,18,89)=1.73
$$

Thus, we don't think different regions have different models. See the R-code.

5 Time series application

- For example, Y - quarterly sales, X_{1} - quarterly advertisement expenditures, X_{2} quarterly personal disposable income.
$D_{1}=\left\{\begin{array}{ll}1, & \text { if first quarter } \\ 0, & \text { otherwise }\end{array}, \quad D_{2}=\left\{\begin{array}{ll}1 & \text { if second quarter } \\ 0 & \text { otherwise }\end{array}\right.\right.$,
$D_{3}= \begin{cases}1, & \text { if third quarter } \\ 0, & \text { otherwise }\end{cases}$
$Y_{t}=\beta_{0}+\beta_{1} X_{t 1}+\beta_{2} X_{t 2}+\beta_{3} D_{t 1}+\beta_{4} D_{t 2}+\beta_{5} D_{t 3}+\varepsilon_{t}$
- another example

In this example, we can consider a model

$$
Y_{t}=\beta_{0}+\beta_{1} * t+\beta_{2} D_{1}+\ldots+\beta_{11} D_{11}+\varepsilon_{t}
$$

where D_{1}, \ldots, D_{11} are dummy variables denoting the month of a year (how).

