Chapter 3: Other Issues in Multiple regression
(Part 1)

1 Model (variable) selection

The difficulty with model selection: for p predictors, there are 2P different candidate models.
When we have many predictors (with many possible interactions), it can be difficult to find
a good model. Model selection tries to simplify this task.

Suppose we have P predictors X1, ..., Xp, but the true models only depends on a subset

of X1,..., Xp. In other words in model
Y=0+065X1+..+8pXp+e

some of the coefficients are zeros. We need to find those predictors with nonzero coefficients.
we call the set of predictors with nonzero coefficients “best subset”, all the predictors in
the “best subset” important variables

Criteria: Statistical test; some indices of the model; predictability (Distinction between

predictive and explanatory research.)

Example 1.1 (Surgical Unit example) X; : blood clotting score; X5 : Prognostic in-
dex; X3 : enzyme function test score X, : liver function test score; X5 : age in year; Xg :
indicator of gender (0=mail, 1=femail); X7, Xy indicator for alcohol use; Y: survival time.

If we only consider the first 4 predictors, we have the following calculation for the



possible models

variables selected p’  SSE R? R? Cp AIC SBC PRESS

(BIC) (CV)

None 1 12.808 0 0 151.4 -75.7 -73.7 13.3

X1 2 12.0 0.06 0.043 141 =77 -73 13.5

X2 2 9.98 0.21 0.21 108.5 -87.17 -83.2 10.74

X3 2 7.3 0.428 0417 66.49 -103.8 -99.84 8.32

X4 2 7.4 0.422 0.410 67.715 -103.26 -99.28 8.025

X1, X2 3 9.44 0.26  0.23 7102.037 -88.16 -82.19 11.06

X1, X3 3 5.71  0.549 0.531 43.85 -114.65  -108.69 6.98

X1, X4 3 7.29 0.43  0.408 67.97 -102.067 -96.1 8.472

X2, X3 3 4312 0.663 0.65 20.52 -130.48 -124.5 5.065

X2, X4 3 6.62  0.483 0.463 57.21 -107.32  -101.357  7.476

X3, X4 3 5.13 0.6 0.58 33.5 -121.1  -115.146 6.12

X1, X2, X3 4 3109 0.757 0.743 3.391 -146.161 -138.2 3.91
X1, X2, X4 4 6.57  0.487 0.456 58.39 -105.74 -97.79 7.9
X1, X3, X4 4 4.9 0.61 0.589 32.93 -120.8 -112.88 6.2

X2, X3, X4 4 3.6 0.718 0.7 11.42 -138.023 -130.067  4.597
X1,X2, X3, X4 5 308 0759 074 500  -14459 -134.65  4.07

where p’ is the number of coefficients included in the model.
2  R? and R? Criterion

1. R?: can be used for models with the same number of parameters/coefficients.

2. RZ .

2 @ can be used for models with Different number of parameters/coefficients.

We need to choose a model with the biggest RZ2.

In the above example, model with X7, X5, X3 is selected by this criterion.
3 Mallows’ C, Criterion

Suppose we select p predictors, p < P and try a model with the selected predictors. denote
its SSE by SSE,/. The criterion is

SSE,

Cr = MSE(X1, ..., Xp)

—(n—2p)

where p’ is the number of coefficients including intercept (if there is).
Criterion: We seek to identify subsets of X for which (1) the C), values is small and (2)

the C, vale is near p'.



e If a selected model includes all the important variables (But with some other unim-

portant variables), the model is still correct. Then we have
E{SSEy,} = (n—p)o?

On the other hand
E{MSE(X1,..,Xp)} = o>

Roughly speaking, we have

/

Comn—p —(n—2p)=p

Question: are the estimators still unbiased?

e If a selected model does not include all the important variables, the model is wrong.
Then
SSE, >> SSEp

/

Cp>>n—p —(n—2p)=p
Question: are the estimators still unbiased?
In the above example, model with X3, X5, X3 is selected by this criterion.

4  Akaike’s information criterion (AIC)

We cannot use SSE alone for the selection. As p’ increases, SSE, decreases. AIC try to

balance the number of parameters and SSE,.

AIC, = log(

SSE,, 20’
p)_|_£
n n

or

E,
AIC, = nlog(SSn ) +2p

In the above example, model with X3, X5, X3 is selected by this criterion.



5 Schwarz’ Bayesian criterion (BIC or SBC)

Theoretically, people find that AIC does not give a right number of variables. Schwarz

proposed the BIC

/

SSE,
BIC, = log( - Py + log(n)%

or

E
BIC, = nlog(SSn Py 4+ log(n)p

BIC gives bigger penalty to the number of parameters

In the above example, model with X7, X5, X3 is selected by this criterion.

6 Prediction sum of squares (PRESS) or Cross-validation
criterion (CV)

A better model should have better prediction. Most of the time, we dont have a data for us
to predict. A simple way is to partition the data to two parts: training samples (set) and
prediction set (or validation set). Use training set to estimate the model and prediction set
to check the predictability. A simple case that each time, the prediction set has one sample
in turn. There are many partitions. Using all the partitions is the idea of cross-validation
(CV). The idea was proposed by M. Stone (1974).

If we use 1 observation for validation and the other n-1 for model estimation, it is the
leave-one-observation-out cross-validation

If we use m observations for validation and the other n-m for model estimation, it is the
leave-m-observation-out cross-validation.

We need to select variables from Xy, ..., X}, to be included in the model. There are many

candidate variables. For example,

model 1 : Y =ay+a1 X1 +¢
model 2 : Y =bg+01 X1 +0X4+¢

model 3 : Y=c+cXo+e



Suppose we have n samples. For each i =1, ..., n, we use data (Y1, X1), ..., (Yi—1, X;-1),

(Yit1, Xiv1), -.(Ya, X)), where X; = (Xj1,..., Xip), to estimate the models. the estimated
models are, say,

model 1 : Y = &6 + d’in'l

model 2 : Y = 66 + I;Zlel + EZQXZ4

model 3: Y =é&+&EX;

The prediction errors for (Y;, X;) are respectively
model 1:  erry(i) = {V; — a) — a' X;1}°
model 2:  erry(i) = {V; — by — b’ X1 — 05X 4}>

model 3 : err3(i) = {Y; — & — éziXi,Q}ﬂ

The overall prediction errors (also called Cross-validation value) are respectively then

model 1 : CVy=n"t Z erry(i)
i=1

n

model 2:  CVy=mn"" Z erra(i)
1=1

model 3 : CVs=n"! Z errs(i)
i=1

The model with the smallest CV value is the model we prefer.



Example 6.1 For the same data above |(data) Our candidate models are

model 0 Y = By + 81Xy + B2 Xo + B3 X3 + B Xy + G5 X5 + ¢
model 1 Y = 5o+ 51Xy + BoXo + B3 X3 + 04Xy + €
model 2 Y = By + B1X1 + BoXo + B3 X3 + (5 X5 + ¢
model 3 Y = [y + 1 X1 + BoXo + B4 Xy + B5X5 + ¢
model 4 Y =00+ 51X1 + B3 X3+ 04 Xy + 05X5 + ¢

model 5 Y = [y + B2 Xo + B3X3 + BuXy + 35 X5 + ¢
The CV values for the above model are respectivly
C'V(model 0) = 0.3633548, C'V (model 1) = 0.333161, C'V (model 2) = 1.216745,

CV (model 3) = 0.3922781, C'V (model 4) = 1.400237, CV (model 5) = 0.4589498

Thus model 1 is selected (and variable X35 is deleted)

R-code for the calculation

K-fold cross-validation In K-fold cross-validation, the original sample is partitioned
into K subsamples. Of the K subsamples, a single subsample is retained as the validation
data for testing the model, and the remaining K — 1 subsamples are used as training
data. The cross-validation process is then repeated K times (the folds), with each of the
K subsamples used exactly once as the validation data. The K results from the folds then
can be averaged (or otherwise combined) to produce a single estimation. The advantage of
this method over repeated random sub-sampling is that all observations are used for both
training and validation, and each observation is used for validation exactly once. 10-fold

cross-validation is commonly used.

7 Searching for the “best subset”

e Forward selection: starting with no variables in the model, trying out the variables
one by one and including them if they are ’statistically significant’ or can increase the

predictability.


http://www.stat.nus.edu.sg/~staxyc/data01.dat
http://www.stat.nus.edu.sg/~staxyc/c0c2.R

e Backward elimination: starting with all candidate variables and testing them one by
one for statistical significance, deleting any that are not significant or can increase the

predictability.

e Stepwise: a combination of the above, testing at each stage for variables to be included

or excluded.

8 R code

step(object, direction = c("both", "backward", "forward"), steps = 1000, k

?7)

where k can be any positive values, but k = 2 for AIC, and k = log(n) for BIC (SBC)
Example 8.1 For the first example above with |datal, the selected model variables are
Based on BIC: X1+ X2+ X3+ X5+ X6+ X8

or

Based on BIC: X1+ X2+ X3+ X8

(code)


http://www.stat.nus.edu.sg/~staxyc/data030102.dat
http://www.stat.nus.edu.sg/~staxyc/code030102.R
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