
Chapter 3 Other Issues in Multiple regression

(Part 4)

1 Overview

Besides the above two issues (dependent random errors, unequal variance), there are other
issues about modelling remedies including

1. Nonlinearity

2. The distribution is not normal

3. collinearity

2 Non-normal distribution: Transformation of the data

1. If X and Y are jointly normally distributed, then their relationship must be linear!
Otherwise, it is possible that their relation is nonlinear. One idea is to transform each
variable to be approximately normal.

2. By transformation, some nonlinear model can be transformed to linear model. for
example,

Yt = β0X
β1
1 exp(β0 + β2X

2
2 )ε

3. For linear regression model, the best transformation is to maximize the R2.

Suppose Z is a positive random variable. the Box-Cox transformation is

Z̃ =
Zλ − 1
λ

=
{

(Zλ − 1)/λ, if λ > 0
log(Z), if λ = 0

where λ ≥ 0, or simply seaking

Z̃ = Zλ, Z̃ = log(Z).

The value of λ are selected to serve the above purpose.
We then applied the linear regression model to the transformed data (instead of the

original data).
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3 Collinearity: Ride regression

Note that the basic requirement for the Least squares (LSE estimation of a linear regression
is

(X′X)−1exists.

There are two reasons that the inverse does not exits. (1) p > n and (2) collinearity. The
“badly conditioned linear regression problems” (Hoerl and Kennard, 1970) has long been an
important problem in statistics and computer science. The problem is more serious in high
dimensional data as most of the genetics data are. The technique of ridge regression (RR)
is one of the most popular and best performing (Frank and Friedman, 1993) alternatives to
the ordinary least squares (LSE) methods.

A simple way to guarantee the invertibility is adding a diagonal matrix to X′X, i.e.
X′X + λI, where I is a (p+ 1)× (p+ 1) identity matrix. The ridge regression estimator is
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then

br = (X′X + λI)−1X′Y

where λ > 0 is a parameter needs to be chosen (HOW? any idea). To make the notation
clear, denote the LSE estimator by

bLSE = (X′X)−1X′Y

(providing the inverse exists)
Expectation of br

Ebr = E{(X′X + λI)−1X′(Xβ + E)}

= (X′X + λI)−1X′Xβ = β−λ(X′X + λI)−1β

It is not unbiased. The bias is

bias(br) = Ebr − β = λ(X′X + λI)−1β

Recall that
EbLSE = β.

which is unbiased
Variance-covariance matrix of br1: If V ar(E) = σ2In, then

V ar(br) = (X′X + λI)−1X′X(X′X + λI)−1σ2

Recall that
V ar(bLSE) = (X′X)−1σ2

Estimation Error2 br : E||br − β||2, also called mean squared error MSE of the esti-
mator, which is different from our MSE of the model.

E||br − β||2 = E(br − β)′(br − β)

= E(br − Ebr + Ebr − β)′(br − Ebr + Ebr − β)

= E||br − Ebr||2 + 2E{(Ebr − β)′(br − Ebr)}+ ||Ebr − β||2

= E||br − Ebr||2 + ||Ebr − β||2

= tr(V ariance) + ||bias||2

The LSE has no bias but with a bigger variance than the ridge regression estimator. People
proved that we can always find a λ such that

MSE(br) < MSE(bLSE).

In other words, ridge regression can improve the estiamtion of β.
1This part will not be included in the examination
2This part will not be included in the examination
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3.1 An alternative way of understanding ridge regression

The motivation of ridge regression is very simple, but it has good performance. Another way
to understand it is that we dont expect an estimator with too large β. Thus, we penalize
the value of β. Recall the LSE estimation is to minimize

n∑
i=1

(Yi −Xiβ)2

where Xi = (1, Xi1, ..., Xip). or

min
β

n∑
i=1

(Yi −Xiβ)2

To penalize the value of β, we can consider estimate β by minimizing

n∑
i=1

(Yi −Xiβ)2 + λ||β||2.

or

min
β
{
n∑
i=1

(Yi −Xiβ)2 + λ||β||2}.

It is not difficult to prove that to solution of β to the above problem is

br = (X′X + λI)−1X′Y.

Note that with larger λ, the penalty on β tends to be stronger; the solution of β will be
smaller.

3.2 Selection of λ via CV

For different λ, we have different ridge regression estimator for the model.
We select a large range for possible λ: [0, c]. For each fixed λ in [0, c], consider the CV

as follows. For each j,
bjr(λ) = (

∑
i 6=j

X ′iXi + λI)−1
∑
i 6=j

X ′iYi.

The prediction error for (Xj , Yj) is

errj(λ) = (Yj −Xjb
j
r(λ))2

The CV value is then

CV (λ) = n−1
n∑
j=1

errj(λ)

The best λ is the minimum point of CV (λ).
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Example 3.1 (Near Infra-red Calibration for Protein, Fearn (1983)) (dataA). In
the data, Y is protein percentage with 6 explanatory variables X = (x1,x2, · · · ,x6), which
are log(1/reflectance) values at six wavelengths.

The LSE estimated model is

y = 29.372− 0.1692x1 − 0.1536x2 + 0.5333x3 − 0.1362x4 − 0.008x5 − 0.0615x6

Using CV, the selected λ is 4.4. The estimated model is

y = 1.8843 + 0.0515x1 − 0.22783x2 + 0.4726x3 − 0.28769x4 + 0.0058x5 − 0.0154x6

To check the models, a new experiment was done and the data were collected (dataB)

The prediction errors for the new data set are respectively: Least square estimation:
0.09397779; Ridge regression: 0.07783629.

R code for the calculation (code)

Example 3.2 (cell classification based on gene) For the leukemia gene expression data
((training data). There are 38 cells with 250 genes (selected from about 7000 genes). they
are from two types of cells.

To check the models, a new experiment was done and the data were collected ((testing

set).
The prediction errors for the new data set based on Ridge regression: 3.676901e-08.

(with ridge parameter λ = 0.05) From figure 1, we can see that we can have a very accurate
classification for the new data.

R code for the calculation (code)

3.3 Other selection of λ

Suppose we can obtain the least square estimator β̂ and estimator of σ̂2. then

λ =
(p+ 1)σ̂2

||bLSE ||2

If we cannot get the least square estimator, we can use a ridge regression with very small
λ. And get a similar value of λ.

3.4 Extension of ridge regression

The bridge regression proposed by Frank and Friedman (1993) can be written as

min
β

{
n−1(Y −Xβ)′(Y −Xβ) + λ

p∑
k=1

|βk|γ
}
, (1)

where γ > 0. If γ = 2, it is the ridge regression; if γ = 1, it is an equivalent of the Lasso
proposed by Tibishrani (1996).
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Figure 1: The left panel is the true classification of the 13 cells; the right panel is predicted
classification

3.5 Lasso: Least absolute shrinkage and selection operator

If we estimate β by

min
β

{
n−1(Y −Xβ)′(Y −Xβ) + λ

p∑
k=1

|βk|
}
, (2)

the estimation procedure is called Lasso. Lasso simultaneously accomplish model estimation
and variable selection.

4 Nonlinearity 1: polynomial models

After we estimate a model, for example,

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3 + εi

we plot the residuals against each predictor, to check whether there is nonlinear patterns.
If there is nonlinearity, we can consider polynomial models

Yi = β0 + β1Xi1 + β2Xi2 + β3Xi3

+β11X
2
i1 + β22X

2
i2 + β33X

2
i3

+β12Xi1Xi2 + β13Xi1Xi3 + β23Xi2Xi3

+εi

estimate and refine this model.
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We plot the residuals of the model against each predictor, to check whether there is
nonlinear patterns. If yes, we consider higher order polynomial models, with terms X3

i1, ....
Until there is no nonlinearity in the residuals.

Example 4.1 for data with Y,X1, X2. we have the analysis; see code

5 Nonlinearity 2: Other nonlinear models

Suppose Yi is the response and Xi = (Xi1, ..., Xip) are the predictors. A nonlinear model
can be written as

Yi = f(Xi, γ) + εi

where f(.) is a specified function, γ is unknown parameters. Examples are

• Linear regression model

Yi = γ0 + γ1Xi1 + ...+ γpXip + εi

= (1,Xi)′γ

where γ = (γ0, ..., γp)′ are parameters and Xi are known constant, εi are IID N(0, σ2).

• Exponential regression models.

Yi = γ0 exp(γ1Xi) + εi

where γ = (γ0, γ2)′ are parameters and Xi are known constant, εi are IID N(0, σ2).

• Logistic regression models

Yi =
λ0

1 + γ1 exp(γ2Xi)
+ εi

where γ = (γ0, γ2)′ are parameters and Xi are known constant, εi are IID N(0, σ2).

5.1 How to select the model

1. By the knowledge of the background; 2. By the plotting

5.2 Least Square Estimation of Nonlinear regression

Estimate the parameters by minimizing the sum of squares of errors

Q(γ) =
n∑
i=1

[Yi − f(Xi, γ)]2
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Note that
∂Q

∂γk
=

n∑
i=1

−2[Yi − f(Xi, γ)]
∂f(Xi, γ)
∂γk

Letting the partial derivatives to be 0, we have the following normal equations
n∑
i=1

Yi
∂f(Xi, γ)
∂γk

−
n∑
i=1

f(Xi, γ)
∂f(Xi, γ)
∂γk

= 0, k = 0, ..., p

Suppose the solution to the N.E. are

g =


g0
g1
...
gp


[There is no simple way to find the solution, but numerical methods are available, for
example, the Gaussian-Newton methods.]

5.3 R code

package nls2 can be used,

library(’nls2’)

nls(formula, data, start=list(para1 = value1, para2 = value2, ..))

Example 5.1 The yield of a chemical process depends on the temperature X1 and the
pressure X2 according to the following model

Yi = γ0(Xi1)γ1(Xi2)γ2 + εi

The data is observed and available at (data)

The estimated model is (code)

Ŷ = 10.08 ∗X0.4987
1 ∗X0.3020

2

5.4 Inference about the coefficients

All the methods are still applicable, including

• Test of H0 : βk = 0 using t−test

• Test of H0 : βk = 0 using F−test

• Test of reduced model against Full model using F-test, (use SSE =
∑n

i=1(Ŷi − Yi)2,
but not SSR, to calculate F).

• The degree of freedom can be calculated based on the number of normal equations as
before.
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