Math 644, Fall 2012 Homework 2 Due: Friday, 10/5/2012

- 1. (Grade Point average): Refer to the Grade Point average problem in HW1.
 - (a) Obtain 99% confidence interval for β_1 . Does it include 0? Why are we interested in whether the interval include 0?
 - (b) Test, using t-statistic, whether there is linear association between ACT and GPA when $\alpha = 0.01$ is used?
 - (c) What is the *p*-value for part (b)? How does it support the conclusion in part (b)?
 - (d) Obtain a 95% percent interval estimate of the mean freshman GPA for students whose ACT test score is 28. Interpret your confidence interval.
 - (e) Mary Jones obtained a score of 28 on the entrance test. Predict her freshman GPA using a 95% prediction interval. Interpret your prediction interval.
 - (f) Is the prediction interval in part (b) wider than the confidence interval in part (a)?
- 2. (Grade point average): Refer to the Grade Point average problem in HW1.
 - (a) Set up the ANOVA table.
 - (b) Conduct an F-test for $H_0: \beta_1 = 0$ with $\alpha = 0.01$ is used?
 - (c) What is the absolute magnitude of the reduction in the variation of Y when X is introduced into the model? What is the relative reduction? What is the name for the later measure?
 - (d) Obtain r_{XY} and attach the appropriate sign.
 - (e) Which measure R^2 or r has more clear-cut operational interpretation, explain.
- 3. Suppose we have the fitted regression function, $\hat{Y} = 350.7 1.4X$, where the *p*-value for the slope is 0.91. A student concludes that "the message I get here is that the more X is, the fewer Y will be". Comment.
- 4. An analyst fitted normal error regression model and conducted an F-test of $\beta_1 = 0$ versus $\beta_1 \neq 0$. The *p*-value of the test was 0.033 and the analyst concluded H_a :

- $\beta_1 \neq 0$. Was the α level used by the analyst greater than or smaller than 0.033? If the α level had been 0.01, what would be the appropriate conclusion?
- 5. (Airfreight breakage): A substance used in biological and medical research is shipped by airfreight to users in cartons of 1000 ampules. In the data, X is the number of times the carton was transferred from one aircraft to another over the shipment route, and Y the number of ampules found to be broken upon arrival. A linear regression model $Y = \beta_0 + \beta_1 X + \varepsilon$ is used.
 - (a) Write down the estimated regression model. Plot the estimated regression function and the data. Does the linear regression function appear to give a good fit here?
 - (b) Obtain a point estimator of the expected number of broken ampules when X=1.
 - (c) Estimate β_1 with 95% confidence interval. Interpret your interval estimate.
 - (d) Conduct a t-test to decide whether or not there is a linear association between number of times a carton is transferred X and the number of broker ampules Y with significant level $\alpha = 0.05$? What is the p-value of the test?
 - (e) The β_0 here is the mean number of ampuls broken when no transfer of shipment are made. Obtain 95% con?dence interval for β_0 and interpret it.
- 6. (Airfreight breakage): Refer to the Airfreight breakage problem.
 - (a) Set up the ANOVA table. Which elements are additive?
 - (b) Conduct F-test to check the linear association between X and Y with $\alpha = 0.05$.
 - (c) Conduct t-test to check the linear association between X and Y with $\alpha = 0.05$. Compare with the F-test and show the equivalence.
 - (d) Calculate \mathbb{R}^2 and r_{XY} . What proportion of the variation in Y is accounted for by introducing X into the model?