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4.1 Introduction

Most human diseases are characterized by multidimensional etiology and
the efficacy of an experimental treatment frequently needs to be assessed on
multiple outcome measures — commonly referred to as endpoints. There is a
variety of ways in which the contribution of each endpoint can be accounted
for in the primary analysis, for example, the trial’s sponsor can treat endpoints
as independent entities or as manifestations of a single underlying cause. The
following examples illustrate the common approaches to analyzing multiple
endpoints.

Example 1. If each endpoint independently provides a proof of efficacy, the
trial’s outcome is declared positive if at least one endpoint is associated
with a significant improvement compared to the control. Gong, Pin-
heiro and DeMets (2000) gave several examples of cardiovascular trials
in which the primary objective had two components (primary endpoint
and principal secondary endpoint), e.g., mortality and mortality plus
morbidity due to heart failure in the VEST trial (Cohn et al., 1998) and
mortality plus cardiovascular morbidity and mortality in the PRAISE-I
trial (Packer et al., 1996).

Example 2. Another commonly used approach to defining the primary ob-
jective in clinical trials with multiple endpoints is based on the devel-
opment of composite endpoints. A composite endpoint can be based on
a sum of multiple scores or combination of multiple events. In the case
of multiple events, a patient achieves a composite endpoint if he or she
experiences any of the pre-specified events related to morbidity or mor-
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132 Multiple Testing Problems in Pharmaceutical Statistics

tality. For example, the primary objective of the Losartan Intervention
For Endpoint reduction (LIFE) trial was to study the effect of losartan
on the composite endpoint of cardiovascular death, myocardial infarc-
tion, and stroke (Dahlöf et al., 2002).

Example 3. When the multiple endpoints are biologically related to each
other (for example, they measure different aspects of the same under-
lying cause), the primary objective can be defined in terms of a com-
bination of individual effects across the endpoints. The mitoxantrone
trial in patients with progressive multiple sclerosis evaluated the overall
effect of five clinical measures: expanded disability status scale, ambula-
tion index, number of treated relapses, time to first treated relapse and
standardized neurological status (Hartung et al., 2002). The analysis
was performed based on a multivariate approach that accounted for the
correlations among the endpoints.

Example 4. In certain areas, a clinically meaningful effect is defined as the
simultaneous improvement in multiple measures. In this case, the pri-
mary objective of a clinical trial is met if the test drug shows a significant
effect with respect to all the endpoints. Offen et al. (2007) gave a list of
more than 15 examples in which a positive trial is defined in terms of
two or more significant endpoints. They included clinical trials for the
treatment of migraine, Alzheimer’s disease and osteoarthritis.

Due to an increasing number of studies dealing with conditions that exhibit
a complex etiology, there has been much attention in the clinical trial literature
on the development of statistical methods for analyzing multiple endpoints.
O’Brien’s (1984) paper ignited a flurry of research in this area and a number of
procedures for testing multiple endpoints have been developed over the past
two decades. O’Neill (2006) mentions multiple endpoints as one of the key
areas for guidance development in FDA’s critical path initiative and writes
that “The many statistical methods and approaches that have been suggested
in the literature in recent years now deserve to be digested and placed in the
context of how they can be best used in clinical trials.” The purpose of this
chapter is to attempt to answer this need by giving a critical overview of the
various procedures along with their assumptions, pros and cons, and domains
of applicability. For some other reviews of the literature on multiple endpoints,
the reader is referred to Chi (1998), Comelli and Klersy (1996), Geller (2004),
Huque and Sankoh (1997), Kieser, Reitmeir and Wassmer (1995), Sankoh,
Huque and Dubey (1997) and Zhang, Quan, Ng and Stepanavage (1997).

This chapter is organized as follows. Section 4.2 introduces inferential goals
and main classes of multiple endpoint procedures. It is assumed in this chap-
ter that all endpoints are primary or co-primary. Gatekeeping procedures that
deal with endpoints classified into hierarchically ordered categories such as
primary and secondary will be discussed in Chapter 5. We begin with an
overview of multiple testing procedures for the assessment of the treatment’s
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effect on each individual endpoint (at-least-one procedures) in Section 4.3.
Global procedures aimed at examining the overall efficacy of the treatment
are reviewed in Section 4.4. Section 4.5 discusses all-or-none procedures arising
in clinical trials when the treatment’s efficacy needs to be demonstrated for all
endpoints. Section 4.6 describes the superiority-noninferiority approach which
requires demonstrating the treatment’s superiority on at least one endpoint
and noninferiority on others. Finally, Section 4.7 discusses software implemen-
tation of selected procedures for testing multiple endpoints in clinical trials.

4.2 Inferential goals

To define inferential goals of multiple endpoint procedures, we will consider
a clinical trial with two treatment groups. The trial’s objective is to assess
the effect of the experimental treatment (hereafter referred to simply as the
treatment) on m endpoints compared to that of the control, e.g., placebo.
Let δi denote an appropriate measure of the true treatment effect for the ith
endpoint (e.g., mean difference, odds ratio or log hazard ratio). The efficacy of
the treatment on the ith endpoint is assessed by testing the hypothesis of no
treatment difference. The multiple testing setting gives rise to the problem of
Type I error rate inflation. Depending on the trial’s objectives, this problem
can be addressed by performing a multiplicity adjustment, combining evidence
of the treatment’s effect across the endpoints (e.g., by combining multiple
endpoints into a single composite endpoint) or utilizing other approaches.
This section gives a brief overview of four main approaches to the analysis of
multiple endpoints.

4.2.1 At-least-one procedures

If each multiple endpoint is independently clinically relevant (and can po-
tentially be associated with its own regulatory claim), the multiple endpoint
problem can be formulated as a multiple testing problem. Cardiovascular clin-
ical trials listed in Example 1 in the Introduction serve as an illustration of this
approach. In these trials the endpoints are treated as clinically independent
entities and the sponsor is interested in assessing the effect of the experimental
treatment on each endpoint.

Given this structure of the primary objective, the trial is declared positive
if at least one significant effect is detected. The global hypothesis is defined as
the intersection of hypotheses for individual endpoints and the testing problem
is stated as

HI =
m⋂

i=1

(δi ≤ 0) versus KU =
m⋃

i=1

(δi > 0). (4.1)
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The global hypothesis is rejected if one or more individual hypotheses of no
treatment effect are demonstrated to be false. This is a prototypical multi-
ple testing problem, known as the union-intersection (UI) problem (see Sec-
tion 2.3.1), which requires a multiplicity adjustment. The objective of a mul-
tiplicity adjustment is to control the familywise error rate (FWER),

FWER = P{Reject at least one true hypothesis},

at a designated level α by adjusting the level of each test downward. As in
other clinical trial applications, FWER needs to be controlled in the strong
sense; i.e., it must not be greater than α regardless of which hypotheses are
true and which are false (Hochberg and Tamhane, 1987). Procedures that
can be used in this multiple endpoint problem (at-least-one procedures) are
described in Section 4.3.

It is worth noting that the false discovery rate (FDR) proposed by Ben-
jamini and Hochberg (1995) is generally not appropriate for the multiple end-
point problem for the following reasons.

• FDR is suitable for testing a large number of hypotheses whereas the
number of endpoints is generally very small.

• FDR is suitable for exploratory studies in which a less stringent require-
ment of control of the proportion of false positives is acceptable. How-
ever, tests for multiple endpoints are generally confirmatory in nature
required for drug approval and labeling.

• The problem of testing multiple endpoints often has additional compli-
cations such as ordered categories of endpoints, e.g., primary, co-primary
and secondary with logical restrictions, and decision rules based on tests
for superiority and noninferiority on different endpoints. The FDR ap-
proach is not designed to handle such complex decision rules.

4.2.2 Global procedures

In many clinical trial applications it is desired to show that the treatment
has an overall effect across the endpoints without necessarily a large significant
effect on any one endpoint (see Examples 2 and 3 in the Introduction).

To establish an overall treatment effect, usually a point null hypothesis of
no difference between the treatment and control is tested against a one-sided
alternative:

H∗
I : δi = 0 for all i versus K∗

U : δi ≥ 0 for all i and δi > 0 for some i.
(4.2)

It is well-known (O’Brien, 1984) that Hotelling’s T 2-test is inappropriate
for this problem because it is a two-sided test, and hence lacks power for
detecting one-sided alternatives necessary for showing the treatment efficacy.
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In this case one-sided global procedures that have been proposed as alternatives
to the T 2-test are more appropriate.

Global procedures are conceptually similar to composite endpoints (defined
in Example 2) in that they also rely on reducing the number of dimensions
in a multiple endpoint problem by combining multiple measures into a single
one, e.g., combining tests for individual endpoints into a single test. However,
unlike composite endpoints based on a sum or other simple function of individ-
ual scores, global testing procedures address the interdependence of multiple
endpoints, i.e., they account for the correlations among them. For a detailed
discussion of global procedures, see Section 4.4.

4.2.3 All-or-none procedures

Another formulation of the multiple endpoint problem pertains to the re-
quirement that the treatment be effective on all endpoints (see Example 4
in the Introduction). This problem is referred to as the reverse multiplicity
problem by Offen et al. (2007) and represents the most stringent inferential
goal for multiple endpoints. In mathematical terms, this is an example of an
intersection-union (IU) problem introduced in Section 2.3.2. Within the IU
framework, the global hypothesis is defined as the union of hypotheses cor-
responding to individual endpoints and thus the testing problem is stated
as

HU =
m⋃

i=1

(δi ≤ 0) versus KI =
m⋂

i=1

(δi > 0). (4.3)

To reject HU , one needs to show that all individual hypotheses are false (the
treatment effects for all endpoints are significant). All-or-none testing proce-
dures are discussed in Section 4.5.

4.2.4 Superiority-noninferiority procedures

The hybrid superiority-noninferiority testing approach to testing multiple
endpoints provides a viable alternative to the stringent all-or-none testing
approach described in Section 4.2.3. In this case, the goal is to demonstrate
that the treatment is superior to the control on at least one endpoint and not
inferior on all other endpoints.

To define the null and alternative hypotheses for this setting, let ηk ≥ 0
denote the superiority threshold (commonly, ηk = 0) and εk > 0 denote the
noninferiority threshold for the kth endpoint. In other words, the treatment
is superior to the control on the kth endpoint if δk > ηk and noninferior if
δk > −εk, k = 1, . . . , m.

For the kth endpoint, the superiority testing problem is stated as

H
(S)
k : δk ≤ ηk versus K

(S)
k : δk > ηk.
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Similarly, the noninferiority testing problem for the kth endpoint is stated as

H
(N)
k : δk ≤ −εk versus K

(N)
k : δk > −εk.

Note that the difference between H
(S)
k and H

(N)
k is simply a shift. Showing

superiority involves clearing a higher bar than showing noninferiority.
The overall superiority testing problem is given by

H
(S)
I =

m⋂
k=1

H
(S)
k versus K

(S)
U =

m⋃
k=1

K
(S)
k .

The global superiority hypothesis H
(S)
I is rejected if at least one H

(S)
k is re-

jected. Similarly, the overall noninferiority testing problem is given by

H
(N)
U =

m⋃
k=1

H
(N)
k versus K

(N)
I =

m⋂
k=1

K
(N)
k .

The global noninferiority hypothesis H
(N)
U is rejected if all H

(N)
k are re-

jected. To combine the two global hypotheses and formulate the superiority-
noninferiority testing approach, we need to consider testing the union of the
global superiority and global noninferiority hypotheses

H
(SN)
U = H

(S)
I ∪ H

(N)
U versus K

(SN)
I = K

(S)
U ∩ K

(N)
I .

In other words, the trial’s objective is met if there is superior efficacy for at
least one endpoint (K(S)

U ) and noninferior efficacy for all endpoints (K(N)
I ).

This superiority-noninferiority testing problem becomes equivalent to the all-
or-none testing problem (Section 4.2.3) if the noninferiority margins are set
to 0 for all endpoints, i.e., ε1 = . . . = εm = 0. Superiority-noninferiority
procedures are discussed in Section 4.6.

4.3 At-least-one procedures

This section describes p-value-based procedures as well as parametric (nor-
mal theory) and resampling-based procedures for multiple endpoints when it
is desired to demonstrate the treatment’s superiority on at least one endpoint.

4.3.1 Procedures based on univariate p-values

Frequently, different test statistics (e.g., t-statistics, log-rank statistics, chi-
square statistics, etc.) are used to compare the treatment and control groups
on different endpoints because of the different scales on which the endpoints
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are measured. A standard approach to put the results of these different tests
on the same scale is via their p-values. Therefore p-value-based procedures
are of interest in the analysis of multiple endpoints. Section 2.6 provides a
detailed description of popular multiple testing procedures based on univari-
ate p-values. Here we briefly review basic procedures from that section with
emphasis on issues specific to multiple endpoints. In addition, we describe
two p-value-based procedures introduced specifically for the multiple endpoint
problem.

Bonferroni and related procedures

The simplest of the p-value-based procedures is the well-known Bonferroni
procedure introduced in Section 2.6.1. This procedure is known to be con-
servative especially when there are many endpoints and/or they are highly
correlated. More powerful stepwise versions of the Bonferroni procedure, e.g.,
the Holm and Hochberg procedures, are also described in Section 2.6.

The basic Bonferroni procedure allocates the Type I error rate α equally
among the endpoints. A weighted version of this procedure allows unequal al-
location which is useful for unequally important endpoints, e.g., a clinical trial
with a principal secondary endpoint which may provide the basis for a new
regulatory claim. The weighted Bonferroni procedure can also be employed
in trials where some endpoints are adequately powered and the others are
underpowered.

As an example, consider the Carvedilol cardiovascular trials (Fisher and
Moyé, 1999) in which exercise capability plus quality of life served as the
primary endpoint and mortality was a key secondary endpoint. The primary
endpoint was not significant at the 0.05 level in the trials with the exercise
capability endpoint while the secondary mortality endpoint was highly sig-
nificant in the combined analysis across the trials. Although the problem of
interpreting the results of such trials is a vexing one (see O’Neill (1997) and
Davis (1997) for contrasting views), we will assume, for the sake of illustra-
tion, that the mortality endpoint was prospectively defined as a co-primary
endpoint.

In this case a decision rule based on the weighted Bonferroni procedure
can be set up. In the general case of m endpoints, the rule uses an additive
alpha allocation scheme. Let w1, . . . , wm be positive weights representing the
importance of the endpoints such that they sum to 1. The hypothesis of no
treatment effect for the ith endpoint is tested at level αi, where αi = wiα and
thus

m∑
i=1

αi = α.

In the Carvedilol example, a Bonferroni-based decision rule could have been
constructed by assigning a large fraction of the Type I error rate α to the
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exercise capability endpoint (i.e., by choosing α1 close to α) and “spending”
the rest on the mortality endpoint (α2 = α − α1).

A slightly sharpened version of this rule, termed the prospective alpha
allocation scheme (PAAS) method, was proposed by Moyé (2000). Assuming
that the p-values for the individual endpoints are independent, we have

m∏
i=1

(1 − αi) = 1 − α.

Moyé’s solution to the problem of two co-primary endpoints was to select the
fraction of the Type I error rate α allocated to the primary endpoint and
calculate the significance level for the other endpoint from the above identity.
Specifically, let 0 < α1 < α and

α2 = 1 − 1 − α

1 − α1
.

In the context of the Carvedilol example, if α = 0.05 and α1 = 0.045, then
α2 = 0.0052, which is only marginally larger than α2 = 0.005 given by the
weighted Bonferroni allocation.

Fixed-sequence procedure

Maurer, Hothorn and Lehmacher (1995) considered clinical trials in which
the endpoints are a priori ordered (e.g., in terms of their importance). They
applied a fixed-sequence method that tests the ordered endpoints sequentially
at level α as long as the test is significant and stops testing when a non-
significant result is encountered. Effectively, α is unused when the procedure
rejects the hypothesis of no treatment effect for an endpoint and thus it can
be carried over to the next endpoint. All α is used up when no treatment
effect is detected with none left for the remaining endpoints. We refer to this
as the “use it or lose it” principle.

The fixed-sequence testing approach is widely used in clinical trials and en-
dorsed by regulatory agencies; see, for example, the CPMP guidance document
on multiplicity issues (CPMP, 2002). As an example, this testing approach
was adopted in the adalimumab trial in patients with rheumatoid arthritis
(Keystone et al., 2004). The trial included three endpoints (American Col-
lege of Rheumatology response rate, modified total Sharp score and Health
Assessment Questionnaire score) that were prospectively ordered and tested
sequentially. Since each test was carried out at an unadjusted α level, this
approach helped the trial’s sponsor maximize the power of each individual
test. Note, however, that the overall power of the fixed-sequence procedure
depends heavily on the true effect size of the earlier endpoints. The power of
the procedure is increased if the likelihood of detecting a treatment effect for
the endpoints at the beginning of the sequence is high. On the other hand, if
at least one of the earlier endpoints is underpowered, the procedure is likely
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to stop early and miss an opportunity to evaluate potentially useful endpoints
later in the sequence. To improve the power of the fixed-sequence procedure,
it is critical to order the endpoints based on the expected strength of evidence
beginning with the endpoints associated with the largest effect size (Huque
and Alosh, 2008).

Fallback procedure

A useful generalization of the fixed-sequence procedure was proposed by
Wiens (2003). Wiens constructed the fallback procedure by allocating pre-
specified fractions, w1, . . . , wm, of α to the m a priori ordered endpoints sub-
ject to

m∑
i=1

wi = 1.

The procedure begins with the first endpoint in the sequence which is tested
at level α1 = αw1. Further, the ith endpoint is tested at level αi = αi−1 +αwi

if the previous endpoint is significant and level αi = αwi otherwise. In other
words, if a certain test is not significant, its significance level (αi) is used up
and, if it is significant, its level is carried over to the next endpoint, hence the
name fallback procedure. Note that this procedure also uses the “use it or lose
it” principle.

The fallback procedure is uniformly more powerful than the Bonferroni
procedure and reduces to the fixed-sequence procedure if all Type I error
rate is spent on the first endpoint in the sequence, i.e., w1 = 1 and w2 =
· · · = wm = 0. The advantage of the fallback procedure is that one can
continue testing even when the current test is not significant in contrast to
the fixed-sequence procedure which stops testing as soon as it encounters a
nonsignificant result.

As an illustration, consider a clinical trial with two endpoints, the first of
which (functional capacity endpoint) is adequately powered and the other one
(mortality endpoint) is not (Wiens, 2003). Wiens computed the power of the
fallback procedure in this example assuming that w1 = 0.8 and w2 = 0.2 (80%
of the Type I error rate is spent on the functional capacity endpoint and 20%
on the mortality endpoint) and the two-sided α = 0.05. Under this weight
allocation scheme, the power for the mortality endpoint was substantially
improved (from 50% to 88% compared to the Bonferroni procedure with the
same set of weights) whereas the power for the functional capacity endpoint
was reduced by a trivial amount (from 95% to 94%).

The overall power of the fallback procedure is heavily influenced by the
effect sizes of the ordered endpoints and the significance levels for their tests
(or, equivalently, the pre-specified weights). As shown in the next section, the
power can be improved by arranging the endpoints in terms of the expected
effect size, i.e., from the largest effect size to the smallest effect size. In ad-
dition, the expected effect size can help determine the significance levels. For

© 2010 by Taylor and Francis Group, LLC



140 Multiple Testing Problems in Pharmaceutical Statistics

example, Huque and Alosh (2008) recommended defining the significance lev-
els proportional to the reciprocals of the effect sizes. This choice helps increase
the power of the early tests which will, in turn, raise the significance levels for
the endpoints toward the end of the sequence.

Comparison of the fixed-sequence and fallback procedures

To assess the robustness of the fixed-sequence and fallback procedures
with respect to the monotonicity assumption, a simulation study was con-
ducted. A clinical trial with two arms (treatment and placebo) was simulated.
The treatment-placebo comparison was performed for three ordered endpoints
(Endpoints 1, 2 and 3). The endpoints were tested sequentially, beginning with
Endpoint 1, using the fixed-sequence method at the one-sided 0.025 level. The
endpoint outcomes were assumed to follow a multivariate normal distribu-
tion with a compound-symmetric correlation matrix (i.e., the outcomes were
equicorrelated). The sample size per group (n = 98) was chosen to achieve 80%
power for each univariate test when the true effect size is 0.4. The calculations
were performed using 10,000 replications.

The power of the fixed-sequence and fallback procedures for the three end-
point tests is displayed in Table 4.1 for three values of the common correlation
coefficient (ρ = 0, 0.2 and 0.5) and three sets of endpoint-specific effect sizes,
ei (i = 1, 2, 3). The following three scenarios were considered:

• Scenario 1. All tests are adequately powered, e1 = 0.4, e2 = 0.4, e3 = 0.4.

• Scenario 2. The first test is underpowered but the other tests are ade-
quately powered, e1 = 0.3, e2 = 0.4, e3 = 0.4.

• Scenario 3. The first test is overpowered but the other tests are ade-
quately powered, e1 = 0.5, e2 = 0.4, e3 = 0.4.

Consider first the case of a constant effect size (Scenario 1 in Table 4.1).
Since each test serves as a gatekeeper for the tests placed later in the sequence,
the power of the individual tests in the fixed-sequence procedure declines fairly
quickly as one progresses through the sequence. While the power of the first
test is equal to its nominal value (80%), the power of the last test drops
to 61% when the endpoints are moderately correlated (ρ = 0.5). A greater
power loss is observed with the decreasing correlation among the endpoints.
Furthermore, the fixed-sequence procedure is quite sensitive to the assumption
that the true ordering of the endpoints (in terms of the effect sizes) is close to
the actual ordering. If the first test is underpowered (Scenario 2), it creates
a “domino effect” that supresses the power of the other tests. Comparing
Scenario 2 to Scenario 1, the power of the last test decreases from 61% to 46%
for moderately correlated endpoints and from 51% to 35% for uncorrelated
endpoints. In general, the power of the fixed-sequence procedure is maximized
if the outcome of the first test is very likely to be significant (see Westfall and
Krishen, 2001; Huque and Alosh, 2008). This property of the fixed-sequence
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TABLE 4.1: Power of the fixed-sequence and fallback
procedures in a clinical trial with three endpoints as a function
of the effect sizes and correlation. The fixed-sequence and
fallback procedures are carried out at the one-sided 0.025 level.
The weighting scheme for the fallback procedure is w1 = 0.5,
w2 = 0.25 and w3 = 0.25.

Correlation Power of individual tests (%)
(Endpoint 1, Endpoint 2, Endpoint 3)

Fixed-sequence procedure Fallback procedure
Scenario 1 (e1 = 0.4, e2 = 0.4, e3 = 0.4)

0 (79.6, 63.4, 50.8) (69.5, 72.3, 73.4)
0.2 (79.6, 65.2, 54.4) (69.5, 71.7, 72.5)
0.5 (79.6, 68.1, 61.0) (69.5, 70.7, 72.0)

Scenario 2 (e1 = 0.3, e2 = 0.4, e3 = 0.4)
0 (54.9, 43.9, 35.2) (43.2, 68.3, 71.3)

0.2 (54.9, 46.1, 39.1) (43.2, 67.5, 70.4)
0.5 (54.9, 49.4, 45.7) (43.2, 66.1, 69.5)

Scenario 3 (e1 = 0.5, e2 = 0.4, e3 = 0.4)
0 (94.0, 75.0, 60.0) (89.9, 75.0, 75.0)

0.2 (94.0, 75.7, 62.4) (89.9, 74.8, 74.2)
0.5 (94.0, 77.1, 67.2) (89.9, 74.7, 74.2)

procedure is illustrated in Scenario 3. It takes an overpowered test at the
beginning of the sequence to bring the power of the other tests closer to its
nominal level. For example, the power of the second test in the fixed-sequence
procedure is only three to five percentage points lower than the nominal value
(75-77% versus 80%) when the procedure successfully passes the first test 94%
of the time.

Further, consider the properties of the fallback procedure based on the
following weighting scheme for the three tests: w1 = 0.5, w2 = 0.25 and
w3 = 0.25. The power of the first test in the fallback procedure is uniformly
lower across the three scenarios compared to the fixed-sequence procedure.
This is due to the fact that the fallback procedure, unlike the fixed-sequence
procedure, spends only half of the available Type I error rate on the first end-
point. The remaining fraction is distributed over the other two tests, which
leads to a substantial improvement in their power in Scenarios 1 and 2. Specif-
ically, the power of the second and third tests for the fallback procedure is
much closer to the nominal level (80%) compared to the fixed-sequence pro-
cedure. Note also that, in the case of the fallback procedure, the power of
individual tests stays at a constant level or increases toward the end of the
sequence in all three scenarios (even when the monotonicity assumption is
violated). Finally, while the power of tests placed later in the sequence im-
proves with the increasing correlation for the fixed-sequence procedure, the
fallback procedure exhibits an opposite trend. The power of the second and
third tests declines slowly as the correlation among the endpoints increases
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(the difference becomes very small when the first test is overpowered as in
Scenario 3).

Adaptive alpha allocation approach

Li and Mehrotra (2008) proposed a multiple testing procedure, which they
referred to as the adaptive alpha allocation approach or 4A procedure. Consider
a clinical trial with m endpoints and assume that the endpoints are grouped
into two families. The first family includes m1 endpoints that are adequately
powered and the second family includes m2 potentially underpowered end-
points (m1 + m2 = m). The endpoints in the first family are tested using any
FWER controlling procedure at level α1 = α − ε, where ε > 0 is small, e.g.,
α = 0.05 and ε = 0.005. For example, the Hochberg procedure decides that
all endpoints in the first family are significant if p(m1) ≤ α1, where p(m1) is
the maximum p-value associated with those endpoints. The endpoints in the
other family are tested using any FWER controlling procedure at level α2,
which is adaptively based on p(m1) as follows:

α2(p(m1)) =

{
α if p(m1) ≤ α1,

min
(
α∗/p2

(m1)
, α1

)
if p(m1) > α1,

where

α∗ =

{
α1

(
1 −√2 − α1/m1 − α/α1

)2

if α1 + α2
1/m1 − α3

1/m2
1 ≤ α,

α1(α − α1)/(m1 − α1) if α1 + α2
1/m1 − α3

1/m2
1 > α.

It should be pointed out that this derivation assumes that all the p-values are
independent. Li and Mehrotra also proposed an empirical adjustment to α∗ if
the endpoints follow a multivariate normal distribution.

An advantage of this method over the Bonferroni-based PAAS method
is that the remaining endpoints are tested at a generally higher significance
level, which improves their power. As an example, consider the case of two
independent endpoints (Endpoints 1 and 2) and let α = 0.05 and α1 = 0.045.
The relationship between the significance level for Endpoint 2 (α2) and p-value
for Endpoint 1 (p1) is depicted in Figure 4.1 (solid curve). The significance
level for Endpoint 2 is 0.05 when p1 ≤ 0.045, 0.045 when 0.045 ≤ p1 ≤ 0.081
and remains higher than 0.0052 (the significance level for the PAAS method)
when p1 ≤ 0.244.

Conceptually, the 4A procedure is similar to the fallback procedure except
that in the latter α2 takes only two values depending on whether p1 ≤ α1

or > α1. To compare the two procedures, consider again the clinical trial
example with two independent endpoints. Figure 4.1 depicts the significance
level for Endpoint 2 as a function of the p-value for Endpoint 1 for the fallback
and 4A procedures. The two procedures test Endpoint 1 at the same level if
p1 ≤ 0.045. The significance level for Endpoint 2 for the 4A method is less

© 2010 by Taylor and Francis Group, LLC



Analysis of Multiple Endpoints in Clinical Trials 143

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
02

0.
04

p1

α 2

0.0 0.1 0.2 0.3 0.4 0.5

0.
00

0.
02

0.
04

p1

α 2

FIGURE 4.1: The significance level for Endpoint 2 (α2) as a function of
the p-value for Endpoint 1 (p1) for the fallback procedure (left panel) and 4A
procedure (right panel).

stringent than that for the fallback procedure when 0.045 ≤ p1 ≤ 0.244 and
more stringent when p1 > 0.244.

4.3.2 Parametric and resampling-based procedures

One of the limitations of procedures based on univariate p-values in the
analysis of multiple endpoints is that they ignore the correlations among the
endpoints. One can improve the power of these procedures by constructing
parametric (normal theory) or resampling-based procedures that take corre-
lations into account.

Bonferroni-type parametric procedure

Assume that the m endpoints follow a multivariate normal distribution
and let ti denote the t-statistic for testing the ith endpoint. The single-step
parametric procedure is conceptually similar to the Bonferroni procedure in
that the m hypotheses are tested simultaneously (i.e., in a single step). The
global null hypothesis of no treatment effect is rejected if at least one test
is significant, i.e., if tmax = max(t1, . . . , tm) ≥ c, where c is a critical value
computed from P{tmax < c} = 1 − α. This calculation is performed under
the global hypothesis (which is the least favorable configuration at which the
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Type I error probability of this procedure is maximized over the null space).
In other words, c is the (1 − α)-quantile of tmax when δ1 = . . . = δm = 0.

In general, this critical value is difficult to evaluate because the joint distri-
bution of t1, . . . , tm (termed the generalized multivariate t distribution) is not
known except for the case of two endpoints (Siddiqui, 1967; Gong, Pinheiro
and DeMets, 2000). Note that this distribution is different from the standard
multivariate t-distribution used in the Dunnett (1955) procedure because the
denominator of each ti uses a different error estimate, si. An additional com-
plicating factor is that the joint distributions of both the numerators and
denominators of the ti statistics depend on the unknown correlation matrix.

Fallback-type parametric procedure

The main difficulty in computing critical values of the Bonferroni-type
parametric procedure is that the m test statistics are evaluated simultane-
ously and one has to deal with a complicated null distribution. A stepwise
method that examines the endpoints in a sequential manner considerably sim-
plifies the process of calculating the null distributions of the test statistics and
critical values. As an illustration, we will consider the stepwise procedure for
multiple endpoints proposed by Huque and Alosh (2008). This procedure is a
parametric extension of the fallback procedure introduced in Section 4.3.1.

Unlike the regular fallback procedure, the parametric fallback procedure
takes into account the joint distribution of the test statistics associated with
individual endpoints, which leads to improved power for endpoints placed later
in the sequence. As before, let t1, . . . , tm denote the test statistics for the m
endpoints and let w1, . . . , wm denote weights that represent the importance of
the endpoints (the weights are positive and add up to 1). The test statistics
are assumed to follow a standard multivariate normal distribution.

The first step involves computation of critical values c1, . . . , cm and signif-
icance levels γ1, . . . , γm that are defined recursively using the following equa-
tions:

P (t1 ≥ c1) = αw1,

P (t1 < c1, . . . , ti−1 < ci−1, ti ≥ ci) = αwi, i = 2, . . . , m.

The probabilities are computed under the global null hypothesis. The signifi-
cance levels associated with these critical values are defined as γi = 1−Φ(ci),
i = 1, . . . , m, where Φ(x) is the cumulative distribution function of the stan-
dard normal distribution. Given these significance levels, the testing algorithm
is set up as follows. The first endpoint is tested at the γ1 level (note that γ1 =
αw1 and thus the parametric procedure uses the same level for the first end-
point as the regular procedure). At the ith step of the algorithm, the level is
determined by the significance of the endpoints placed earlier in the sequence.
For example, if s is the index of the last non-significant endpoint, the signif-
icance level for the ith endpoint is given by max(αws+1 + . . . + αwi, γi). In

© 2010 by Taylor and Francis Group, LLC



Analysis of Multiple Endpoints in Clinical Trials 145

TABLE 4.2: Power of the parametric fallback
procedure in a clinical trial with three endpoints as a
function of the effect sizes and correlation. The
procedure is carried out at the one-sided 0.025 level
using the (0.5, 0.25, 0.25) weighting scheme.

Correlation Power of individual tests (%)
(Endpoint 1, Endpoint 2, Endpoint 3)

Scenario 1 (e1 = 0.4, e2 = 0.4, e3 = 0.4)
0 (69.5, 72.4, 73.6)

0.2 (69.5, 71.9, 73.0)
0.5 (69.5, 71.5, 73.2)

Scenario 2 (e1 = 0.3, e2 = 0.4, e3 = 0.4)
0 (43.2, 68.6, 71.5)

0.2 (43.2, 67.9, 70.9)
0.5 (43.2, 67.6, 71.0)

Scenario 3 (e1 = 0.5, e2 = 0.4, e3 = 0.4)
0 (89.9, 74.9, 75.1)

0.2 (89.9, 74.9, 75.2)
0.5 (89.9, 74.9, 75.2)

other words, as in the regular procedure, the more consecutive endpoints are
found significant, the higher the level for the current endpoint. However, if
there is no evidence of a significant treatment effect for the (i−1)th endpoint,
the ith endpoint is tested at the γi level.

To help the reader appreciate the benefits of the parametric approach,
consider the example from Wiens (2003) used in Section 4.3.1. This example
deals with a clinical trial with two unequally weighted endpoints (w1 = 0.8
and w2 = 0.2) tested at the overall two-sided α = 0.05. Using the regular
procedure, the first endpoint is tested at αw1 = 0.04 and, if the outcome
is significant, the second endpoint is tested at the full 0.05 level. Otherwise,
the significance level for the second endpoint is αw2 = 0.01. To apply the
parametric procedure, assume that the test statistics for these two endpoints
follow a standard bivariate normal distribution with the correlation coefficient
ρ. The first endpoint is tested at γ1 = 0.04 and, if a significant result is
observed, the other endpoint is tested at the 0.05 level. Thus these two levels
are identical to those used by the fallback procedure above. However, if the
first endpoint is not significant, the level for the second endpoint can be higher
than αw2 = 0.01. The parametric procedure tests the second endpoint at
0.0104 for ρ = 0, 0.0112 for ρ = 0.3 and 0.0146 for ρ = 0.6 (see Table 1 in
Huque and Alosh, 2008).

Table 4.2 summarizes the power of the parametric fallback procedure in
the setting described in Section 4.3.1. The weights assigned to the three tests
are w1 = 0.5, w2 = 0.25 and w3 = 0.25.

The parametric procedure is uniformly more powerful than the regular
procedure in all three scenarios but, in general, the two power functions are
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quite close to each other (the difference is less than two percentage points). The
parametric procedure exhibits the same key features as the regular procedure,
e.g.,

• The parametric procedure is robust with respect to the monotonicity
assumption and performs well when the first test in the sequence is
underpowered.

• When the effect sizes across the tests are comparable, the power of
individual tests improves toward the end of the sequence.

• The power of tests later in the sequence declines with increasing corre-
lation.

Additional simulations performed by Huque and Alosh (2008) for the case
of two hypotheses demonstrated that the power of the parametric procedure
is comparable to that of the regular procedure when the test statistics are
uncorrelated or effect sizes are equal regardless of the weighting scheme. The
power advantage of the parametric procedure for the second test increases with
the increasing correlation when the effect size of the second test is greater than
that of the first test.

Resampling-based procedures

Given the challenges associated with single-step parametric procedures
for multiple endpoints (the joint distribution of the test statistics depends
on an unknown correlation matrix), one can consider an alternative approach
that uses the resampling-based methodology developed by Westfall and Young
(1993). This alternative was explored by Reitmeir and Wassmer (1999) who
introduced resampling-based versions of several single-step and stepwise proce-
dures, e.g., Bonferroni and Hommel procedures, in the context of the multiple
endpoint problem.

Along the lines of the general resampling-based method (see Section 2.8 for
a detailed description of resampling-based procedures), Reitmeir and Wass-
mer proposed to estimate the joint distribution of the test statistics under
the global null hypothesis using the bootstrap. Beginning with any multiple
test, a resampling-based at-least-one procedure can be constructed using the
following algorithm:

• Let pi be the p-value for the ith endpoint, i = 1, . . . , m (this p-value is
computed using a selected test).

• Generate K bootstrap samples (draw random samples with replacement
of the same size as the original samples). Let pi(k) be the treatment
comparison p-value for the ith endpoint, which is computed from the kth
bootstrap run using the selected test, i = 1, . . . , m and k = 1, . . . , K.
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• Define the bootstrap multiplicity adjusted p-value for the ith endpoint
as the proportion of bootstrap runs in which pi(k) ≤ pi, 1, . . . , m.

The treatment effect for the ith endpoint is significant if the bootstrap mul-
tiplicity adjusted p-value is no greater than the pre-specified familywise error
rate α. Reitmeir and Wassmer showed via simulations that the resampling-
based tests for the multiple endpoint problem resulted in a consistent power
gain compared to the original tests. The improvement in power was rather
small for the Bonferroni test; however, a substantially larger gain was ob-
served for some other tests, e.g., the Hommel test.

4.4 Global testing procedures

An important property of global testing procedures is that they combine
evidence of treatment effect across several endpoints and thus they are more
powerful than procedures for individual endpoints (provided the treatment
effects are consistent across the endpoints). In this section we first consider
procedures for the goal of demonstrating overall efficacy of the treatment and
then describe inferences for individual endpoints when the global assessment
produces a significant result.

4.4.1 Normal theory model

Global testing procedures considered in this section (with a few exceptions
such as the global rank-sum procedure introduced by O’Brien, 1984) assume
the normal theory model described below.

Consider a two-arm clinical trial with a parallel-group design in which the
treatment group (Group 1) is tested versus the control group (Group 2). As
in Lehmacher, Wassmer and Reitmeir (1991), the response of the jth patient
in the ith group with respect to the kth endpoint is denoted by Xijk, i = 1, 2,
j = 1, . . . , ni, k = 1, . . . , m. Let

X̄i·k =
1
ni

ni∑
j=1

Xijk (i = 1, 2, 1 ≤ k ≤ m).

The vector of patient responses on the m endpoints, (Xij1, . . . , Xijm), is
assumed to follow a multivariate normal distribution with a mean vector
(μi1, . . . , μim) and a common covariance matrix Σ. The diagonal elements
of the covariance matrix are σ2

k =var(Xijk), k = 1, . . . , m. The correlation
matrix of the endpoints is denoted by R and its elements by ρkl. One may
think that multiple endpoints are always highly correlated. In fact, indepen-
dent endpoints are desirable because they are not proxies of each other and

© 2010 by Taylor and Francis Group, LLC



148 Multiple Testing Problems in Pharmaceutical Statistics

thus contain more information. The correlations ρkl rarely exceed 0.6 in clin-
ical trial applications; see Sankoh, D’Agostino and Huque (2003).

The mean treatment difference for the kth endpoint is defined as δk =
μ1k − μ2k and it is assumed that large values of δk imply higher treatment
efficacy. To define the test statistic for the kth endpoint, let X̄i·k denote the
mean response in the ith group on the kth endpoint and let S denote the
pooled sample covariance matrix. The diagonal elements of S are denoted
by s2

1, . . . , s
2
m. The treatment effect for the kth endpoint is tested using the

t-statistic

tk =
X̄1·k − X̄2·k

sk

√
1/n1 + 1/n2

.

4.4.2 OLS and GLS procedures

To motivate procedures described in this section, consider the Bonferroni
procedure for multiple endpoints from Section 4.3.1. The global version of this
procedure rejects the hypothesis HI from (4.1) if

pmin = min(p1, . . . , pm) ≤ α/m.

This procedure depends only on the smallest p-value and ignores all other
p-values. Therefore it is not sensitive in the common scenario where small to
modest effects are present in all endpoints.

To address this shortcoming of the Bonferroni global procedure, O’Brien
(1984) considered the setup in which the multivariate testing problem is
simplified by making an assumption of a common standardized effect size.
Specifically, assume that the standardized effect sizes for the m endpoints,
δ1/σ1, . . . , δm/σm, are equal to, say, λ. In this case, the problem of testing the
null hypothesis,

H∗
I : δi = 0 for all i,

reduces to a single parameter testing problem

H∗ : λ = 0 versus K∗ : λ > 0.

OLS and GLS test statistics

O’Brien (1984) proposed two procedures for the hypothesis H∗ based on
standardized responses, Yijk = Xijk/σk. Under the simplifying assumption of
a common effect size, one can consider the following regression model for the
standardized responses:

Yijk =
μk

σk
+

λ

2
Ii + eijk,

where i = 1, 2, j = 1, . . . , ni, k = 1, . . . , m, μk = (μ1k + μ2k)/2, Ii = +1
if i = 1 and −1 if i = 2, and eijk is N(0, 1) distributed error term with
corr(eijk, ei′j′k′ ) = ρkk′ if i = i′ and j = j′, and 0 otherwise.
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The first procedure developed by O’Brien is based on the ordinary least
squares (OLS) estimate of the common effect size λ while the second pro-
cedure is based on the generalized least squares (GLS) estimate. Let λ̂OLS
and SE(λ̂OLS) denote the OLS estimate of λ and its sample standard error,
respectively. It can be shown that the OLS test statistic for H∗ is given by

tOLS =
λ̂OLS

SE(λ̂OLS)
=

J ′t√
J ′R̂J

,

where J is an m-vector of all 1’s and t = (t1, . . . , tm)′ is the vector of t-statistics
defined in Section 4.4.1.

Since the error terms eijk in the regression model for the standardized
responses are correlated, it may be preferable to use the GLS estimate of λ,
which leads to the following test statistic for H∗

tGLS =
λ̂GLS

SE(λ̂GLS)
=

J ′R̂−1t√
J ′R̂−1J

.

It is instructive to compare the OLS and GLS test statistics. Both testing
procedures assess the composite effect of multiple endpoints by aggregating
the t-statistics for the individual endpoints. In the case of the OLS test statis-
tic, the t-statistics are equally weighted, while the GLS test statistic assigns
unequal weights to the t-statistics. The weights are determined by the sample
correlation matrix R̂. If a certain endpoint is highly correlated with the others,
it is not very informative, so the GLS procedure gives its t-statistic a corre-
spondingly low weight. A downside of this approach is that the weights can
become negative. This leads to anomalous results, e.g., it becomes possible to
reject H∗ even if the treatment effect is negative on all the endpoints.

In order to compute critical values for the OLS and GLS procedures, one
needs to derive the null distributions of their test statistics. For large sample
sizes, the OLS and GLS statistics approach the standard normal distribution
under H∗, but the approach of the GLS statistic is slower since it has the
random matrix R̂ both in the numerator and denominator. For small sample
sizes the standard normal distribution provides a liberal test of H∗. The exact
small sample null distributions of tOLS and tGLS are not known. O’Brien
(1984) proposed a t-distribution with ν = n1+n2−2m df as an approximation.
This approximation is exact for m = 1 but conservative for m > 1. Logan and
Tamhane (2004) proposed the approximation, ν = 0.5(n1 +n2−2)(1+1/m2),
which is more accurate.

Logan and Tamhane (2004) also extended the OLS and GLS procedures
to the heteroscedastic case (case of unequal Σs). Note that the heteroscedastic
extension of the GLS test statistic given in Pocock, Geller and Tsiatis (1987)
does not have the standard normal distribution under H∗ as claimed there,
and hence should not be used.
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TABLE 4.3: Summary of the results of the
osteoarthritis trial (SD, standard deviation).

Endpoint Summary Treatment Placebo
statistic n = 88 n = 90

Pain Mean 59 35
subscale Pooled SD 96 96
Physical function Mean 202 111
subscale Pooled SD 278 278

Osteoarthritis trial example

To illustrate the use of global testing procedures, consider a clinical trial for
the treatment of osteoarthritis. The study was conducted to evaluate the ef-
fects of a treatment on two endpoints, the pain and physical function subscales
of the Western Ontario and McMaster Universities (WOMAC) Osteoarthritis
Index (Bellamy, 2002), compared to placebo. The efficacy analysis was based
on the mean changes in the two endpoints during a 6-week study period. The
results of the study are shown in Table 4.3.

The OLS procedure was carried out to assess the overall efficacy of the
treatment (note that the GLS procedure is equivalent to the OLS procedure
in the case of two endpoints). The t-statistics for the pain and physical function
endpoints and sample correlation matrix were[

t1
t2

]
=
[

1.67
2.18

]
, R̂ =

[
1 0.36

0.36 1

]
.

Given this information, it is easy to compute the OLS/GLS test statistic,

tOLS = tGLS =
1.67 + 2.18√

1 + 0.36 + 0.36 + 1
= 2.334.

Using the Logan-Tamhane formula, the one-sided p-value associated with this
test statistic is 0.0107 (based on 110 df), which is significant at the one-sided
0.025 level.

It is worth noting that the OLS procedure becomes less powerful as the
correlation between two endpoints increases. In fact, the OLS statistic would
not be significant at the one-sided 0.025 level in the osteoarthritis trial if
the sample correlation coefficient was greater than 0.91. The reason is that
higher correlations imply correspondingly less independent information in the
endpoints.

Power calculations for OLS and GLS procedures

From their construction, it is clear that the OLS and GLS procedures will
be powerful when all endpoints have a similar positive effect, but in other
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situations, they may lack power. Dallow, Leonov and Roger (2008) considered
the problem of power and sample size calculations for the OLS and GLS
procedures and introduced a simple measure, termed the operational effect
size, that helps to quantify the composite effect of multiple endpoints. Let λk =
δk/σk be the true standardized effect size for the kth endpoint and let λ =
(λ1, . . . , λm)′. Under the alternative hypothesis, the distributions of tOLS and
tGLS can be approximated by noncentral t-distributions with noncentrality
parameters given by

ΔOLS =
√

n1n2

n1 + n2

J ′λ√
J ′RJ

and ΔGLS =
√

n1n2

n1 + n2

J ′R−1λ√
J ′R−1J

.

Given this, Dallow et al. defined the operational effect sizes of the two proce-
dures as

ΛOLS =
J ′λ√
J ′RJ

and ΛGLS =
J ′R−1λ√
J ′R−1J

.

The two quantities serve the same role in the problem of testing multiple
endpoints as the regular effect size in a single-endpoint problem. It is easy
to show that ΛOLS and ΛGLS are in fact the standardized effect sizes for an
equivalent single endpoint which would have the same overall power for the
same sample sizes, n1 and n2.

Operational effect sizes help establish the relationship between key prop-
erties of multiple endpoints (e.g., λ and R) and the power of the two global
procedures. For example, the numerator in ΛOLS is the sum of the effect
sizes for individual endpoints and thus the power of the OLS procedure is an
increasing function of each λk. Further, the denominator depends on the cor-
relations among the endpoints. It is clear that, as the endpoints become more
correlated and thus less informative, the operational effect size decreases in
magnitude. In addition, operational effect sizes facilitate power comparisons
between the OLS and GLS procedures. Dallow et al. proved that the GLS
procedure is more powerful than the OLS procedure when the effect sizes are
equal across the endpoints (λ1 = . . . = λm) but, in general, the power of the
GLS procedure can be lower than that of the OLS procedure. This happens,
for example, when the effect sizes of strongly correlated endpoints are large
and the effect sizes of weakly correlated endpoints are small.

Several authors have reported results of simulation studies to assess the
power of the OLS and GLS procedures under various configurations of effect
sizes and correlation values. The simulation study by Reitmeir and Wassmer
(1996) showed that the power of the OLS procedure was comparable to that of
the GLS procedure. Dallow et al. (2008) demonstrated that the GLS procedure
is biased when the sample size is small to moderate which complicates the
power comparison of the OLS and GLS procedures for n ≤ 40. For larger
sample sizes, the difference between the power functions of the two procedures
is very small.

Power and sample size calculations can be performed using a normal ap-
proximation by specifying λ and R. Suppose, for example, that we are inter-
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ested in computing the number of patients in each arm of a two-arm trial. The
one-sided Type I error rate is given by α and the desired power of a global
procedure (OLS or GLS) is set at 1−β. As shown by Dallow et al., the sample
size in each arm is given by the familiar formula,

n =
2(zα + zβ)2

Λ2
,

where zx is the (1 − x)-quantile of the standard normal distribution and Λ is
the operational effect size of the global procedure chosen in this trial.

As an illustration, we will return to the osteoarthritis clinical trial example
and compute the sample size required to achieve 90% power at a one-sided
0.025 level (α = 0.025 and β = 0.1). Based on the results displayed in Ta-
ble 4.3, assume that the standardized effect sizes for the pain and physical
function endpoints are 0.25 and 0.33, respectively, and the correlation coeffi-
cient is 0.36. Under these assumptions, the operational effect size for the OLS
and GLS procedures is

ΛOLS = ΛGLS =
0.25 + 0.33√

1 + 0.36 + 0.36 + 1
= 0.35

and thus

n =
2(1.96 + 1.28)2

0.352
� 170

patients per arm need to be enrolled in the study.
Given that the GLS procedure does not generally dominate the OLS proce-

dure in terms of power and because of the added difficulties caused by negative
weights in the GLS statistic, we recommend the use of the OLS procedure in
clinical trials.

Nonparametric global procedures

The OLS and GLS procedures can be formulated for non-normal responses
as long as the test statistics for the m endpoints follow a multivariate nor-
mal distribution in large samples. Examples include binary and time-to-event
variables (Pocock, Geller and Tsiatis, 1987). However, if the assumption of
multivariate normality cannot be made, one can consider a nonparametric
version of the OLS procedure proposed by O’Brien (1984). In this procedure,
the data from the two groups are pooled and ranked on each endpoint sepa-
rately as in the Wilcoxon rank-sum test. Let rijk be the rank of Xijk in the
pooled sample. Then a two-sample t-test is performed on the summed ranks,

rij =
m∑

k=1

rijk , i = 1, 2, j = 1, . . . , ni.

This procedure offers a viable alternative to the OLS procedure particularly
if the data are non-normal. For example, this global rank-sum procedure was
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used in the azithromycin study in patients with coronary artery disease (An-
derson et al., 1999). The procedure was chosen to evaluate the overall effect of
the treatment on four inflammatory markers because the change scores were
not expected to follow a normal distribution.

4.4.3 Likelihood ratio and other procedures

This section gives a review of a class of global procedures based on the like-
lihood ratio (LR) principle and two other global procedures (the Läuter and
Follmann procedures). This review is rather brief because these procedures
are not commonly used in clinical trial applications due to the limitations
discussed below.

Exact likelihood ratio procedures

It will be assumed in this section that the point null and one-sided alter-
native hypotheses are given by (4.2). Kudô (1963) was the first to derive an
exact one-sided LR procedure for the one-sample problem when the covariance
matrix Σ is known. This procedure can be readily extended to the two-sample
problem. Perlman (1969) extended the Kudô procedure to the case of an un-
known covariance matrix but the null distribution of the resulting test statistic
is not free of Σ and the procedure is biased. However, Perlman provided sharp
lower and upper bounds on the null distribution that are free of Σ. Wang
and McDermott (1998) solved the problem of dependence on unknown Σ by
deriving an LR procedure conditional on the sample covariance matrix S.

These procedures are not commonly used because they are not easy to im-
plement computationally. There is, however, a more basic problem with the
LR procedures that they can reject H∗

I even when the vector of mean treat-
ment differences has all negative elements (Silvapulle, 1997). These procedures
are also nonmonotone in the sense that if the differences X̄1·k − X̄2·k become
more negative the test statistic can get larger.

Perlman and Wu (2002) showed that these difficulties are caused by the
point null hypothesis. Basically, the LR procedure compares the ratio of the
likelihood under K∗

U versus that under H∗
I . The apparent nonmonotonicity of

the LR procedure results because, in some cases, as the sample outcomes move
deeper into the part of the sample space corresponding to K∗

U , their likelihood
under K∗

U increases, but so does their likelihood under H∗
I , and their ratio gets

smaller. This is not a defect of the LR procedure, but rather that of the null
hypothesis not being correctly specified. If the null hypothesis is defined as a
full complement of K∗

U then the LR procedure no longer has these difficulties.
However, computation of the test statistic under the complete null hypothesis
and its null distribution are problematic.

Approximate LR procedures were proposed in the literature to circumvent
the computational and analytical difficulties of the exact LR procedure; see,
for example, Tang, Gnecco and Geller (1989) and Tamhane and Logan (2002).
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These procedures, although easier to apply, suffer from the same anomalies
that the exact LR procedures suffer because of the misspecification of the null
hypothesis as a point null hypothesis.

Cohen and Sackrowitz (1998) proposed the cone-ordered monotone (COM)
criterion to overcome the nonmonotonicity problem. However, their COM pro-
cedure is not entirely satisfactory either since, e.g., in the bivariate case, it
can reject H∗

I if one mean difference is highly negative as long as the other
mean difference is highly positive.

Läuter exact procedure

Läuter (1996) and Läuter, Glimm and Kropf (1996) proposed a class of
test statistics having the property that they are exactly t-distributed under
the point null hypothesis. To define the procedure, let X̄··k denote the overall
sample mean for the kth endpoint, i.e.,

X̄··k =
1

n1 + n2

2∑
i=1

ni∑
j=1

Xijk.

Consider the total cross-products matrix V with elements

vkl =
2∑

i=1

ni∑
j=1

(Xijk − X̄··k)(Xijl − X̄··l), k, l = 1, . . . , m.

Let w = w(V ) be any m-dimensional vector of weights depending only on V
and w �= 0 with probability 1. Läuter (1996) showed that

tw =
√

n1n2

n1 + n2

(
w′t√
w′Sw

)
is t-distributed with n1 + n2 − 2 df under the point null hypothesis. Various
choices of w were discussed by Läuter et al. (1996). The simplest among them
is wk = 1/

√
vkk. The resulting statistic is called the standardized sum (SS)

statistic (denoted by tSS) which can be expressed as

tSS =
√

n1n2

n1 + n2

(
Ȳ1· − Ȳ2·

sy

)
,

where Ȳi· is the average of the standardized observations

Yij =
m∑

k=1

Xijk√
vkk

, i = 1, 2, j = 1, . . . , ni.

Analytical and simulated power comparisons made in Logan and Tamhane
(2004) showed that the OLS procedure is more powerful than the Läuter pro-
cedure when only a few endpoints have an effect. In fact, if only one endpoint
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has an effect, which tends to infinity, the power of the Läuter procedure re-
mains bounded strictly below 1, whereas the power of the OLS procedure
tends to 1, as it should. Frick (1996) also noted this drawback of the Läuter
procedures but argued that such a scenario is unlikely in practice. When all
endpoints have roughly equal effects, the powers of the OLS and Läuter pro-
cedures are comparable.

The reason for the lack of power of the SS test statistic when only a few
endpoints have an effect is that it standardizes the data on each endpoint by
its pooled total group sample standard deviation and then computes an over-
all t-statistic. The pooled standard deviation overestimates the true standard
deviation since it includes the differences between the means of the treat-
ment and control groups which diminishes the power of the Läuter procedure.
On the other hand, the OLS statistic is the sum of t-statistics obtained by
standardizing the individual endpoints by their pooled within group sample
standard deviations.

Follmann procedure

Follmann (1996) proposed an ad-hoc procedure which is simple to apply:
Reject the point null hypothesis if the two-sided Hotelling’s T 2-test is signifi-
cant at the 2α-level and the average endpoint mean difference is positive,

m∑
k=1

(X̄1·k − X̄2·k) > 0.

Unfortunately, the alternative for which this procedure is designed,

m∑
k=1

(μ1k − μ2k) > 0,

is not very meaningful since it depends on the scaling used for the endpoints.

4.4.4 Procedures for individual endpoints

As was explained earlier in this section, global procedures are aimed at an
overall evaluation of the treatment effect. However, if the overall treatment
effect is positive, the trial’s sponsor is likely to be interested in examining
the treatment effect on individual endpoints/components. As pointed out in
Chapter 1, the LIFE trial (Dahlöf et al., 2002) serves as an example of a
trial in which the analysis of individual endpoints provided important in-
sights into the nature of treatment benefit. This analysis revealed that the
overall treatment effect was driven mainly by one component (stroke end-
point). Here we review extensions of global testing methods that can be used
to perform multiplicity-adjusted univariate inferences for individual endpoints
after a significant global result.
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Lehmacher, Wassmer and Reitmeir (1991) applied the closure principle to
make inferences on individual endpoints. As was explained in Section 2.3.3,
this principle is a popular tool used in the construction of multiple testing pro-
cedures. For example, the Holm procedure is a closed procedure for testing
individual hypotheses which is derived from the Bonferroni global procedure
(see Section 4.4.2). A similar approach can be used to construct a closed testing
procedure for testing individual endpoints based on any other global proce-
dure. To accomplish this, one needs to consider all possible combinations of
the m endpoints and test each combination using an α-level global procedure
subject to the closure principle, i.e., if the procedure for any combination is
not significant then all of its subset combinations are declared nonsignificant
without testing them. The treatment effect on an endpoint is significant at
level α if the global procedures for all the combinations including the selected
endpoint are significant at this level.

This approach can be used with any α-level global procedure for testing
different intersections. Lehmacher et al. constructed a procedure for testing
individual endpoints based on the OLS and GLS procedures described in Sec-
tion 4.4.2. Wang (1998) applied the Follmann procedure introduced in Sec-
tion 4.4.3 as the global procedure and found the performance comparable to
the Westfall-Young resampling procedures (Section 2.8). Logan and Tamhane
(2001) proposed a hybrid approach that uses a combination of global proce-
dures, each one of which is powerful against a different alternative. Specifically,
the Logan-Tamhane hybrid procedure consists of the Bonferroni global proce-
dure based on the smallest p-value and the OLS procedure. Here the former
procedure is powerful against alternatives where only a few endpoints have
large effects while the latter procedure is powerful against alternatives where
all endpoints have small to modest effects. The hybrid test statistic for each
intersection hypothesis is the minimum of the p-values for the Bonferroni and
OLS procedures. A bootstrap method is used to estimate the adjusted p-value
for this complex statistic. The resulting procedure has stable and high power
against a range of alternatives (i.e., the procedure is robust), but is computa-
tionally more intensive.

Osteoarthritis trial example

A clinical study with two endpoints (pain and physical function) was con-
sidered in the osteoarthritis trial example (Section 4.4.2). The overall treat-
ment effect of the two endpoints was evaluated using the OLS procedure. The
global procedure was significant at the one-sided 0.025 level. We will apply
the closure principle to assess the treatment effect on each endpoint and see
whether the overall positive result was driven by both components or only
one. First, we need to compute p-values for the endpoint-specific tests. From
Section 4.4.2, the t-statistics for the pain and physical function endpoints
are 1.67 and 2.18, respectively, with n1 + n2 − 2 = 172 df. The one-sided
p-values associated with the t-statistics are 0.0486 and 0.0152 applying the
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Logan-Tamhane formula for degrees of freedom. Using the closure principle,
the multiplicity adjusted p-value for each endpoint is the larger of the p-value
for the OLS procedure and the p-value for the endpoint-specific t-test. The
treatment’s effect on the pain endpoint is not significant at the one-sided
0.025 level (p = 0.0486) whereas the effect on the other endpoint is significant
(p = 0.0152). It is worth remembering that it is possible for endpoint-specific
tests to be non-significant even if the global procedure is highly significant.

4.5 All-or-none procedures

As was explained in Section 4.2.3, the goal of demonstrating the efficacy of
the treatment on all endpoints requires an all-or-none or IU procedure (Berger,
1982) of the union of individual hypotheses, Hi. The all-or-none procedure has
the following form:

Reject all hypotheses if tmin = min
1≤i≤m

ti ≥ tα(ν),

where tα(ν) is the (1 − α)-quantile of the t-distribution with ν = n1 + n2 − 2
df. This procedure is popularly known as the min test (Laska and Meisner,
1989).

Since this procedure does not use a multiplicity adjustment (each hypoth-
esis Hi is tested at level α), it may appear at first that it must be highly
powerful as a test of the global hypothesis HU . In reality, the min test is very
conservative because of the requirement that all hypotheses must be rejected
at level α. The conservatism results from the least favorable configuration of
the min test which can be shown to be of the following form:

• No treatment effect for any one endpoint (δi = 0 for some i).

• Infinitely large treatment effects for all other endpoints (δj → ∞ for
j �= i).

This configuration leads to marginal α-level t-tests.
Figure 4.2, based on Offen et al. (2007), will help the reader appreciate how

conservative the min test can be. This figure gives the multipliers to calculate
the sample size required to guarantee 80% power for the min test if the base
sample size guarantees 80% power for each endpoint. The calculation was done
under the assumption of equicorrelated endpoints and a common standardized
effect size for all endpoints. As can be seen from the table, the multiplier
increases as the number of endpoints increases and the assumed common
correlation between them decreases. Consider, for example, the clinical trial in
patients with Alzheimer’s disease described by Offen and Helterbrand (2003).
It is commonly required that a new treatment should demonstrate a significant
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FIGURE 4.2: Sample size multipliers for the min test for two endpoints
(solid curve) and four endpoints (dashed curve) as a function of the common
correlation in all-or-none testing problems. Multiplier equals 1 for a single
endpoint.

effect on at least two endpoints, e.g., a cognition endpoint (Alzheimer’s Disease
Assessment Scale-Cognitive Subpart) and a clinical global scale (Clinician’s
Interview-Based Impression of Change). The correlation between these two
endpoints is usually around 0.2 and thus the sample size multiplier is 1.29
which corresponds to almost a 30% increase in the sample size. In other cases,
e.g., when four weakly correlated endpoints are considered, the multiplier
is 1.58 meaning that the sample size needs to be increased by almost 60%
compared to the single-endpoint case.

It is important to note that the least favorable configuration for the min
test is clinically not plausible. The global hypothesis HU permits configura-
tions with infinitely large positive effects on some endpoints and negative ef-
fects on others. However, it is uncommon for treatments to have substantially
different effects on the endpoints. This has led researchers to put restrictions
on the global hypothesis in order to develop more powerful versions of the min
test.

Hochberg and Mosier (2001) suggested restricting HU to the negative
quadrant,

m⋂
k=1

(δk ≤ 0),
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in which case the least favorable configuration is the overall null configuration,
δ1 = . . . = δm = 0. Chuang-Stein et al. (2007) restricted the hypothesis to the
subset of the global hypothesis which satisfies

m⋂
k=1

(−εk ≤ δk ≤ εk),

where the thresholds εk, k = 1, . . . , m, are prespecified based on clinical con-
siderations. A similar approach, but based on estimated mean differences,
X̄1·k − X̄2·k, was proposed by Snapinn (1987). Cappizi and Zhang (1996) sug-
gested another alternative to the min test which requires that the treatment
be shown effective at a more stringent significance level α1 on say m1 < m
endpoints and at a less stringent significance level α2 > α1 on the remaining
m2 = m−m1 endpoints. For m = 2, they suggested this rule for m1 = m2 = 1,
α1 = 0.05 and α2 = 0.10 or 0.20. However, as pointed out by Neuhäuser,
Steinijans and Bretz (1999), this rule does not control the FWER at α = 0.05.

Another approach to this formulation adopts a modified definition of the
error rate to improve the power of the min test in clinical trials with several
endpoints. Chuang-Stein et al. (2007) considered an error rate definition based
on the average Type I error rate over the null space and developed a procedure
that adjusts significance levels for the individual endpoints to control the
average Type I error rate at a prespecified level.

This is a relatively new research area and further work is required to assess
the utility of the methods described in this section and their applicability.

4.6 Superiority-noninferiority procedures

There are many situations in which the requirement that the treatment be
superior to the control on all endpoints (all-or-none procedures in Section 4.5)
is often too strong and the requirement that the treatment be superior to the
control on at least one endpoint (at-least-one procedures in Section 4.3) is
too weak. The superiority-noninferiority approach discussed in this section
strengthens the latter requirement by augmenting it with the additional re-
quirement that the treatment is not inferior to the control on all other end-
points.

Consider a clinical trial with m endpoints and suppose that its objective
is to demonstrate the treatment is superior to the control on at least one
endpoint and noninferior to the control on all other endpoints. Note that if
superiority is established for both endpoints, the second part of this require-
ment (noninferiority) becomes redundant. This formulation of the superiority-
noninferiority testing problem was considered by Bloch, Lai and Tubert-Bitter
(2001) and Tamhane and Logan (2004). The null and alternative hypotheses
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for the superiority-noninferiority problem are defined in Section 4.2.4:

H
(SN)
U = H

(S)
I ∪ H

(N)
U versus K

(SN)
I = K

(S)
U ∩ K

(N)
I .

The trial’s outcome is declared positive if there is evidence of superior efficacy
for at least one endpoint (K(S)

U ) and noninferior efficacy for all endpoints
(K(N)

I ).
As an illustration, consider a clinical trial with two endpoints. The region

corresponding to the alternative hypothesis K
(SN)
I with ε1 = 5, ε2 = 7, η1 = 3

and η2 = 4 is shown in Figure 4.3.
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FIGURE 4.3: Region in the parameter space corresponding to the alternative
hypothesis (shaded area) in a superiority-noninferiority testing problem with
two endpoints.

Tamhane-Logan superiority-noninferiority procedure

Denote the t-statistics for superiority and noninferiority for the kth end-
point by

t
(S)
k =

X̄1·k − X̄2·k − ηk

sk

√
1/n1 + 1/n2

, t
(N)
k =

X̄1·k − X̄2·k + εk

sk

√
1/n1 + 1/n2

.

Tamhane and Logan (2004) used the UI statistic

t(S)
max = max(t(S)

1 , . . . , t(S)
m )
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for testing the superiority null hypothesis H
(S)
I and the IU statistic

t
(N)
min = min(t(N)

1 , . . . , t(N)
m )

for testing the noninferiority null hypothesis H
(N)
U . They proposed the follow-

ing procedure of the global superiority-noninferiority hypothesis:

Reject H
(SN)
U if t(S)

max ≥ c(S) and t
(N)
min ≥ c(N),

where the critical values c(S) and c(N) are chosen so that the procedure has
level α. Bloch et al. (2001) used the Hotelling T 2-statistic for testing superi-
ority in place of t

(S)
max; however, as noted before, the T 2-statistic is not very

powerful against one-sided superiority alternative. Perlman and Wu (2004)
used Perlman’s one-sided LR statistic instead of the T 2-statistic.

According to the intersection-union testing principle, the superiority and
noninferiority tests must be of level α. Conservative values for c(S) and c(N)

can be chosen to be the (1−α/m)- and (1−α)-quantiles of the t-distribution,
respectively, with ν = n1 +n2−2 df. The exact value of c(S) involves the gen-
eralized multivariate t distribution and thus, as was explained in Section 4.3.2,
is difficult to evaluate. Also, a sharper critical constant c(S) can be evaluated
by conditioning on the event that the noninferiority test is passed by all end-
points. However, the resulting value of c(S) needs to be evaluated by using
bootstrap; see Bloch et al. (2001) and Tamhane and Logan (2004). Röhmel
et al. (2006) objected to this conditioning arguing that it causes significance
of the superiority test to be influenced by changes in the noninferiority mar-
gin for which there is no clinical justification. However, Logan and Tamhane
(2008) showed that passing the noninferiority test at a more stringent margin
adds more credence to the alternative hypothesis K

(S)
U that the treatment

is superior on at least one endpoint, and therefore it is retained more eas-
ily. If H

(SN)
U = H

(S)
I ∪ H

(N)
U is rejected then it is of interest to know which

endpoints demonstrate superiority of the treatment over the control. Logan
and Tamhane (2008) gave a closed procedure for this purpose which controls
FWER for the family of H

(SN)
U as well as the endpoint-specific superiority

null hypotheses H
(S)
k . This closed procedure can be implemented in m + 1

steps.

Alzheimer’s disease trial example

The Alzheimer’s disease example from Section 4.5 will be used to illus-
trate key properties of the Tamhane-Logan superiority-noninferiority proce-
dure. Table 4.4 displays results of a 24-week study in patients with Alzheimer’s
disease that tested the efficacy and safety of an experimental treatment com-
pared to placebo. The efficacy profile of the treatment was evaluated using
two co-primary endpoints, Alzheimer’s Disease Assessment Scale-Cognitive
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TABLE 4.4: Summary of the results of
Alzheimer’s disease trial (SD, standard deviation).

Endpoint Summary Treatment Placebo
statistic n = 167 n = 161

ADAS-Cog Mean 0.5 2.5
Pooled SD 7.4 7.4

CIBIC-Plus Mean 4.2 4.4
Pooled SD 1.1 1.1

Subpart (ADAS-Cog) and Clinician’s Interview-Based Impression of Change
(CIBIC-Plus).

Suppose that the superiority margins are set at 0 and the noninferiority
margins for the ADAS-Cog and CIBIC-Plus endpoints at 0.8 and 0.1, re-
spectively. Based on this information, the superiority and noninferiority test
statistics are given by[

t
(S)
1

t
(S)
2

]
=
[

2.45
1.65

]
,

[
t
(N)
1

t
(N)
2

]
=
[

3.43
2.47

]
.

Further, assuming a one-sided α = 0.025, the critical values of the
Tamhane-Logan procedure are

c(S) = t0.0125(326) = 2.25 and c(N) = t0.025(326) = 1.97.

The rejection region of the superiority-noninferiority procedure is shown in
Figure 4.4. The superiority and noninferiority test statistics are in their cor-
responding rejection regions, i.e.,

max(t(S)
1 , t

(S)
2 ) ≥ 2.25 and min(t(N)

1 , t
(N)
2 ) ≥ 1.97,

and thus the procedure rejects the global superiority-noninferiority hypothe-
sis. To determine which individual endpoints demonstrate superiority of the
treatment, t

(S)
1 and t

(S)
2 are compared with t0.025(326) = 1.97. Since only t

(S)
1

exceeds this critical constant, superiority is demonstrated only on ADAS-Cog;
noninferiority is demonstrated on CIBIC-Plus.

Note that the Tamhane-Logan procedure is monotone in the sense that, if
a certain set of test statistics leads to the rejection of the global superiority-
noninferiority hypothesis, the hypothesis will be rejected for any set of more
extreme test statistics.

It is instructive to compare the Tamhane-Logan superiority-noninferiority
procedure to the min test used in the all-or-none testing problem described in
Section 4.5. The min test rejects the global superiority hypothesis if

min(t(S)
1 , t

(S)
2 ) ≥ t0.025(326) = 1.97.

© 2010 by Taylor and Francis Group, LLC



Analysis of Multiple Endpoints in Clinical Trials 163

0 1 2 3 4

0
1

2
3

4

t1

t 2

0 1 2 3 4

0
1

2
3

4
t1

t 2

FIGURE 4.4: Left panel: Rejection region of the superiority component
of the Tamhane-Logan procedure (shaded area) and superiority test statis-
tics (dot). Right panel: Rejection region of the noninferiority component of
the Tamhane-Logan procedure (shaded area) and noninferiority test statistics
(dot).

The rejection region of the min test is displayed in Figure 4.5. It is clear that
the global superiority hypothesis cannot be rejected since the treatment effect
for CIBIC-Plus is not significant at the one-sided 0.025 level (t(S)

2 < 1.97).
This serves as an illustration of the fact that the all-or-none testing approach
is based on more stringent criteria compared to the superiority-noninferiority
testing approach.

4.7 Software implementation

This section briefly describes software implementation of the multiple and
global procedures discussed in this chapter. The following SAS programs were
used in the examples included in this chapter. The programs can be down-
loaded from the book’s Web site (http://www.multxpert.com).

• Program 2.1 can be used to implement at-least-one procedures for iden-
tifying the treatment effect on individual endpoints described in Sec-
tion 4.3, including the Bonferroni, fixed-sequence and fallback proce-
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FIGURE 4.5: Rejection region of the min test (shaded area) and superiority
test statistics (dot).

dures (note that this program also implements other p-value-based pro-
cedures introduced in Section 2.6). Software implementation of the para-
metric fallback and 4A procedures is not currently available. Critical
values for these procedures are tabulated in Huque and Alosh (2008)
and Li and Mehrotra (2008), respectively.

• Program 4.1 implements the OLS and GLS procedures in the os-
teoarthritis trial example introduced in Section 4.4.2. Program 4.2 per-
forms sample size calculations for the OLS and GLS procedures in this
clinical trial example.

• Program 4.3 implements the Tamhane-Logan superiority-noninferiority
procedure in the Alzheimer’s disease trial example (Section 4.6).
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