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5.1 Introduction

Multiple objectives pursued in clinical trials typically exhibit a hierarchical
structure; e.g., they can be divided into primary and secondary objectives (for
a detailed classification of primary and secondary endpoints, see D’Agostino,
2000). The primary objective is typically formulated in terms of the primary
analysis which describes the most important features of the treatment. In
most registration trials, the primary analysis determines the overall outcome
of the trial, provides the basis for the regulatory claim and is included in
the product label. Secondary analyses (including secondary endpoints and
subgroup analyses) play a supportive role and provide additional information
for prescribing physicians, patients, payers, etc.

Two approaches to the control of the false positive rate for the family of
primary and secondary analyses can be considered in a clinical trial setting:

• Approach 1. The false positive rate is not protected. Regulatory agencies
do not always require a strict control of the false positive rate. An ex-
ample is the case of a small number of secondary analyses or secondary
analyses that are highly correlated with the primary analysis.

• Approach 2. The familywise error rate (FWER) associated with the pri-
mary and secondary analyses is controlled (FWER is defined in Section
2.2.1).

Although multiplicity adjustments are not mandatory in registration stud-
ies to justify the inclusion of secondary endpoints or analyses in the product
label, control of the Type I error probability (Approach 2) is becoming increas-
ingly important. This approach is used by regulatory agencies to define the
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166 Multiple Testing Problems in Pharmaceutical Statistics

acceptable statistical risk of false efficacy claims in registration trials. Gate-
keeping methods described in this chapter offer a solution to this multiplicity
problem. These methods enable the trial’s sponsor to

• Control the risk of spurious conclusions (e.g., false efficacy claims) with
respect to multiple ordered analyses.

• Take into account the hierarchical structure of the multiple testing prob-
lem and examine ordered analyses in a sequential manner beginning with
the primary analyses. The gatekeeping methodology is consistent with
a regulatory view that findings with respect to secondary/supportive
objectives; e.g., secondary endpoints, are meaningful only if the primary
objective is met (O’Neill, 1997).

For more information about the use of gatekeeping procedures in a clinical
trial setting and literature review in this area of multiple comparison research,
see Dmitrienko et al. (2005, Chapter 2) and Dmitrienko and Tamhane (2007).

This chapter begins with motivating examples and a review of gatekeeping
procedures in Section 5.2. The next three sections provide a detailed descrip-
tion of three classes of gatekeeping procedures: serial (Section 5.3), parallel
(Section 5.4) and tree-structured (Section 5.5). Each section includes a dis-
cussion of relevant methodology and clinical trial examples. The last section
(Section 5.6) describes available software tools for implementing gatekeeping
procedures in clinical trials.

5.2 Motivating examples

To construct a gatekeeping procedure, one first needs to define two or
more families of analyses, for example, a family of primary endpoints and a
family of secondary endpoints. Each family (except for the last one) serves
as a gatekeeper in the sense that one must pass it to perform analyses in the
next family.

In this section we will present clinical trial examples that motivate the use
of gatekeeping methods in clinical trials and also set the stage for the review
of main classes of gatekeeping procedures in Sections 5.3–5.5.

As a side note, gatekeeping procedures discussed in this section focus
on multiplicity adjustments in a single trial. In the context of registra-
tion/marketing authorization packages that normally include two confirma-
tory trials with similar sets of primary and secondary analyses, gatekeeping
methods can be applied independently to each trial. This approach will ensure
Type I error rate control within each confirmatory trial. To justify the inclu-
sion of secondary findings into the product label, the trial’s sponsor can use
consistency arguments and demonstrate that multiplicity-adjusted primary
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and secondary analyses lead to similar conclusions in both trials. It is worth
noting that regulatory guidelines do not currently discuss rules for combining
secondary findings across several confirmatory trials.

5.2.1 Clinical trials with serial gatekeepers

We will begin with a two-family testing problem arising in clinical tri-
als with noninferiority and superiority objectives (this example is based on
Dmitrienko and Tamhane, 2007). Consider a trial in patients with Type II di-
abetes with three treatment groups, Group A (a new formulation of an insulin
therapy), Group B (a standard formulation) and Group A+B (a combination
of the formulations). The following two scenarios will be examined:

• Scenario 1. Noninferiority and superiority tests are carried out sequen-
tially for the comparison of A versus B.

• Scenario 2. A noninferiority test for the comparison of A versus B is
carried out first followed by a superiority test for the same comparison
and a noninferiority test for the comparison of A+B versus B.

Let δ1 and δ2 denote the true treatment differences for the comparisons
of A versus B and A+B versus B, respectively. The three sets of null and
alternative hypotheses arising in this problem are defined as follows:

• A versus B (noninferiority), H1 : δ1 ≤ −γ1 versus K1 : δ1 > −γ1, where
γ1 is a positive non-inferiority margin for the comparison of A versus B.

• A versus B (superiority), H2 : δ1 ≤ 0 versus K2 : δ1 > 0.

• A+B versus B (noninferiority), H3 : δ2 ≤ −γ2 versus K3 : δ2 > −γ2,
where γ2 is a positive non-inferiority margin for the comparison of A+B
versus B.

The testing procedures used in the two scenarios are depicted in Figure 5.1.
In both scenarios, testing begins with the first family that includes the test for
H1. This family serves as a serial gatekeeper in the sense that all hypotheses
of no treatment effect must be rejected in the first family to proceed to the
second family (in this case there is only one hypothesis in the first family).
In Scenario 1, the second family includes the test for H2; in Scenario 2, this
family includes the tests for H2 and H3.

It is important to note that, even though two tests are performed in Sce-
nario 1, no multiplicity adjustment is needed. Both tests can be carried out
at the same α level, where α is the pre-specified FWER, e.g., α = 0.05. This
is due to the fact that this testing procedure is a special case of the fixed-
sequence approach described in Section 2.6.3.

It is instructive to compare the straightforward multiple testing problem in
Scenario 1 to the more complex one in Scenario 2. Although the two settings
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FIGURE 5.1: Decision trees in the combination-therapy clinical trial exam-
ple (Scenario 1, left panel; Scenario 2, right panel).

look quite similar at first glance, one can no longer avoid multiplicity adjust-
ments in Scenario 2. To see this, suppose that no multiplicity adjustment is
performed; i.e., all three tests are carried out at the α level and assume that
δ1 = 0 (the new formulation is equivalent to the standard formulation) and
δ2 ≤ −γ2 (the combination is inferior to the standard formulation). Under
this set of assumptions, if the noninferiority margin for the comparison of A
versus B is very wide (γ1 is large), one is virtually assured of observing a sig-
nificant outcome for the first test and passing the gatekeeper. This means that
the original multiple testing problem will simplify to the problem of testing
H2 and H3. The two tests are carried at the unadjusted α level and thus the
probability of at least one incorrect conclusion will be inflated. This example
illustrates that multiplicity adjustments are needed in general for multi-family
testing problems.

The multiple testing problem considered in this section is a two-family
problem in which the first family serves as a serial gatekeeper. Serial gate-
keepers are often found in clinical trials with multiple ordered endpoints. For
example, in a clinical trial with a single primary endpoint and several key sec-
ondary endpoints, the endpoints may be arranged in a sequence. In this case,
each endpoint defines a family and serves as a serial gatekeeper for the next
family in the sequence. Multiple testing procedures that control the FWER
in problems with serial gatekeepers are discussed in Section 5.3.

5.2.2 Clinical trials with parallel gatekeepers

To introduce parallel gatekeepers, consider an osteoporosis/breast cancer
clinical trial in postmenopausal women that investigates the efficacy of a novel
treatment compared to a placebo control (this example is based on Cummings
et al., 1999; Ettinger et al., 1999). The treatment effect is evaluated using two
primary endpoints, incidence of vertebral fractures (Endpoint 1) and incidence
of breast cancer (Endpoint 2) and an important secondary endpoint, incidence
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Endpoint 1
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FIGURE 5.2: Decision tree in the osteoporosis/breast cancer clinical trial
example. Dotted lines are used to indicate that only one test in the first family
needs to be significant to perform the test in the second family.

of non-vertebral fractures (Endpoint 3). Let δi denote the true treatment
difference for the ith endpoint. The associated null hypothesis, Hi : δi ≤ 0,
is tested against a superiority hypothesis, Ki : δi > 0, i = 1, 2, 3.

The first family includes the primary tests (tests for H1 and H2) and the
second family includes the test for H3. Each primary endpoint is associated
with an independent regulatory claim and the trial will be declared positive
if there is evidence of a beneficial treatment effect for at least one primary
endpoint. Using mathematical terminology, the first family serves as a parallel
gatekeeper; i.e., at least one hypothesis needs to be rejected in this family to
pass the gatekeeper and carry out the test in the second family. The testing
procedure is displayed in Figure 5.2.

As in the two-family problem described in Section 5.2.1, it is easy to show
that an appropriate multiplicity adjustment strategy is required in this case
to preserve the FWER. A naive strategy can be set up as follows:

• Since there are two tests in the first family, a multiple test is used to
control the Type I error rate within this family, e.g., Bonferroni test (H1

and H2 are tested at the α/2 level).

• If one or more tests in the first family are significant, H3 is tested at the
α level (after all, there is only one test in the second family).

To verify whether this approach prevents Type I error rate inflation, we
can compute the probability of at least one erroneous conclusion when δ1 is
very large but δ2 = 0 and δ3 = 0.

Since the treatment is superior to placebo with a large margin for Endpoint
1, the testing procedure is virtually guaranteed to pass the gatekeeper and the
test for H3 will be carried out almost all of the time. As a result, the three-
endpoint problem collapses to a two-endpoint problem in which H2 is tested
at the α/2 level and H3 is tested at the α level. It is clear that the probability
of at least one incorrect conclusion will be greater than α (unless the test
statistics associated with H2 and H3 are perfectly correlated). In other words,
even though the naive strategy protects the Type I error rate within each
family, the overall Type I error rate ends up being inflated. This clinical trial

© 2010 by Taylor and Francis Group, LLC



170 Multiple Testing Problems in Pharmaceutical Statistics

example shows that a more sophisticated multiple comparison procedure (that
goes beyond Type I error rate control within each family) may be required in
trials with hierarchically ordered analyses.

In general, parallel gatekeepers could be utilized in clinical trials with sev-
eral primary endpoints where each endpoint defines a successful trial outcome;
e.g., each endpoint is associated with its own regulatory claim. In addition,
parallel gatekeepers could be used in trials with multiple doses of a treatment
tested against a control, e.g., a placebo or active control. In this case, the
dose-control hypotheses corresponding to higher dose levels could be included
in the first family that serves as a parallel gatekeeper for the family contain-
ing the other dose-control hypotheses. Section 5.4 introduces a general class
of procedures that control the FWER in trials with parallel gatekeepers.

5.2.3 Clinical trials with tree-structured gatekeepers

Tree-structured gatekeeping procedures (or, simply, tree gatekeeping pro-
cedures) are used in clinical trials with multiple analyses that form a com-
plex hierarchical structure. This includes structures with logical relationships
among the analyses that go beyond more basic hierarchical structures associ-
ated with serial and parallel gatekeeping methods.

To illustrate, we will consider an extension of the combination-therapy
clinical trial example given in Section 5.2.1. In this example, there are six
tests that are carried out in four stages as shown below:

• Stage 1. A versus B (test of the noninferiority hypothesis H1).

• Stage 2. A versus B (test of the superiority hypothesis H2) and A+B
versus B (test of the noninferiority hypothesis H3).

• Stage 3. A+B versus B (test of the superiority hypothesis H4) and A+B
versus A (test of the noninferiority hypothesis H5).

• Stage 4. A+B versus A (test of the superiority hypothesis H6).

A decision tree associated with this testing strategy is displayed in Fig-
ure 5.3. The tree exhibits fairly complex logical relationships among the tests.
In the parallel gatekeeping example in Section 5.2.2, the secondary test (test
for H3) was logically related to both primary tests (tests for H1 and H2).
In this case, each test at Stages 3 and 4 is logically related to only one test
carried out at the previous stage. For example, H4 will be tested if and only
if the test for H3 is significant and the outcome of the test for H2 is ignored.
Gatekeeping procedures for problems with logical restrictions of this kind are
known as tree gatekeeping procedures. Using a counterexample similar to the
one given in Section 5.2.2, it is easy to show that Type I error rate control
within each family does not, in general, guarantee control of the FWER in
problems with logical restrictions.
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FIGURE 5.3: Decision tree in the combination-therapy clinical trial example
(Noninf, Noninferiority; Sup, Superiority).

Tree gatekeepers arise in clinical trials with multiple objectives, e.g., mul-
tiple endpoints or multiple subgroups, when logical dependencies exist among
the null hypotheses associated with these objectives. It is shown in Section 5.5
how to construct tree gatekeeping procedures that take these logical relation-
ships into account and protect the FWER.

5.3 Serial gatekeeping procedures

Sections 5.3–5.5 give a comprehensive review of the three classes of gate-
keeping procedures, including underlying theory, clinical trial examples and
implementation details.

The following notation will be used in the three sections. Consider a clinical
trial with multiple, hierarchically ordered objectives/analyses. To account for
the hierarchical ordering, the analyses are grouped into m families denoted
by F1, . . . , Fm. Each family includes null hypotheses corresponding to the
analyses at the same level in the hierarchy; e.g., the hypotheses in F1 may be
related to a set of primary analyses and the hypotheses in F2 may represent
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TABLE 5.1: Families of null hypotheses corresponding to
multiple, hierarchically ordered objectives.

Family Null Hypothesis Raw
hypotheses weights p-values

F1 H11, . . . , H1n1 w11, . . . , w1n1 p11, . . . , p1n1

. . . . . . . . . . . .
Fi Hi1, . . . , Hini wi1, . . . , wini pi1, . . . , pini

. . . . . . . . . . . .
Fm Hm1, . . . , Hmnm wm1, . . . , wmnm pm1, . . . , pmnm

F1 : All hypotheses are rejected

F2

�

FIGURE 5.4: A problem with a serial gatekeeper (F1 is a serial gatekeeper
for F2).

secondary analyses. As was stated in Section 5.2, each family (except for the
last one) serves as a gatekeeper for the families placed later in the sequence.

The hypotheses included in the m families are shown in Table 5.1. Further,
wi1, . . . , wini are the weights representing the importance of hypotheses within
Fi (the weights are non-negative and wi1 + . . .+wini = 1) and pi1, . . . , pini are
the associated raw p-values. Multiplicity adjusted p-values for the hypotheses
in Fi are denoted by p̃i1, . . . , p̃ini (note that the adjusted p-values are defined
with respect to all m families rather than any individual family).

5.3.1 General serial gatekeeping framework

A family is termed a serial gatekeeper if all hypotheses must be rejected
within that family in order to proceed to the next family in the sequence (see
Figure 5.4). In other words, if Fi, i = 1, . . . , m − 1, is a serial gatekeeper,
hypotheses in Fi+1 are tested if and only if

max
j=1,...,ni

p̃ij ≤ α.

A clinical trial example with a serial gatekeeper was given in Section 5.2.1.
Serial gatekeeping procedures were studied by Maurer, Hothorn and

Lehmacher (1995), Bauer et al. (1998) and Westfall and Krishen (2001). Most
commonly, serial gatekeepers are encountered in trials where endpoints can
be ordered from most important to least important:

• The adalimumab trial in patients with rheumatoid arthritis (Keystone
et al., 2004) tested the effect of adalimumab on three endpoints that
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were ordered and examined sequentially: symptomatic response, disease
progression and physical function.

• Hierarchical arrangements of endpoints are often used in oncology trials,
e.g., overall survival duration, progression-free survival duration, tumor
response rate, time to treatment failure and duration of tumor response.

Serial gatekeeping procedures are widely used in clinical trials, mainly due
to the fact that they do not require an adjustment for multiplicity. Note that
serial gatekeeping procedures are closely related to the fixed-sequence test
introduced in Section 2.6.3 (in fact, these procedures simplify to the fixed-
sequence test if each family includes a single hypothesis). This approach to
testing ordered endpoints is described in the CPMP guidance document on
multiplicity issues in clinical trials (CPMP, 2002).

5.3.2 Serial gatekeeping procedures with a single decision-
making branch

In their most basic form, serial gatekeeping procedures can be applied to
problems in which multiple analyses define a single sequence of hypotheses.
We refer to these serial gatekeeping procedures as single-branch procedures.

A single-branch procedure for multiple families of analysis is defined as
follows. Within each family Fi, i = 1, . . . , m− 1, hypotheses are tested at the
nominal α level. For example, the hypotheses in Fi can be tested using an
intersection-union (IU) test (Section 2.3.2); i.e., all hypotheses are rejected in
Fi if pij ≤ α, j = 1, . . . , ni, and all hypotheses are retained otherwise. Any
FWER-controlling test can be used in Fm, including all popular multiple tests
described in Sections 2.6–2.8.

Multiplicity adjustments are commonly summarized using adjusted p-
values for hypotheses of interest. Adjusted p-values for single-branch proce-
dures are easy to compute using the Westfall-Young definition discussed in
Section 2.4.1. Assume that the IU test is used in F1, . . . , Fm−1. Let p∗i denote
the largest p-value in Fi, i = 1, . . . , m − 1, and p′mj denote the adjusted p-
value for Hmj produced by the test used in the last family, j = 1, . . . , nm. The
adjusted p-value for Hij , i = 1, . . . , m, j = 1, . . . , ni, is given by:

p̃ij =
{

max(p∗1, . . . , p
∗
i ) if i = 1, . . . , m − 1,

max(p′ij , p
∗
1, . . . , p

∗
i−1) if i = m.

Alzheimer’s disease clinical trial example

The Alzheimer’s disease clinical trial example from Dmitrienko and
Tamhane (2007) serves as an example of a single-branch problem with a serial
gatekeeper. In this example, the efficacy profile of an experimental treatment
is compared to that of a placebo using four endpoints:
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F1 : Endpoint P1, Endpoint P2

F2 : Endpoint S1, Endpoint S2
�

FIGURE 5.5: Single-branch serial gatekeeping procedure in the Alzheimer’s
disease clinical trial example.

TABLE 5.2: Serial gatekeeping procedure in the
Alzheimer’s disease clinical trial example. The asterisk
identifies the adjusted p-values that are significant at
the two-sided 0.05 level.

Family Endpoint Raw p-value Adjusted p-value
F1 P1 0.023 0.023∗
F1 P2 0.018 0.023∗
F2 S1 0.014 0.028∗
F2 S2 0.106 0.106

• The primary endpoints include a cognitive impairment endpoint, ADAS-
Cog (Endpoint P1), and a clinical global performance endpoint, CIBIC
(Endpoint P2).

• Two secondary endpoints are also examined in this trial, a biochemical
endpoint (Endpoint S1) and an imaging endpoint (Endpoint S2).

The hypotheses for the primary and secondary endpoints are included in
F1 and F2, respectively. Since a trial for the treatment of Alzheimer’s disease
is normally declared successful only if both primary endpoints are significant
(Reisberg et al., 2003; Reines et al., 2004), F1 serves as a serial gatekeeper
(see Figure 5.5).

To illustrate the implementation of the serial gatekeeping procedure, Ta-
ble 5.2 displays the two-sided raw p-values produced by the four tests in this
clinical trial example as well as adjusted p-values. The hypotheses in F1 are
tested using the IU test and both of them are rejected at the 0.05 level. Be-
cause of this, the procedure can pass the gatekeeper and test the hypotheses in
F2. The Holm test is carried out in F2 and the adjusted p-values for Endpoints
S1 and S2 are given by 0.028 and 0.106, respectively. Endpoint S1 is significant
at the 0.05 level, whereas Endpoint S2 is not. Since the serial gatekeeping pro-
cedure controls the FWER, the trial’s sponsor can use these results to justify
the inclusion of the two primary endpoints as well as one secondary endpoint
(Endpoint S1) in the product label.

Serial gatekeeping procedures have a simple structure and are quite ap-
pealing in clinical trial applications. However, it is important to bear in mind
that these procedures are based on the fixed-sequence approach and thus they
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need to be considered only if there is sufficient clinical justification that can be
used to prioritize the objectives of interest (pros and cons of the fixed-sequence
approach are discussed in Section 4.3.1).

5.3.3 Serial gatekeeping procedures with multiple decision-
making branches

In the previous section we considered a class of basic single-branch pro-
cedures. More complicated examples of serial gatekeeping procedures arise
in clinical trials with multiple sequences of hypotheses or multiple decision-
making branches, e.g., dose-finding studies with ordered endpoints. In this
case, at each fixed dose level, dose-control comparisons for multiple endpoints
form a branch within which hypotheses are tested sequentially.

Serial gatekeeping procedures with multiple branches can be constructed
based on several multiple tests. Here we will focus on Bonferroni-based proce-
dures (serial gatekeeping procedures based on other tests are briefly discussed
in Section 5.3.4). Consider a multiple testing problem with m families and
assume that each one contains n hypotheses, i.e., n1 = . . . = nm = n. In
this case there are n branches and the jth branch includes the hypotheses
H1j , . . . , Hmj. Hypotheses within each branch are tested sequentially as fol-
lows:

• Consider the jth branch, j = 1, . . . , n. The hypothesis H1j is tested first
at an α/n level. If H1j is rejected, the next hypothesis in the sequence,
i.e., H2j , is tested, otherwise testing within this branch stops.

• In general, the hypothesis Hij is rejected if pkj ≤ α/n for all k = 1, . . . , i.

FWER control for the Bonferroni-based procedure is discussed in Quan,
Luo and Capizzi (2005). Adjusted p-values for serial gatekeeping procedures
with multiple branches can be found using the direct calculation algorithm
defined in Section 5.4.2.

Type II diabetes clinical trial example

A multiple testing problem with three branches was described in
Dmitrienko et al. (2006a) and Dmitrienko et al. (2007). The Type II diabetes
clinical trial considered in these papers is conducted to compare three doses
of an experimental treatment (labeled L, M and H) versus placebo (labeled
P). Each dose-placebo test is carried out with respect to three ordered end-
points: hemoglobin A1c (Endpoint E1), fasting serum glucose (Endpoint E2)
and HDL cholesterol (Endpoint E3). The E2 tests are restricted to the doses
at which Endpoint E1 is significant and, similarly, the E3 tests are carried out
only for the doses at which the E1 and E2 tests are both significant. Logi-
cal restrictions of this kind facilitate drug labeling and, in addition, improve
the power of clinically relevant secondary dose-placebo tests. The resulting
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F1 : L vs. P M vs. P H vs. P

F2 : L vs. P M vs. P H vs. P

F3 : L vs. P M vs. P H vs. P

� � �

� � �

FIGURE 5.6: Three-branch serial gatekeeping procedure with three families
of hypotheses in the Type II diabetes clinical trial example (F1, Endpoint E1;
F2, Endpoint E2; F3, Endpoint E3).

decision tree has three branches (see Figure 5.6) and the fixed-sequence ap-
proach is applied within each branch. The branches are “connected” using the
Bonferroni test as described below.

To define the three-branch procedure, the hypotheses Hi1 (H-P compari-
son), Hi2 (M-P comparison) and Hi3 (L-P comparison) for the ith endpoint
are included in Fi, i = 1, 2, 3. The hypotheses are equally weighted within
each family and the FWER is set at a two-sided α = 0.05. The hypotheses
within the three branches are tested sequentially using the Bonferroni-based
procedure.

The two-sided raw and adjusted p-values in this clinical trial example are
summarized in Table 5.3. The adjusted p-values are computed using the direct-
calculation algorithm with K = 100, 000. Note that only Doses M and H
are significantly different from placebo for the primary endpoint (Endpoint
E1) and thus the remaining branch corresponding to the L-P comparison is
eliminated at the first stage of the procedure. At the second stage, the dose-
placebo comparisons for Endpoint E2 are performed only for the dose levels
at which Endpoint E1 is significant, i.e., Doses M and H. There is no evidence
of a significant effect at Dose M compared to placebo for Endpoint E2 and
thus testing within that branch stops. At the last stage, Dose H is tested
against placebo for Endpoint E3. This test is significant and thus we conclude
that Dose H is superior to placebo for all three endpoints whereas Dose M is
superior to placebo only for Endpoint E1.

5.3.4 Other serial gatekeeping procedures

In general, sponsors of clinical trials may consider more complicated se-
rial gatekeeping procedures, including multiple-branch with unequal length
branches (this setting is encountered in trials that compare a treatment to
multiple controls). Further, multiple-branch serial gatekeeping procedures can
be constructed based on other multiple tests, e.g., the Hochberg test (Quan,
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TABLE 5.3: Serial gatekeeping procedure in the Type II
diabetes clinical trial example. The asterisk identifies the adjusted
p-values that are significant at the two-sided 0.05 level.

Family Endpoint Comparison Raw p-value Adjusted p-value
F1 E1 L vs. P 0.0176 0.0528
F1 E1 M vs. P 0.0108 0.0324∗
F1 E1 H vs. P 0.0052 0.0156∗
F2 E2 L vs. P 0.0128 0.0528
F2 E2 M vs. P 0.0259 0.0777
F2 E2 H vs. P 0.0093 0.0279∗
F3 E3 L vs. P 0.0511 0.1533
F3 E3 M vs. P 0.0058 0.0777
F3 E3 H vs. P 0.0099 0.0297∗

Luo and Capizzi, 2005) or Dunnett test (Dmitrienko et al., 2006a; Dmitrienko,
Tamhane and Liu, 2008).

5.4 Parallel gatekeeping procedures

This section gives an overview of multiplicity adjustment methods used in
parallel gatekeeping procedures.

5.4.1 General parallel gatekeeping framework

Family Fi is termed a parallel gatekeeper if at least one significant result
must be observed in this family, i.e., one or more hypotheses must be rejected
in {Hi1, . . . , Hini}, to proceed to Fi+1, i = 1, . . . , m − 1 (see Figure 5.7). In
other words, if testing is performed at the α level, the gatekeeper is passed if
and only if

min
j=1,...,ni

p̃ij ≤ α.

As an illustration, a multiple testing problem with a parallel gatekeeper was
discussed in Section 5.2.2. Other examples can be found in clinical trials with
multiple primary endpoints when each endpoint provides independent proof
of efficacy and can lead to a regulatory claim, e.g., the acute respiratory dis-
tress syndrome clinical trial (Dmitrienko, Offen and Westfall, 2003, Section
4) with two primary endpoints, number of ventilator-free days and 28-day
all-cause mortality, or the EPHESUS trial (Pitt et al., 2003) that utilized
two primary endpoints, all-cause mortality and cardiovascular mortality plus
cardiovascular hospitalization.

The parallel gatekeeping methods were introduced in Dmitrienko, Offen
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F1 : One or more hypotheses are rejected

F2

�

FIGURE 5.7: A problem with a parallel gatekeeper (F1 is a parallel gate-
keeper for F2).

and Westfall (2003) who considered a Bonferroni-based procedure derived
using the closure principle (see Section 2.3.3). Since this method relies on
a complete enumeration of all intersection hypotheses in the closed family
associated with F1, . . . , Fm, the resulting parallel gatekeeping procedures may
lack transparency and their implementation can be computationally intensive
since it takes order-2n steps to test n hypotheses.

Further research in this area revealed that a broad class of parallel gate-
keeping procedures have a stepwise form (Dmitrienko et al., 2006b; Hommel,
Bretz and Maurer, 2007; Guilbaud, 2007; Dmitrienko, Tamhane and Wiens,
2008). This property streamlines their implementation and interpretation by
clinical trial practitioners (US Food and Drug Administration statisticians
have repeatedly emphasized the importance of multiple testing procedures
that can be understood by clinicians). In this section we will focus on multi-
stage parallel gatekeeping procedures developed in Dmitrienko, Tamhane and
Wiens (2008).

5.4.2 Multistage parallel gatekeeping procedures

We will begin by introducing two concepts that play a key role in the
framework for constructing multistage parallel gatekeeping procedures: the
error rate function of a multiple test and separable multiple tests.

Consider the problem of testing a single family of n null hypotheses
H1, . . . , Hn. For any subset I of the index set N = {1, 2, . . . , n}, the error
rate function e(I) of a multiple test is the maximum probability of making at
least one Type I error when testing the hypotheses Hi, i ∈ I, i.e.,

e(I) = sup
HI

P

{⋃
i∈I

(Reject Hi)

∣∣∣∣∣HI

}
.

Here the supremum of the probability is computed over the entire parameter
space corresponding to the null hypothesis

HI =
⋂
i∈I

Hi.

An exact expression for e(I) is generally difficult to derive and an easily
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computable upper bound on e(I) can be used instead. For example, the upper
bound for the error rate function of the Bonferroni test is given by α|I|/n,
where |I| is the number of elements in the index set I. To simplify notation in
this section, if an exact expression for e(I) is available, we will use the original
error rate function; otherwise e(I) will denote an upper bound on the error
rate function.

Note that, by definition, e(∅) = 0 and e(N) = α, where α is the FWER.
In addition, it is natural to require that the error rate function be monotone,
i.e., e(I) ≤ e(J) if I ⊆ J . If the monotonicity condition is not satisfied, one
can easily enforce monotonicity by using the following upper bound in place
of the original error rate function

e∗(I) = max
I′⊆I

e(I ′).

It is easy to see that e∗(I) is a monotone error rate function.
A multiple test meets the separability condition (and is termed separable)

if its error rate function is strictly less than (separates from) α unless all
hypotheses are true, i.e.,

e(I) < α for all I ⊂ N.

The Bonferroni test clearly satisfies this condition since e(I) < α for any index
set I with less than n elements.

Truncated multiple tests

It is easy to show that most popular multiple tests, with the exception
of the Bonferroni test, do not meet the separability condition. To construct
separable multiple tests, Dmitrienko, Tamhane and Wiens (2008) proposed
truncated versions of popular tests by taking a convex combination of their
critical values with the critical values of the Bonferroni test. As a result,
a truncated test is uniformly more powerful than the Bonferroni test but
uniformly less powerful than the original test. As an illustration, we will define
the truncated Holm and Hochberg tests in this section. Truncated versions of
other tests; e.g., the fallback and Dunnett tests, and their error rate functions
are given in Dmitrienko, Tamhane and Wiens (2008).

To define the two truncated tests, consider the ordered p-values, p(1) ≤
. . . ≤ p(n) and let H(1), . . . , H(n) denote the corresponding hypotheses. The
truncated Holm test is a step-down test based on the following critical values:

ci =
[

γ

n − i + 1
+

1 − γ

n

]
α, i = 1, . . . , n,

where 0 ≤ γ < 1 is the truncation fraction. In other words, the truncated
Holm test begins by testing H(1) at a c1 level. If p(1) ≤ c1, this hypothesis is
rejected and the next hypothesis is examined. In general, the truncated test
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rejects H(i) if p(j) ≤ cj for all j ≤ i and retains H(i), . . . , H(n) otherwise.
This test simplifies to the Bonferroni test if γ = 0 and to the regular Holm
test if γ = 1. The error rate function of the truncated Holm test is given by
e(I) = [γ + (1 − γ)|I|/n]α if |I| > 0 and 0 otherwise.

The truncated Hochberg test utilizes the same set of critical values but it
is set up as a step-up test. For γ = 0 and γ = 1, this truncated test reduces
to the Bonferroni and regular Hochberg tests, respectively. The error rate
function of the truncated Hochberg test is given by

e(I) = 1 − P

{
p(i)(I) >

[
γ

|I| − i + 1
+

1 − γ

n

]
α for all i ∈ I

}
if |I| > 0 and 0 if |I| = 0. Here p(i)(I) denotes the ith ordered p-value asso-
ciated with the index set I, i = 1, . . . , |I|. The calculation of this error rate
function is discussed in the Appendix. In the case of two hypotheses, the er-
ror rate function of the truncated Hochberg test is equivalent to that of the
truncated Holm test, i.e., e(I) = [γ +(1−γ)|I|/2]α if |I| > 0 and 0 otherwise.

Multistage testing algorithm

Consider again families F1, . . . , Fm corresponding to multiple analyses in
a clinical trial and assume that Fi, i = 1, . . . , m − 1, is a parallel gatekeeper
(as a side note, this framework also includes serial gatekeepers since any serial
gatekeeper can be expressed as a series of single-hypothesis families). Let Ai

denote the index set corresponding to the retained hypotheses in Fi and ei(I)
denote the error rate function for the test used in Fi, i = 1, . . . , m − 1. The
following algorithm defines a broad class of parallel gatekeeping procedures
with a stepwise structure.

• Family F1. The hypotheses are tested at an α1 level using any FWER-
controlling separable multiple test, where α1 = α.

• Family Fi, i = 2, . . . , m − 1. The hypotheses are tested at an αi level
using any FWER-controlling separable multiple test, where

αi = αi−1 − ei−1(Ai−1).

• Family Fm. The hypotheses are tested at an αm level using any FWER-
controlling multiple test that controls the FWER within Fm, where

αm = αm−1 − em−1(Am−1).

Gatekeeping procedures constructed using this algorithm satisfy two im-
portant conditions:

• Parallel gatekeeping condition: A null hypothesis in Fi, i = 2, . . . , m,
cannot be rejected if all hypotheses in Fi−1 are retained. This is a direct
consequence of the fact that the “unused” Type I error rate, αi = αi−1−
ei−1(Ai−1) = 0 if Ai−1 = Ni−1 (all hypotheses in Fi−1 are retained).
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• Independence condition: A decision to reject a null hypothesis in Fi,
i = 1, . . . , m − 1, is independent of decisions made in Fi+1, . . . , Fm due
to the stepwise form of gatekeeping procedures. This condition is consis-
tent with the regulatory requirement that the primary analyses in a reg-
istration clinical trial be independent of secondary analyses. However, if
the independence condition is not considered critical, one can construct
gatekeeping procedures that have more power for tests in the first fam-
ily. For a discussion of the independence condition, see Dmitrienko et
al. (2005, Sections 2.7.2–2.7.3) and Hommel, Bretz and Maurer (2007,
Section 4).

It follows from the multistage testing algorithm that the penalty paid for
performing multiple inferences in Fi, i = 2, . . . , m, depends on the number
of the hypotheses rejected at earlier stages. Note that α1, . . . , αm is a non-
increasing sequence, which implies that one faces higher hurdles later in the
sequence unless all hypotheses are rejected in previously examined families.
The rate at which αi decreases depends on the tests used at each stage of the
procedure. As an illustration, assume that the hypotheses in Fi, i = 1, . . . , m−
1, are tested using the Bonferroni test. In this case,

αi =
ri−1αi−1

ni−1
, i = 2, . . . , m,

where ri−1 is the number of hypotheses rejected in Fi−1. In other words, the
fraction of the FWER used in Fi is the product of the proportions of rejected
hypotheses in F1 through Fi−1. If the truncated Holm test is used in Fi,
i = 1, . . . , m − 1,

αi =
{

(1 − γi−1)ri−1αi−1/ni−1 if ri−1 < ni−1,
αi−1 if ri−1 = ni−1,

i = 2, . . . , m,

where γi−1 is the truncation fraction used in Fi−1. It follows from this formula
that γi−1 determines the fraction of αi−1 carried forward (unless all hypotheses
are rejected in Fi−1 in which case all of αi−1 is carried over to Fi). If the
truncation fraction is close to 1 and some hypotheses are retained in Fi−1, an
extremely small fraction of αi−1 will be carried over to Fi.

Computation of adjusted p-values

The Westfall-Young definition of an adjusted p-value given in Section 2.4.1
can be applied to calculate adjusted p-values for multistage gatekeeping pro-
cedures using the following direct calculation algorithm. This algorithm loops
through a grid of significance levels between 0 and 1 to find the lowest level at
which each hypothesis is rejected. The adjusted p-value for Hij corresponds
to the smallest k, 1 ≤ k ≤ K, for which Hij is rejected at the overall level
kα/K. The algorithm is quite fast since it takes only K = 100, 000 iterations
to compute adjusted p-values with four accurate decimal places. In addition,
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multistage gatekeeping procedures have a stepwise form and thus each itera-
tion requires order-n operations to test n hypotheses.

In special cases, a recursive approach can be applied to calculate adjusted
p-values for multistage parallel gatekeeping procedures. For example, Guil-
baud (2007) obtained a recursive formula for Bonferroni-based multistage
parallel gatekeeping procedures. Consider, for simplicity, a multiple testing
problem with two families, F1 and F2, and assume that the hypotheses are
equally weighted within each family. The hypotheses in F1 and F2 are tested
using the Bonferroni test and an arbitrary FWER-controlling test, respec-
tively. Let p1j , j = 1, . . . , n1, denote the raw p-values for the hypotheses in
F1. Further, let p′2j , j = 1, . . . , n2, denote the adjusted p-values for the hy-
potheses in F2 produced by the test used at the second stage of the procedure.
The adjusted p-values in F1 are given by

p̃1j = min(1, n1p1j), j = 1, . . . , n1.

Now, consider the ordered adjusted p-values in F1, i.e., p̃1(1) < . . . < p̃1(n1).
The adjusted p-values in F2 are given by

p̃2j = min
k=1,...,n1

max(p̃1(k), n1p
′
2j/k), j = 1, . . . , n2.

General parallel gatekeeping procedures

It is worth emphasizing that different multiple tests, can be used at dif-
ferent stages of the algorithm introduced earlier in this section. This includes
truncated versions of all popular multiple tests introduced in Sections 2.6–2.8;
e.g., p-value-based tests and tests that account for the correlation among the
test statistics within each family (parametric and resampling multiple tests).

In addition, this parallel gatekeeping framework can be extended to pro-
cedures that account for the correlation across the families. Note that these
gatekeeping procedures are constructed using the general closure method and
may not have a stepwise form. For example, a closure-based parametric gate-
keeping procedure derived from the Dunnett test was developed in Dmitrienko
et al. (2006a). This procedure can be employed when the test statistics fol-
low a multivariate normal distribution. Examples include dose-finding clinical
trials with multiple normally distributed outcome variables, e.g., the Type II
diabetes clinical trial example used in Section 5.3.3. Further, a Bonferroni-
based resampling gatekeeping procedure was proposed in Dmitrienko, Offen
and Westfall (2003). Unlike parametric procedures, this procedure does not
make the normality assumption and can be applied to a broader class of mul-
tiple testing problems with a hierarchical structure.

5.4.3 Cardiovascular clinical trial example

The multistage parallel gatekeeping framework will be illustrated using a
clinical trial example based on the EPHESUS trial (Pitt et al., 2003). This trial
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TABLE 5.4: Two-sided p-values in the cardiovascular
clinical trial example.

Family Hypothesis Endpoint Raw p-value
Scenario 1 Scenario 2

F1 H11 P1 0.0121 0.0121
F1 H12 P2 0.0337 0.0872
F2 H21 S1 0.0084 0.0084
F2 H22 S2 0.0160 0.0160

was conducted to assess the effects of eplerenone on morbidity and mortality
in patients with severe heart failure. In this clinical trial example, we will
consider two families of endpoints:

• Two primary endpoints: all-cause mortality (Endpoint P1) and cardio-
vascular mortality plus cardiovascular hospitalization (Endpoint P2).

• Two major secondary endpoints: cardiovascular mortality (Endpoint S1)
and all-cause mortality plus all-cause hospitalization (Endpoint S2).

The family of primary endpoints serves as a parallel gatekeeper for the
family of secondary endpoints. The hypotheses of no treatment effect are de-
fined as follows: The hypotheses H11 (Endpoint P1) and H12 (Endpoint P2)
are included in F1 and the hypotheses H21 (Endpoint S1) and H22 (Endpoint
S2) are included in F2. The hypotheses are equally weighted within each fam-
ily and the pre-specified FWER is α = 0.05. Table 5.4 displays two sets of
two-sided p-values for the four endpoints that will be used in this example
(note that these p-values are used here for illustration only). Under Scenario
1, the effect size is large for both primary endpoints and, under Scenario 2,
there is evidence of treatment effect for only one primary endpoint (Endpoint
P1).

A two-stage parallel gatekeeping procedure will be set up as follows. The
hypotheses in F1 and F2 will be tested using the truncated and regular Holm
tests, respectively. The truncated Holm test is carried out using four values of
the truncation parameter (γ = 0, 0.25, 0.5 and 0.75) to evaluate the impact
of this parameter on the outcomes of the four analyses.

To illustrate the process of applying the two-stage gatekeeping procedure,
consider Scenario 1 and let γ = 0.25. The hypotheses H11 and H12 are tested
using the truncated Holm test at α1 = α = 0.05. The smaller p-value, p11 =
0.0121, is less than

[γ/2 + (1 − γ)/2]α = α/2 = 0.025

and thus H11 is rejected. Further, the larger p-value, p12 = 0.0337, is compared
to

[γ + (1 − γ)/2]α = 5α/8 = 0.03125.
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TABLE 5.5: Parallel gatekeeping procedure in the
cardiovascular clinical trial example. The tests in F1 are
carried out using the truncated Holm test with γ = 0, 0.25,
0.5 and 0.75 and the tests in F2 are carried out using the
regular Holm test. The asterisk identifies the adjusted
p-values that are significant at the two-sided 0.05 level.

Family Endpoint Adjusted p-value
γ = 0 γ = 0.25 γ = 0.5 γ = 0.75

Scenario 1
F1 P1 0.0242∗ 0.0242∗ 0.0242∗ 0.0242∗
F1 P2 0.0674 0.0539 0.0449∗ 0.0385∗
F2 S1 0.0336∗ 0.0448∗ 0.0449∗ 0.0385∗
F2 S2 0.0336∗ 0.0448∗ 0.0449∗ 0.0385∗

Scenario 2
F1 P1 0.0242∗ 0.0242∗ 0.0242∗ 0.0242∗
F1 P2 0.1744 0.1395 0.1163 0.0997
F2 S1 0.0336∗ 0.0448∗ 0.0672 0.0997
F2 S2 0.0336∗ 0.0448∗ 0.0672 0.0997

The corresponding hypothesis cannot be rejected since p12 > 0.03125. To find
the fraction of α that can be carried over to the hypotheses in F2, note that the
set of retained hypotheses in F1 includes only one hypothesis. Thus, |A1| = 1,
n = 2 and

α2 = α1 − e1(A1) = α − [γ + (1 − γ)|A1|/n]α = 3α/8 = 0.01875.

Applying the regular Holm test in F2 at α2 = 0.01875, it is easy to verify that
p21 < α2/2 and p22 < α2. This implies that the hypotheses H21 and H22 are
rejected.

The adjusted p-values produced by the two-stage gatekeeping procedure
are shown in Table 5.5. The adjusted p-values are computed using the direct-
calculation algorithm with K = 100, 000.

As we emphasized earlier in this section, the choice of the truncation pa-
rameter γ has a substantial impact on the outcomes of individual tests. It is
clear from Table 5.5 that the adjusted p-values in the primary family (F1)
are non-increasing functions of γ (note that the adjusted p-value for Endpoint
P1 is constant because the critical value of the truncated Holm test for the
smallest p-value in F1 does not actually depend on γ). However, the rela-
tionship between γ and the adjusted p-values for the secondary endpoints is
more complicated. As γ increases, the fraction of α carried over to the sec-
ondary analyses may increase or decrease depending on effect sizes for false
hypotheses and this directly influences the adjusted p-values in F2.

In Scenario 1 a small increase in γ from 0 causes an increase in the ad-
justed p-values for Endpoints S1 and S2 (compare the columns for γ = 0
and γ = 0.25). Further, when γ = 0.5, these adjusted p-values stay at the
same level and, when γ = 0.75, they drop to 0.037. This is due to the fact
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FIGURE 5.8: Significance level for Endpoint P1 (left panel), significance
level for Endpoint P2 (middle panel) and overall significance level for End-
points S1 and S2 (right panel) in Scenario 1 as a function of the truncation
parameter γ.

that both primary tests achieve significance when γ ≥ 0.5 and thus the en-
tire α is propagated to the family of secondary endpoints. To illustrate this
phenomenon, Figure 5.8 displays the individual significance levels for the two
primary endpoints and overall α level for the secondary endpoints in Scenario
1 as a function of the truncation parameter.

Figure 5.8 shows that, as was pointed out above, the significance level
for Endpoint P1 is constant, the significance level for Endpoint P2 increases
with γ, and the overall significance level for Endpoints S1 and S2 is a non-
linear function of γ with a jump discontinuity at γ = 0.3. This discontinuity
corresponds to the point when the p-value for Endpoint P2 becomes significant
and thus, by the definition of the error rate function of the truncated Holm
test, the α level for the secondary endpoints is set at 0.05. Table 5.5 and
Figure 5.8 indicate that, when the effect sizes of both primary endpoints are
large, the overall power is maximized by selecting a value of γ closer to 1.

Further, in Scenario 2 the adjusted p-values for Endpoints S1 and S2
steadily increase with γ because only one primary test is significant and, as
a result, an increasingly smaller fraction of α is carried over to the secondary
analyses. In this case, it will be desirable to choose a smaller value of the trun-
cation parameter to improve the overall probability of success for the primary
and secondary endpoints.

To summarize, the truncation parameter serves as a leverage that balances
the power functions of the primary and secondary analyses. If the effect sizes
of the primary endpoints are uniformly large, a truncation parameter near
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1 will help improve the overall power. On the other hand, if the effect sizes
are expected to vary across the endpoints, the overall power is likely to be
maximized when the truncation parameter is small or in the middle of the
(0, 1) interval. In general, an optimal value of γ can be selected via simulations
by maximizing an appropriately defined power function, e.g., the probability
of rejecting all false hypotheses or at least one false hypothesis, under realistic
assumptions about the effect sizes of individual endpoints.

5.5 Tree gatekeeping procedures

The tree gatekeeping methods serve as a unified framework that includes
serial and parallel methods as well as a combination of serial and parallel meth-
ods with logical restrictions. This framework is quite general and can be used
to address multiplicity issues in a wide variety of clinical trial applications.

5.5.1 General tree gatekeeping framework

Within the tree gatekeeping framework, gatekeepers are defined at the
hypothesis rather than family level, i.e., a hypothesis in a certain family may
be testable whereas another hypothesis in the same family may not. To give
a formal definition, consider a hypothesis in Fi, say, Hij , and define two sets
of hypotheses associated with Hij (i = 2, . . . , m, j = 1, . . . , ni). The sets are
denoted by RS

ij (serial rejection set) and RP
ij (parallel rejection set). These

sets include hypotheses from F1, . . . , Fi−1, at least one of them is non-empty
and, without loss of generality, RS

ij and RP
ij do not overlap. The hypothesis

Hij is testable if all hypotheses are rejected in RS
ij and at least one hypothesis

is rejected in RP
ij , i.e., if the following two conditions hold,

max
k,l∈RS

ij

p̃kl ≤ α and min
k,l∈RP

ij

p̃kl ≤ α.

As an example, consider the two-family problem depicted in Figure 5.9.
The first family, F1, includes three hypotheses (H11, H12, H13) and the second
one, F2, contains a single hypothesis (H21). The serial and parallel rejection
sets for H21 are defined as follows:

RS
21 = {H11} and RP

21 = {H12, H13}.
The hypothesis H21 can be tested only if there is a significant result in RS

21

and at least one significant result in RP
21.

As was mentioned above, the tree gatekeeping framework includes the
serial and parallel gatekeeping frameworks as special cases. Tree gatekeeping
procedures simplifies to serial gatekeeping procedures if RS

ij = Fi−1 and RP
ij

© 2010 by Taylor and Francis Group, LLC



Gatekeeping Procedures in Clinical Trials 187

F1 : H11 H12 H13

F2 : H21

�
���

�
�
�
�
�
�
��

�
�

�
�

�
�

��

FIGURE 5.9: Tree gatekeeping procedure in a two-family problem. A solid
line is used to define a “serial” connection and dotted lines are used for “par-
allel” connections.

is empty for all hypotheses Hij , i = 2, . . . , m, and to parallel gatekeeping
procedures if RS

ij is empty and RP
ij = Fi−1 for all hypotheses Hij , i = 2, . . . , m.

The tree gatekeeping methodology was proposed in Dmitrienko, Wiens,
Tamhane and Wang (2007) and was motivated by multiple testing problems
that arise in trials when decision trees include multiple branches and/or logical
restrictions, e.g.,

• Clinical trials with complex hierarchically ordered hypotheses, e.g., hy-
potheses associated with multiple endpoints (primary, secondary and
tertiary) and multiple test types (noninferiority and superiority), e.g.,
a hypertension clinical trial with multiple endpoints and noninferior-
ity/superiority tests (Dmitrienko et al., 2007, Section 5).

• Dose-finding studies with multiple endpoints and logical restrictions,
e.g., a Type II diabetes clinical trial with a primary and two secondary
endpoints (Dmitrienko et al., 2006a) and the metformin-rosiglitazone
combination therapy trial (Fonseca et al., 2002) that included a com-
parison of two metformin-rosiglitazone regimens to metformin on several
endpoints.

Multiple testing problems of this kind are quite complex and cannot be
handled within the more basic serial or parallel gatekeeping frameworks.

Closure-based tree gatekeeping procedures

Dmitrienko, Wiens, Tamhane and Wang (2007) developed a framework for
constructing tree gatekeeping procedures based on the Bonferroni test. Unlike
parallel gatekeeping procedures introduced in Section 5.4.2, Bonferroni tree
gatekeeping procedures do not, in general, have a straightforward stepwise
form. To define a tree gatekeeping procedure, one needs to utilize the closure
principle and use a weighted Bonferroni test for each intersection hypothesis
in the closed family associated with the m families of interest. Dmitrienko,
Wiens, Tamhane and Wang gave a general algorithm for assigning weights to
individual hypotheses that takes into account logical relationships among mul-
tiple analyses in a clinical trial. Dmitrienko, Tamhane, Liu and Wiens (2008)
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noted that Bonferroni tree gatekeeping procedures based on this algorithm
may violate the tree gatekeeping property defined above, e.g., a hypothesis in
Fi, i = 2, . . . , m, may be rejected even though some hypotheses are retained in
RS

ij or all hypotheses are retained in RP
ij . To address this problem, Dmitrienko,

Tamhane, Liu and Wiens formulated a monotonicity condition which is suf-
ficient to guarantee the tree gatekeeping property. Dmitrienko, Tamhane and
Liu (2008) and Kordzakhia et al. (2008) derived a weight assignment algo-
rithm that satisfies the monotonicity condition. This algorithm is given in the
Appendix.

Dmitrienko, Tamhane and Liu (2008) defined a general approach to defin-
ing a broad family of tree gatekeeping procedures that includes Bonferroni
tree gatekeeping procedures as a special case. This approach is based on com-
bining multiple tests across families of hypotheses and enables clinical trial
sponsors to set up powerful procedures that take into account complex log-
ical restrictions. Examples include tree gatekeeping procedures based on the
Hochberg or Dunnett tests.

5.5.2 Combination-therapy clinical trial example

To illustrate Bonferroni tree gatekeeping procedures, we will return to the
clinical trial example described in Section 5.2.3. This example involves six
hierarchically ordered null hypotheses grouped into four families.

To be consistent with the notation introduced earlier in this section, the
hypotheses and families will be defined as follows:

• Family F1 includes H11 (noninferiority hypothesis for A versus B).

• Family F2 includes H21 (superiority hypothesis for A versus B) and H22

(noninferiority hypothesis for A+B versus B).

• Family F3 includes H31 (superiority hypothesis for A+B versus B) and
H32 (noninferiority hypothesis for A+B versus A).

• Family F4 includes H41 (superiority hypothesis for A+B versus A).

Now, to account for the logical restrictions among the six hypotheses (the
restrictions are displayed in Figure 5.3), the serial rejection sets are given by

RS
21 = RS

22 = {H11},
RS

31 = RS
32 = {H22},

RS
41 = {H32}.

and the parallel rejections sets are empty.
A Bonferroni tree gatekeeping procedure based on the algorithm defined

in the Appendix will be used to control the FWER at the two-sided 0.05 level.
The adjusted p-values produced by this tree gatekeeping procedure are listed
in Table 5.6. The table shows that the very first hypothesis, H11, is rejected at
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TABLE 5.6: Bonferroni tree gatekeeping procedure
in the combination-therapy clinical trial example. The
asterisk identifies the adjusted p-values that are
significant at the two-sided 0.05 level.

Family Hypothesis Raw p-value Adjusted p-value
F1 H11 0.011 0.011∗
F2 H21 0.023 0.046∗
F2 H22 0.006 0.012∗
F3 H31 0.018 0.046∗
F3 H32 0.042 0.084
F4 H41 0.088 0.088

the two-sided 0.05 level and thus the hypotheses H21 and H22 become testable.
Both of them are also rejected and, since H22 is included in the serial rejection
sets of the hypotheses in F3, the tree gatekeeping procedure tests H31 and H32

at the next step. The adjusted p-value for H31 is significant but the adjusted
p-value for H32 is not. Since the hypothesis H41 depends on H32, the former
is retained without testing. It can be seen from Table 5.6 that the adjusted
p-value for H41 is greater than 0.05.

It is worth noting that the adjusted p-values displayed in Table 5.6 are
equal to those computed in Dmitrienko and Tamhane (2007, Table IV) even
though the latter set of adjusted p-values was obtained using another method
(the method defined in Dmitrienko, Wiens, Tamhane and Wang, 2007). The
two methods for implementing Bonferroni tree gatekeeping procedures are
based on two different algorithms but they often produce identical sets of
adjusted p-values.

5.6 Software implementation

This section describes the SAS programs that were used in this chapter to
implement serial, parallel and tree gatekeeping procedures. These programs
can be downloaded from the book’s Web site (http://www.multxpert.com).

• Serial gatekeeping procedures. Program 5.1 implements the direct-
calculation algorithm defined in Section 5.4.2 to compute adjusted p-
values for the three-branch serial gatekeeping procedure in the Type II
diabetes clinical trial example (Section 5.3.3).

• Parallel gatekeeping procedures. Program 5.2 computes adjusted p-
values for the two-stage parallel gatekeeping procedure based on the
truncated and regular Holm tests in the cardiovascular clinical trial ex-
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ample (Section 5.4.3). This program also utilizes the direct-calculation
algorithm.

• Tree gatekeeping procedures. Program 5.3 calculates adjusted p-values
for the Bonferroni tree gatekeeping procedure in the combination-
therapy clinical trial example (Section 5.5.2).
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Appendix

Error rate function of the truncated Hochberg test

To compute the error rate function of the truncated Hochberg test for
|I| > 0, note that e(I) = 1 − P (a1, . . . , ak), where k = |I|,

ai =
(

γ

k − i + 1
+

1 − γ

n

)
α, i = 1, . . . , k,

P (a1, . . . , ak) = P (U(i) > ai for all i = 1, . . . , k)

and U(1) < . . . < U(k) are the order statistics of i.i.d. observations from a
uniform (0, 1) distribution. Sen (1999) developed a recursive formula for com-
puting P (a1, . . . , ak). Using this formula, it can be shown that

P (a1) = 1 − a1,

P (a1, a2) = (1 − a2)(1 − 2a1 + a2)
P (a1, a2, a3) = (1 − a3)(1 − 3a1 + a3 − 3a2

2 + 6a1a2 − 3a1a3 + a2
3).

Weight assignment algorithm for Bonferroni tree gatekeeping
procedures

Assuming the multiple testing problem formulated in Section 5.5.1, con-
sider the closed family associated with the n null hypotheses in Families
F1, . . . , Fm. For each intersection hypothesis H , define the indicator functions
δij(H) and ξij(H) as follows. Let δij(H) = 1 if H contains Hij and 0 other-
wise, i = 1, . . . , m, j = 1, . . . , ni. Further, for i = 2, . . . , m and j = 1, . . . , ni,
let ξij(H) = 0 if H contains at least one hypothesis from RS

ij or all hypotheses
from RP

ij . Otherwise, let ξij(H) = 1. A Bonferroni tree gatekeeping procedure
is defined by specifying a weighted Bonferroni test for each intersection hy-
pothesis H . To accomplish this, it is sufficient to set up an n-dimensional
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weight vector for H denoted by vij(H), i = 1, . . . , m, j = 1, . . . , ni. The
p-value for H is given by

pH = min
i,j

pij

vij(H)
,

where pij is the p-value for Hij , i = 1, . . . , m, j = 1, . . . , ni. Note that
pij/vij(H) can be set to 1 if vij(H) = 0. Based on the closure principle,
the adjusted p-value for Hij is found by computing the maximum pH over all
intersection hypotheses containing Hij .

The weight vector for H is constructed sequentially by defining m subvec-
tors

(vi1, . . . , vini ), i = 1, . . . , m,

using the algorithm described below (it is assumed in the algorithm that
0/0 = 0).

Family F1. Let

v1j(H) = v∗1(H)w1jδ1j(H), j = 1, . . . , n1,

where v∗1(H) = 1, and let v∗2(H) denote the remaining weight, i.e.,

v∗2(H) = v∗1(H)

⎛⎝1 −
n1∑

j=1

w1jδ1j(H)

⎞⎠ .

Family Fk, k = 2, . . . , m − 1. Let

vkj(H) = v∗k(H)wkjδkj(H)ξkj(H), j = 1, . . . , nk.

The remaining weight is given by

v∗k+1(H) = v∗k(H)

⎛⎝1 −
nk∑
j=1

wkjδkj(H)

⎞⎠ .

Family Fm. Let

vmj(H) = v∗m(H)wmjδmj(H)ξmj(H)/
nm∑
l=1

wmlδml(H)ξml(H),

where j = 1, . . . , nm.
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