## **Gatekeeping Procedures**

Gatekeeping procedure is a multiple testing procedure to address:

<u>Multiplicity issues</u>: multiple endpoints, dose-control comparisons, objectives, different time points

 With <u>hierarchical structure</u> of hypotheses: hypotheses often can be grouped into families to reflect hierarchical nature

|                         | Low dose vs.               | Middle dose vs.               | High dose vs.                                                |                                     |
|-------------------------|----------------------------|-------------------------------|--------------------------------------------------------------|-------------------------------------|
|                         | PBO                        | PBO                           | PBO                                                          |                                     |
| Primary Endpoint (BRS)  | $H_1^P: \theta_1^P \leq 0$ | $H_2^P$ : $\theta_2^P \leq 0$ | $H_3^P: \theta_3^P \leq 0$                                   | <br>$F_1 = \{H_1^P, H_2^P, H_3^P\}$ |
| Secondary Endpoint (OF) | $H_1^s: \theta_1^s \leq 0$ | $H_2^s: \theta_2^s \leq 0$    | H <sub>3</sub> <sup>s</sup> : θ <sub>3</sub> <sup>s</sup> ≤0 | <br>$F_2 = \{H_1^S, H_2^S, H_3^S\}$ |

With some <u>pre-specified rules/conditions</u>:
 Rules/Conditions can be due to regulatory requirement,
 company position, or other reason



## **Gatekeeping Procedures**

Multiplicity Problems

+

Hierarchical Structure

Pre-specified Rules/Conditions



Serial
Gatekeeping
Procedures

Parallel
Gatekeeping
Procedures

Tree
Structured
Gatekeeping
Procedures

Fallback Procedures

Other methods

# Gatekeeping Procedures: Serial vs. Parallel

- Serial: Proceed to next family only if all hypotheses are rejected in gatekeeper family
  - e.g., Alzheimer's disease, 2 primary endpoints are generally required: Alzheimer's Disease Assessment Scale-Cognitive Subscale (ADAS-Cog) and Clinical Global Impression of Change (CGIC)
  - sometimes too stringent
- Parallel: Proceed to next family if at least one hypothesis is rejected in gatekeeper family

## **Analogous to Reliability Theory**

 Serial: Similar to a system with basic elements connected in series and strength of the system depends on each element



 Parallel: Similar to a system with elements connected in parallel



## Gatekeeping Procedures: Tree structured

Generalization of serial and parallel gatekeeping

 Decision-making process no longer exhibits a simple sequential structure but rather relies on a decision tree with multiple branches corresponding

to individual objectives.





## One primary endpoint

#### Depression trial

- Single primary endpoint

17-item Hamilton depression rating scale (HAMD17)

Successful outcome if the drug is superior to placebo

- Two important secondary endpoints

Response rate based on HAMD17

Remission rate based on HAMD17

#### Serial gatekeeping strategy

 Propose including the secondary findings in the product label if the primary endpoint is significant

### Serial gatekeeping strategy



#### Step 1: Primary analysis at $\alpha$ level

- No adjustment for multiplicity

# Step 2: Secondary analyses if the primary analysis yielded a significant result

- Stepwise Holm test to adjust for multiplicity within Family 2
- No adjustment for the primary endpoint (memory-less method)

## Serial gatekeeping strategy

| Endpoint                  | Raw p | Adjusted p |
|---------------------------|-------|------------|
| Primary: HAMD17           | 0.046 | 0.046      |
| Secondary: Response rate  | 0.048 | 0.048      |
| Secondary: Remission rate | 0.021 | 0.042      |

## Primary and secondary endpoints are significant at 5% level

- Justification for including the secondary endpoints in the product label

## Multiple primary endpoints

#### Clinical trial in patients with acute lung injury (ALI)

- Two primary endpoints

Number of days patients are off mechanical ventilation (vent-free days)

28-day all-cause mortality rate

Successful outcome if the drug is superior to placebo with respect to either endpoint

- Two important secondary endpoints

Number of days patients are out of ICU (ICU-free days)

Overall quality of life at the end of the study

#### Parallel gatekeeping strategy

 Propose including the secondary findings in the product label provided at least one primary endpoint is significant

## Parallel gatekeeping strategy



#### Step 1: Primary analysis at overall $\alpha$ level

- Adjustment for multiplicity within Family 1

# Step 2: Secondary analyses if at least one primary analysis yielded a significant result

 Adjustment for multiplicity within Family 2 will depend on the number of significant primary outcomes (not memory-less anymore)

### Parallel gatekeeping test

#### Closed testing principle

- Gatekeeping tests are constructed using the closed testing principle

#### Stepwise representation

- Family 1: Bonferroni test at overall  $\alpha$  level k is the number of significant outcomes
- Family 2: Stepwise Holm test

Overall significance level is  $\alpha k/2$ 

No multiplicity adjustment for the primary endpoints (memory-less method) if both primary endpoints are significant (k=2)

Penalty if only one primary endpoint is significant (k=1)

Secondary analyses are not performed if the primary endpoints are not significant (k=0)

#### ALI clinical trial: Scenario 1

#### Two significant primary variables

 Significant improvement in the mean number of ventilator-free days and 28-day all-cause mortality

| Endpoint                   | Raw p | Adjusted p |
|----------------------------|-------|------------|
| Primary: Vent-free days    | 0.024 | 0.027      |
| Primary: Mortality         | 0.003 | 0.030      |
| Secondary: ICU-free days   | 0.026 | 0.029      |
| Secondary: Quality of life | 0.002 | 0.027      |

#### All analyses are significant at 5% level

 Justification for including the secondary endpoints in the product label

#### ALI clinical trial: Scenario 2

#### Single significant primary variable

 Significant improvement in 28-day all-cause mortality but not in mean number of ventilator-free day

| Endpoint                   | Raw p | Adjusted p |
|----------------------------|-------|------------|
| Primary: Vent-free days    | 0.084 | 0.093      |
| Primary: Mortality         | 0.003 | 0.030      |
| Secondary: ICU-free days   | 0.026 | 0.093      |
| Secondary: Quality of life | 0.002 | 0.040      |

# Primary mortality analysis and secondary quality of life analysis are significant at 5% level

 Justification for including the secondary endpoints in the product label

### Dose-ranging study

#### Clinical trial in patients with hypertension

- Four doses of an experimental drug are compared to placebo
   Doses are labeled as D1, D2, D3 and D4
- Primary endpoint
   Reduction in diastolic blood pressure

#### Objectives of the study

- Find the doses with a significant reduction in diastolic blood pressure compared to placebo
- Study the shape of the dose-response curve

### Parallel gatekeeping strategy



Step 1: Compare doses D3 and D4 to placebo

Step 2: Compare doses D1 and D2 to placebo if at least one comparison at Step 1 is significant

Step 3: Pairwise dose comparisons if at least one comparison at Step 2 is significant

## Parallel gatekeeping strategy

| Comparison | Raw p  | Adjusted p       |           |           |  |
|------------|--------|------------------|-----------|-----------|--|
|            |        | Gatekeeping Holm |           | Dunnett   |  |
|            |        | procedure        | procedure | procedure |  |
| D4 vs. P   | 8000.0 | 0.0016           | 0.0055    | 0.0030    |  |
| D3 vs. P   | 0.0135 | 0.0269           | 0.0673    | 0.0459    |  |
| D2 vs. P   | 0.0197 | 0.0394           | 0.0787    | 0.0656    |  |
| D1 vs. P   | 0.7237 | 1.0000           | 1.0000    | 0.9899    |  |
| D4 vs. D1  | 0.0003 | 0.0394           | 0.0021    |           |  |
| D4 vs. D2  | 0.2779 | 1.0000           | 0.8338    |           |  |
| D3 vs. D1  | 0.0054 | 0.0394           | 0.0324    |           |  |
| D3 vs. D2  | 0.8473 | 1.0000           | 1.0000    |           |  |

Doses D2, D3 and D4 are significantly different from placebo at 5% level

#### Comments

#### Basic gatekeeping framework

- Focused on gatekeeping procedures based on Bonferroni test

#### More powerful gatekeeping tests

- Based on more powerful tests, e.g., Simes test
- Based on tests accounting for the correlation among the endpoints
   Exact parametric tests such as Dunnett test and approximate resampling-based Westfall-Young tests

#### Software implementation

 SAS macros for performing gatekeeping inferences in Analysis of Clinical Trials Using SAS (Chapter 2)