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Introduction 

 Missing Data refers to an outcome that is meaningful for analysis that was not collected, it 

may includes numeric and character data. The followings are several reasons on missing data in 

clinical trial. Patient refusal to continue, withdrawal of consent because they moved away  and 

left no contact. There is an adverse event that resulted in discontinuation of study treatment. Also, 

poor record keeping is another main reason for missing data. 

 In December 2000, 66% of 519 clinical trials published did not report how they handled 

missing data. Moreover, between July and December in 2001, 89% of in 71 trials published by 

the BMJ, JAMA, Lancet or New England Journal of Medicine had missing outcome data in their 

clinical trial experiments. It seems like most researchers do not pay attention to missing data and 

might not think it is a serious problem. According to „ICH Guidance on Efficacy Evaluations in 

Clinical Trials, Guidelines E9: Statistical Principles for Clinical Trials‟, we should avoid missing 

data if it is possible because missing data will introduce a potential source of biases in our 

experiments. A trial with missing data may be valid as long as sensible methods are used for 

dealing with missing data. However, the guideline does not recommended any applicable 

methods of handling missing data. In fact, there are many methods and procedures for handling 

missing data were introduced in these years but none of them was approved by the agency the 

any major country. 

 In this project, we will introduce three traditional and two modern methods on handling 

missing data in clinical trials. Before that, we will talk about the nature of missing of missing 

data because we need to do assumptions for the missing data during using any method or 

procedure is applied. Also, we will do a comparison on each methods with a real data set. Of 

course, the best solution to missing data in clinical trials is to set up some preventions before it 

happens. So, we will recommend some prevention at the end of our report. 

 

The nature of missing data 

 Although we cannot tell from the data on hand whether the missing observations are MCAR, 

MAR or MNAR, assumption of missingness mechanism will be made when a specific analysis 



method is being used. For example, in the case of likelihood-based estimation, the unbiased 

parameter estimates can be obtained from the observed data. The missingness mechanism is 

ignorable only if it arises from an MCAR or MAR. 

 

Missing Completely At Random (MCAR) 

Pr(r | yo, ym) = Pr(r) 

 The probability of a subject dropping out is independent of outcomes, visible or invisible, or 

any other variables in the analysis. It means the missingness does not depend on observed or 

unobserved data, or any analysis valid for the whole dataset is valid for the observed data. For 

example, participant‟s data were missing because he was stopped for a traffic violation and 

missed the data collection session. The other example is a laboratory sample is dropped, so the 

resulting observation is missing. 

 

Missing At Random (MAR) 

Pr(r | yo, ym) = Pr(r | yo)  

 The probability of a subject dropping out is conditionally independent of future (current) 

observations, given the observed data. It means the missingness depends on the observed data 

but does not depend on the unobserved data. For example, women are less likely to disclose 

weight. Therefore, the probability of missing depends on gender and does not depend of weight 

itself. We can make more realistic assumption under MAR and the estimations can be biased. 

Also, the likelihood based analyses of the outcome will be valid under MAR. For example, in the 

following table, subjects 1 and 2 have the same values where both are observed. Under the 

assumption of MAR, variables 5 and 6 from subject 2 have the same distribution (not the same 

value!) as variables 5 and 6 from subject 1 



 

 

Missing Not At Random (MNAR) 

The probability of a subject dropping out is conditionally dependent on future unseen 

observations, given the observed history. Equivalently, the future statistical behavior of subjects 

is not the same for those who drop out and those who don‟t, even if their history is identical. It 

only depends on the unobserved outcomes of the variable being analyzed. So, the pattern will not 

be random nor ignorable. For example, we are studying mental health and people who have been 

diagnosed as depressed but they are less likely than others to report their mental status. The other 

example is the overweight people are not likely to report their weight. In result, the missingness 

of weight will depends on weight only.  

 

Treatments for missing data 

Basically, we can divided the methods into two approaches, one is traditional approach and the 

other is modern approach. The traditional approach uses mainly deletion and imputation to 

handle the missing data. Because of the convenience of using software with calculation device 

like computers, more complicated statistical theory and calculation can be applied and done in a 

short period of time. Handling missing data with modern approach becomes more and more 

popular today.  

 

A. Traditional Approaches 

1. Listwise Deletion 



 This method is to omit those cases with missing data and to run our analyses on what remains. 

So, all analyses are conducted with the same number of cases at the end and we will have a 

complete case to do the analysis. For example, we are working on a clinical trial study on 

depression and we divide our patients into two groups, Group 1: Control (No drug) and Group 2: 

Treatment (with drugs). At the end of the study, we have the following data set. 

 

 By using listwise deletion method, we just simply remove the all the data from patient 3 and 

6 from the sample before performing any further analysis. 

 

 The only advantage of listwise deletion is it is easy to approach because we don‟t have to 

both any missing data and we will have all subject with the same number of cases. However, it 

will affect the statistical power because the loss of too much valuable data and reduction in the 

sample size. We may have a biased result at the end. 

 

2. Simple Imputation Method - Last Observation Carried Forward (LOCF) 

 By using LOCF method, subject‟s missing responses is equal to their last observed response 

and it is developed under Missing Completely At Random (MCAR) framework. So, we just 



impute values to the missing data from the patient‟s last observation if there is any missing data. 

This method is usually used in longitudinal (repeated measures) studies of continuous outcomes. 

Also, this is the most popular method for handling missing data nowadays. For example, in our 

clinical trial study on depression, patient 3 dropped out from the study after the baseline data was 

recorded. Patient 6 dropped out after the 1
st
 month follow up. 

 

 For patient 3, we assume the remain missing visit value will be the same his last visit record. 

i.e. we fill in the missing values for 1
st
, 3th, and 6

th
 month follow up records with his last visit 

(baseline) data value, 150. For the patient 6, we just fill in his 3th and 6
th

 month follow up 

missing data with his last observed 1
st
 month record, 104. 

 

 

3. Simple Imputation Method – Baseline Observation Carried Forward (BOCF) 

 Like LOCF,  it is developed under Missing Completely At Random (MCAR) framework and 

it is usually used in longitudinal (repeated measures) studies of continuous outcomes. But this 

time we assume a patient‟s missing responses is equal to their baseline observed response. It 

means we impute values to the missing data from the patient‟s baseline observation. For example, 



in our clinical trial study on depression, patient 3 dropped out from the study after the baseline 

data was recorded. Patient 6 dropped out after the 1
st
 month follow up. 

 

 For  patient 3, we assume the remain missing visit value will be the same his baseline record. 

i.e. we fill in the missing values for 1
st
, 3th, and 6

th
 month follow up records with his last visit 

(baseline) data value, 150. For patient 6, we just fill in his 3th and 6
th

 month follow up missing 

data with his baseline record, 362. 

 

 

 Basically, the simple imputation method (LOCF and BOCF) are really popular because it is 

easy to understand and approach. Also, it minimizes the number of the subjects who are 

eliminated from the analysis. In result, it provides conservative results with respect to active 

treatment if placebo patients drop out early because of lack of efficacy. However, patients who 

are given treatments should get better, the score for any patient should not be remain unchanged. 

In our example, we expect the score for patient 3 from the Control group will increase and the 

score for patient 6 from the Treatment group decrease. 



 

 If  simple imputation method (LOCF and BOCF) is applied, the record data will remain 

unchanged. It means there is no improvement on the treatment group and no difference between 

both groups.  

 

 So, LOCF or BOCF is not an analytic approach but a method for imputing missing values. It 

will tend to underestimates or overestimates its variance and the biased estimates of the treatment 

effects as well. 

 

B. Modern Approaches - Likelihood Base 

1. EM algorithm  

Full Information Maximum Likelihood  

 Probably the most pragmatic missing data estimation approach for structural equation 

modeling is full information maximum likelihood (FIML), which has been shown to produce 

unbiased parameter estimates and standard errors under MAR and MCAR. FIML, sometimes 

called “direct maximum likelihood,” "raw maximum likelihood" or just "ML," is currently 



available in all major SEM packages. FIML requires that data be at least MAR (i.e., either MAR 

or MCAR are ok). The process works by estimating a likelihood function for each individual 

based on the variables that are present so that all the available data are used. For example, there 

may be some variables with data for all 389 cases but some variables may have data for only 320 

of the cases. Model fit information in is derived from a summation across fit functions for 

individual cases, and, thus, model fit information is based on all 389 cases. Full Information 

Maximum Likelihood uses the Expectation-Maximization (EM) algorithm. A general approach 

to iterative computation of maximum-likelihood estimates when the observations can be viewed 

as incomplete data. Since each iteration of the algorithm consists of an expectation step followed 

by a maximization step we call it the EM algorithm. 

Maximum-likelihood 

     Recall the definition of the maximum-likelihood estimation problem. We have a density 

function p(x|θ) that is governed by the set of parameters θ (e.g., p might be a set of Gaussians 

and θ could be the means and covariances). We also have a data set of size N, supposedly drawn 

from this distribution, i.e., X = {x1… xn}. That is, we assume that these data vectors are 

independent and identically distributed (i.i.d.) with distribution p. Therefore, the resulting density 

for the samples is   

                                                   N  

                                   P(X|θ) = ∏ p(xi|θ) = L (θ|X). 

                                                  
i=1

 

     This function L (θ|X) is called the likelihood of the parameters given the data, or just the 

likelihood function. The likelihood is thought of as a function of the parameters θ where the data 

X is fixed. In the maximum likelihood problem, our goal is to find the θ that maximizes L. That 

is, we wish to find θ* where 

                                        θ*  =   argmax  L(θ|X)  

                                                         
θ
  

 Often we maximize log (L(θ|X )) instead because it is analytically easier. Depending on the 

form of p(x|θ) this problem can be easy or hard.  



     For example, if p (x|θ) is simply a single Gaussian distribution where θ = (μ,δ
2
), then we can 

set the derivative of log (L (θ|X) ) to zero, and solve directly for μ  and δ
2
(this, in fact, results in 

the standard formulas for the mean and variance of a data set). For many problems, however, it is 

not possible to find such analytical expressions, and we must resort to more elaborate techniques. 

Suppose that we had the sample data 1, 4, 7, 9 and wanted to estimate the population mean. You 

probably already know that our best estimate of the population mean is the sample mean, but 

forget that bit of knowledge for the moment. Suppose that we were willing to assume that the 

population was normally distributed, simply because this makes the argument easier. Let the 

population mean be represented by the symbol μ, although in most discussions of maximum 

likelihood we use a more generic symbol, θ, because it could stand for any parameter we wish to 

estimate. We could calculate the probability of obtaining a 1, 4, 7, and 9 for a specific value of μ. 

This would be the product p(1)*p(4)*p(7)*p(9). You would probably guess that this probability 

would be very small if the true value of μ = 10, but would be considerably higher if the true 

value of μ were 4 or 5. (In fact, it would be at its maximum for μ = 5.25.) For each different 

value of μ we could calculate p(1), etc. and thus the product. For some value of μ this product 

will be larger than for any other value of μ.  We call this the maximum likelihood estimate of μ. 

It turns out that the maximum likelihood estimator of the population mean is the sample mean, 

because we are more likely to obtain a 1, 4, 7, and 9 if μ = the sample mean than if it equals any 

other value. 

Overview of the EM Algorithm 

1.Maximum likelihood estimation is ubiquitous in statistics  

2. EM is a special case that relies on the notion of missing information. 

3. The surrogate function is created by calculating a certain conditional expectation.  

4. Convexity enters through Jensen‟s inequality. 

5. Many examples were known before the general principle was enunciated. 

 

Ingredients of the EM Algorithm 

1. The observed data y with likelihood f(y |θ ). Here θ is a parameter vector. 

2. The complete data x with likelihood g(x |θ ). 



3. The conditional expectation, Q( θ| θ
n
) = E[ln g(x | θ) | y, θ

n
] furnishes the minimizing function 

up to a constant. Here θ
n
 is the value of θ at iteration n of the EM algorithm. 

4. Calculation of Q(θ | θ
n
) constitutes the E step; maximization of Q(θ | θ

n
) with respect to θ 

constitutes the M step.  

 

Minimization Property of the EM Algorithm 

1. The proof depends on Jensen‟s inequality E[h(Z)] ≥ h[E(Z)] for a random variable Z and 

convex function h(z). 

2. If p(z) and q(z) are probability densities with respect to a measure μ, then the convexity of −ln 

z implies the information inequality  

Ep [ln p] − Ep [ln q] = Ep [−ln(q/p)] ≥ −ln Ep (q/p) = −ln∫(q/p)pdμ = 0, with equality when p = q. 

3. In the E step minimization, we apply the information inequality to the conditional densities 

p(x) = f(x | θ
n
)/g(y |θ

n
) and q(x) = f(x |θ )/g(y|θ) of the complete data x given the observed data y.  

4. The information inequality Ep [ln p] ≥ Ep [ln q] now yields 

        Q( θ | θ
n
) − ln g(y | θ) = E [ ln {f(x | θ) / g(y | θ)} | y, θ

n
] 

                ≤ E [ln {f(x | θ
n
) / g(y | θ

n
)} | y ,| θ

n
)  = Q(θ

n
 | θ

n
) − ln g(y | θ

n
),  with equality when  = n. 

5. Thus, Q( θ | θ
n
) − Q(θ

n
 | θ

n
) +ln g(y | θ

n
) minorizes ln g(y | θ). 

6. In the M step it suffices to maximize Q( θ | θ
n
) since the other two terms of the minimizing 

function do not depend on θ.  

 

 Schafer (1999) phrased the problem well when he noted "If we knew the missing values, then 

estimating the model parameters would be straightforward. Similarly, if we knew the parameters 

of the data model, then it would be possible to obtained unbiased predictions for the missing 

values." Here we are going to do both.  

     We will first estimate the parameters on the basis of the data we do have. Then we will 

estimate the missing data on the basis of those parameters. Then we will re-estimate the 

parameters based on the filled-in data, and so on. We would first take estimates of the variances, 

covariances and means, perhaps from listwise deletion. We would then use those estimates to 

solve for the regression coefficients, and then estimate missing data based on those regression 



coefficients. (For example, we would use whatever data we have to estimate the regression Ŷ = 

bX + a, and then use X to estimate Y wherever it is missing.) This is the estimation step of the 

algorithm.  

 Having filled in missing data with these estimates, we would then use the complete data 

(including estimated values) to recalculate the regression coefficients. But recall that we have 

been worried about underestimating error in choosing our estimates. The EM algorithm gets 

around this by adding a bit of error to the variances it estimates, and then uses those new 

estimates to impute data, and so on until the solution stabilizes. At that point we have maximum 

likelihood estimates of the parameters, and we can use those to make the final maximum 

likelihood estimates of the regression coefficients. 

     There are alternative maximum likelihood estimators that will be better than the ones obtained 

by the EM algorithm, but they assume that we have an underlying model (usually the 

multivariate normal distribution) for the distribution of variables with missing data. 

 

data missing; 

input x1 x2 x3 y1 y2 y3; 

datalines; 

23   .  16 15 14 16 

29 26 23 22 18 19

14 21    . 15 16 18

20 18 17 18 21 19 

25 26 22    . 21 26 

26 19 15 16 17 17 

. 17 19  4   6   7 

12 17 18 14 16   . 

25 19 22 22 20 20 

7 12 15 10 11   8 

29 24   . 14 13 16 

28 24 29 19 19 21 

12   9 10 18 19   . 

11   . 12 15 16 16 

20 14 15 24 23 16 

26 25   . 24 23 24 

20 16 19 22 21 20 

14   . 15 17 19 23 

14 20 13 24   .   . 

29 24 24 21 20 18 

26   . 26 28 26 23 

20 23 24 22 23 22 

23 24 20 23 22 18 

14    . 17    . 16 14 

28 34 27 25 21 21 

17 12 10 14 12 16 

.   1 13 14 15 14 

22 19 19 13 11 14 

18 21   . 15 18 19 

12 12 10 13 13 16 

22 14 20 20 18 19 

29 21 22 13 17   .

;

SAS Example: 

32 students take six tests. These six 

tests are indicator measures of two 

ability factors: verbal and math. 

Suppose now due to sickness or 

unexpected events, some students 

cannot take part in one of these 

tests. Now, the data test contains 

missing values at various locations, 

as indicated by the following DATA 

step:

 

 The maximum likelihood method, as implemented in PROC CALIS, deletes all observations 

with at least one missing value in the estimation. In a sense, the partially available information of 



these deleted observations is wasted. This greatly reduces the efficiency of the estimation, which 

results in higher standard error estimates.  

 To fully utilize all available information from the data set with the presence of missing 

values, you can use the full information maximum likelihood (FIML) method in PROC CALIS, 

as shown in the following statements:  

                  proc calis method=fiml data=missing;  

                   factor  

                   verbal ---> x1-x3,  

                   math ---> y1-y3;  

                   pvar verbal = 1., math = 1.;  

                   run;  

     In the PROC CALIS statement, you use METHOD=FIML to request the full-information 

maximum likelihood method. Instead of deleting observations with missing values, the full-

information maximum likelihood method uses all available information in all observations. 

Output shows some modeling information of the FIML estimation of the confirmatory 

factor model on the missing data. 

 

 

 

 PROC CALIS shows you that the number of complete observations is 16 and the number of 

incomplete observations is 16 in the data set. All these observations are included in the 

estimation. The analysis type is 'Means and Covariances' because with full information 

maximum likelihood, the sample means have to be analyzed during the estimation.  

 



Output shows the parameter estimates.

Factor Loading Matrix: Estimate / StdErr / t-value 

verbal                                        math 

x1             5.5003 

1.0025 

5.4867 

[_Parm1]                                         0 

x2             5.7134 

0.9956 

5.7385 

[_Parm2]                                       0 

x3             4.4417 

0.7669 

5.7918 

[_Parm3]                                      0 

y1                    0 4.9277 

0.6798 

7.2491 

[_Parm4] 

y2                    0 4.1215 

0.5716 

7.2100 

[_Parm5] 

y3                   0 3.3834   

0.6145 

5.5058

[_Parm6]

Factor Covariance Matrix: Estimate/StdErr/t-value 

verbal                  math 

verbal         1.0000 0.5014 

0.1473 

3.4029 

[_Add01]

math           0.5014 

0.1473 

3.4029 

[_Add01]             1.0000 

Error Variances 

Variable Parameter  Estimate     StandardError

t Value 

x1     _Add08      12.72770        4.77627        2.66478 

x2     _Add09        9.35994        4.48806        2.08552 

x3     _Add10        5.67393        2.69872        2.10246 

y1     _Add11        1.86768        1.36676        1.36650 

y2     _Add12        1.49942         0.97322       1.54067 

y3    _Add13         5.24973         1.54121        3.40623

 

 

 

2. Mixed-Effect Model Repeated Measure (MMRM) model 

 By using MMRM model method, we can use all of the data we have. Missing data are no 

explicitly imputed. It has no effect on other scores from that same patient. It applies with a 

Restricted Maximum Likelihood (REML) solution to study longitudinal (repeated measures) 

analyses under the Missing At Random (MAR) assumption. The REML is able to give an 

unbiased estimate of the covariate structure where the MLE‟s estimation is biased. Linear Mixed 

Model is defined as: Yi = Xiβ + Zibi + εi  

Y, X, and  are as in Simple Linear Model 

Zi - ni x q known design matrix for the random effects 

bi - q x 1 vector of unknown random effects parameters 

 - ni x 1 vector of unobserved random errors 

Xi - denotes fixed effects 

Zibi - denotes the random effects, was selected at random from the population of interest. 

i - denotes repeated measures effects 



b ~ Np(0, G) i.e., multivariate normal with mean vector 0 and covariance matrix G  

 ~ Np(0, R) i.e., multivariate normal with mean vector 0 and covariance matrix R (repeated 

measures structure) 

b,  are uncorrelated 

 

 For example, we are working on a clinical trial study on depression and we divide our 

patients into two groups, Group 1: Control (No drug) and Group 2: Treatment (with drugs). The 

fixed effect will be the treatment group (between-subjects factor) and the random effect will be 

time (within-subjects factor), and time*group. During the first stage, a linear regression portion 

of a model is introduced and describes a fixed portion.  The fixed segment of the model is 

applicable to every individual with varying parameters respectively. The distributions of these 

random effects constitute the second stage of the model and construct a special covariate 

structure.  Basically, our goal is to determine which covariance structure best fits the random 

variances and covariance of data.  

 

 Using SAS, we selected the best covariance structure from the results of the AIC (Akaike‟s 

information Criteria) and BIC (Schwarz‟s Bayesian Criteria). When using these measures, the 

number closest to zero is the better fit.  If SAS gives conflicting results, the simpler model is 

probably better.  In addition, we also use the F-test, but it is only approximate, and is not very 

accurate when there are a large number of missing data. Usually the unstructured (model) will be 



the best model and it approaches to the model that fits both the treatment-by-time means E [Y] = 

X β and the (co)variances Var [Y] = ZGZ‟ + R. 

 

 

 

Covariance structures: Unstructured 

 The mixed model is more efficient and reliable because it is able to implement the missing 

data. Also, it is a greater analysis of variation both within and between individuals is available.  

In addition, the study of background effects is offered. However, it is more complex for software 

analysis which is not always easy to set up. Moreover, it take times to find out which covariance 

structure best fits the random variances and covariance of data. 

 

Analysis data with different Methods 

 The way we test the efficiency of each methods is simple. We find a complete data set and 

remove some data to make an assumption some patients dropped out during the process of the 

study. For example, we are working on a clinical trial study on depression and we divide our 

patients into two groups, Group 1: Control (No drug) and Group 2: Treatment (with drugs).  
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 We assume those missing data are missing completely at random (MCAR) or  missing at 

random (MAR). Also, F-test is being used this time. 

 MMRM (AR(1)) is the best method comparing to the others  since it has the closer result to 

the original full data set. So, it. The interaction time*group: the drug treatment is having a 

differential effect on the 2 groups. 

 

 

Prevention 

 It is smart to avoid missing data in clinical trials before it happens.  For the study design, we 

should select an easily realizably endpoints and do a better adjustment on sample size. Besides, 

we should avoid complicated and messy record keeping, adopt a flexible appointment schedule, 

minimize the waiting time during appointment and select a convenient location for the 



participants. Before each follow up time, we can remind patients about appointments and follow-

up immediately after he missed an appointment. If the participant didn‟t show up, we may 

remind him by phone or home visit him. 

 

Conclusion 

 We introduced three traditional (Listwise deletion, simple imputation method – LOCF and 

BOCF), and two likelihood-base modern methods (EM algorithm and MMRM) on handling 

missing data in clinical trials. Also, we did a comparison on each methods with a real data set. 

Assumptions (MCAR, MAR or MNAR) were made for the missing data during using any 

method or procedure is applied. We found that MMRM is the best method comparing to the 

others  since it has the closer result to the original full data set under the F-test. If we have a 

chance, we should find couple more data sets to verify our conclusion under the same procedure. 

Of course, the best solution to missing data in clinical trials is to set up some preventions before 

it happens. Because missing data can lead to biased estimates of treatment differences and 

reduces the benefit provided by randomization. We should pay more attention to focus on 

preventing missing data during our clinical trial study. 
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