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Supplementary material: On improving Holm’s procedure
using pairwise dependencies

1. OTHER DISTRIBUTIONS SATISFYING ASSUMPTION 1

The following are examples of distributions other than those given in Section 4 for the under-
lying null test statistics or p-values for which Assumption 1 holds.

1. Multivariate Gamma. Let X; =Yg+ Y;,e=1,...,n,where Y;, i =0,1,...,n, are inde-
pendent with Yy ~ Gamma(ay, 5), where ag > 1, and Y ~ Gamma(a, 3) for i=1,...,n.

2. Multivariate F. Let X; = Y;/Yp, i =1,...,n, where Y;, i =0,1,...,n, are 1ndependent
with Yy ~ XEO/VO andY; ~ x2/vfori=1,...,n

3. Archimedean Copula. Let the distribution of the p-values generated from the test statistics
be assumed to be such that the pairwise joint distribution of the null p-values can be modelled by
an Archimedean copula. A bivariate copula, which is the joint cumulative distribution function of
a pair of random variables on a unit square with unform marginals, is said to be Archimedean if
it can be expressed by C'(u,v) = ¢~ H{o(u) + ¢(v)}, 0 < u,v < 1, for some convex decreasing
function ¢, called generator, satisfying ¢(1) = 0, with the convention ¢~ *(u) = 0 if u > ¢(0).
The following are some well-known systems of bivariate distributions belonging to this class:

(a) Clayton copula: Cp(u,v) = {max(u=f+v=0—1, 0)}71/9, 6 € [-1,00) \ {0}.
1/0
(b) Gumbel copula: Cyp(u,v) = exp [— {(— log u)? + (—log v)e} } 0 € [1,00).

(c) Frank copula: Cy(u,v) = —log [1 + {exp(—0u) — 1} {exp(—0v) — 1} /{exp(—0) — 1}] /6,

0 € (—o0,0) \ {0}.
(d) Joe copula: Cy(u,v) =1 —{(1—u)? + (1 —v)! = (1 —w)f(1-0)?}"", 0€][l,00).
(e) Ali-Mikhail-Haq copula: Cy(u,v) = uwv/{1 —6(1 —u)(1 —v)}, 6 €[-1,1).

The following three lemmas prove the desired convexity property for all of the above distribu-
tions. While we prove the property for multivariate Gamma and F' by establishing it for certain
general families of location- and scale-mixture distributions in Lemmas 1 and 2, respectively, we
do it individually for each of the Archimedean copulas in Lemma 3.

Proofs of Lemmas 1 and 2 rely on the following important result: Let X be a random variable
with the density, f(x,#), at x depending on parameter 6. Then, the expectation of an increasing

function of X is increasing in 6 if f(x,0) is totally positive of order two in (x,6); that is,
f(x,0)f(2',0") > f(2',0)f(x,0) forall z < 2/,0 < ¢ (Karlin, 1968).

1/6

LEMMA 1. Let the random variables X1, ..., X, be such that, given Y =y, they are inde-
pendent and identically distributed with a common density ¢1(x — y) and 'Y ~ ¢2(y), for some
densities ¢1 and ¢a. Then, Property 1 holds for X1, ..., Xy, if ¢p2(x — y) is totally positive of
order two in (x,y).

Proof. We prove the lemma only for the pair (X1, X2) without any loss of generality. Let

Oy(z—y) =pr(X; < z|Y =y), and f(z) = [ d1(z — y)2(y)dy = [ d1(y)2(z — y)dy be
the common density of X, fori =1, 2. Then we have
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pr(Xi < | Xp =) = {f()} " / B1(z — )1 (z — y)da(y)dy
={f(x)}! /‘I’l(y)cbl(y)@(x —y)dy
- / B4 (y)6* (1, 2)dy,

where ¢*(y, ) = ¢1(y)p2(x — y)/f(x). Since the density ¢*(y, z), with z treated as parame-
ter, is totally positive of order two in (y,x) and ®4(y) is increasing in y, the above integral is
increasing in x. This proves the lemma. O

Remark 1. Multivariate Gamma belongs to the family of distributions considered in Lemma 1.
It is easy to see that here the density of Yy at y, say ¢2(y), is such that ¢o(z — y) is totally positive
of order two in (x,y). Hence, these X;’s that jointly have a multivariate gamma distribution
satisfy Property 1.

LEMMA 2. Let the positive valued random variables X1, ..., X, be such that, given Y =y,
where Y is also positive valued, they are independent and identically distributed with a common
density yi1(yx) and Y ~ 1o(y), for some densities 11 and 1)o. Then, Property 1 holds for
X1,...,Xpn if a(z/y) is totally positive of order two in (x,y).

Proof. As in Lemma 1, we prove the lemma only for the pair (X7, X5). Let pr(X; < z|Y =

y) = Vi(yx), and f(z) = [y1(yz)2(y)dy = =2 [ yv1(y)ih2(y/x)dy be the common den-
sity of X, fort =1, 2.

pr(X) < 2| Xo = ) = {f(2)} " / s (y) s (v () dy
— {(f@)} / () (v) o/ ) dy
_ / W () (3, 2)dy,

where *(y, x) = = 2y1(y)b2(y/x)/ f (). Since the density 1*(y, x), with z treated as pa-
rameter, is totally positive of order two in (y, z) and W (y) is increasing in y, the above integral
is increasing in x. This proves the lemma. O

Remark 2. Multivariate I belongs to the so-called scale mixture family of distributions con-
sidered in Lemma 2. It is easy to see that the density of 2 aty, say ¥(y), is such that 2 (y/z)
is totally positive of order two in (y,x). Hence, these X;’s that jointly have a multivariate F'
distribution satisfy Property 1.

LEMMA 3. The Archimedean copulas listed above satisfy Property 1.

Proof. The lemma will be proved by showing that Hj(u), the derivative of Hg(u) = Cy(u, u)
with respect to u, is non-decreasing in u € (0, 1), and thus proving the desired convexity result,
for each of these copulas.

(a). Clayton copula: Hg(u) = (2u=? — 1)"Y?if 2u=¢ > 1; otherwise =0, 6 € [—1,00) \

Ug

For this copula, Hj(u) = 2/{(2u~% — 1)1/0+14,9+1} which is non-decreasing in u € (0, 1),
since the denominator term has the following derivative, —(1 + 0)(2u=% — 1)1/ 949, which is



<0, foru e (0,1).

(b). Gumbel copula: Hy(u) = exp[—{2(—Inu)?}1/0] = u2"/*, 6 > 1.
Here, Hy(u) = 21/042"°=1 which is clearly non-decreasing in u € (0,1).

(c). Frank copula: Hy(u) = —0~'log [{exp(—ub) — 1}?/{exp(—0) — 1} + 1], 0 €
(—00,00) \ {0}

For this copula,

Hi ) = 2 exp(—26u) — 2 exp(—06u)
exp(—20u) — 2 exp(—0Qu) + exp(—6)
1
- exp(—20u)—exp(—0) \
1= (%) {expp((—29u))—exprz(—9u)) }

It is easy to check that the term {exp(—260u) — exp(—0)}/{exp(—20u) — exp(—0u)} is
non-decreasing in u € (0, 1), and so is H)(u).

(d). Joe copula: Hp(u) =1 — {2(1 —u)? — (1 —u)?}1/% 0 > 1.

For this copula, Hj(u) =2{2— (1 —uw)?}/9{(1 —u)? —1}/{(1 —u)? — 2}, which
is non-decreasing in w € (0,1), since both of the terms {2 — (1 —u)?}'/? and
{(1 —u)? —1}/{(1 — u)? — 2} are so and are non-negative.

(e). Ali-Mikhail-Haq copula: Hy(u) = u?/{1 — 0(1 — u)?}, 0 € [-1,1).

For this copula, Hy(u)=2u{l—60(1 —u)}/{1—0(1 —u)?}*. Let Go(u) = Hy(1 — u).
Then, we note that Gj(u) = 2yp(u)/{(1 — 6u?)®}, where yp(u) = —1 — 6 + 60u — 30u? —
36%u® + 20%u3. Since yj(u) = 60(1 — u)(1 — Ou), we see the following:

Case 1: @ > 0. The function yg(u) is non-decreasing in u € (0, 1), and so takes the maximum
value at u = 1, which is —(1 — )2 < 0, implying that yg(u) < 0 on (0, 1).

Case 2: 6 < 0. The function yg(u) is monotonically decreasing in u € (0, 1), and takes the
maximum value at v = 0, which is —(1 4+ ) < 0, implying that y4(u) < 0 on (0, 1).

Thus, Gp(u) is non-increasing, and hence Hy(u) is non-decreasing, in u € (0, 1). O

2. ADDITIONAL SIMULATION RESULTS

Figure 1 extends the same figure presented in the main text from n = 16 to n = 100, but
focusing on the comparison between our proposed Method 1 and that of Seneta and Chen. As
seen from this figure, the improvement of Method 1 over Seneta and Chen’s when n = 100 is
comparable to that when n = 16.

Figure 2 presents simulation results for the case of n = 20 for a moderately large p = 0.70.
As seen here, the proposed Method 1 offers a small but noticeable power improvement over
Seneta and Chen’s, and its improvement over Hochberg’s is significant. Although Method 1 is
marginally improved by our Method 2 for this p, we have noticed, but not reported here, some
improvement for larger p.

Figure 3 presents the percentage change in the average power of Method 1 over Seneta and
Chen’s. It is seen that the magnitude of improvement is comparable across different n’s.
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Fig. 1. Comparison Seneta and Chen (dotted) and the proposed Method 1 (dashed) when n = 100.
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Fig. 2. Comparison of four methods, Hochberg (dotted), Seneta and Chen (dashed), proposed Method 1 (dot-
dash), and proposed Method 2 (solid), when n = 20.

3. ESTIMATING H AND CHECKING ITS CONVEXITY FROM DATA

To illustrate how to implement the proposed procedures in practice without making any dis-
1o tributional assumptions allowing one to have a known form for G or H with the concavity or
convexity condition, we considered analyzing a commonly used gene expression data from the
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Fig. 3. Improvement of the proposed Method 1 over Seneta and Chen’s under a mixture configuration of true
and false null hypotheses. Specifically, 20% of the nulls are true, with mean of 0, and 80% of the false nulls
are equally spread out into the four different values for the alternative mean — 0.5, 1.0, 1.5, and 2.0.

leukemia microarray study of Golub et al. (1999). The data consist of 3051 gene expression lev-
els across 38 tumor mRNA samples, of which 27 are of acute lymphoblastic leukemia and 11 are
of acute myeloid leukemia. The data were log-transformed and normalized.

The goal of the study is to determine which genes are differentially expressed by testing Hy; :
W1 = M2 against H(’)l- : p1i # po; simultaneously for ¢ = 1,...,3051, where pq; and po; are
the gene specific mean expressions respectively for the acute lymphoblastic leukemia type and
the acute myeloid leukemia type. For ease of illustration, we considered using a subset of data
containing the first n = 20 gene expression levels.

We shall use two-sample ¢-test statistics for testing the 20 hypotheses and generating the cor-
responding p-values, F;,7 = 1,...,20. While applying our proposed procedures to the above
p-values, we assume that the true null p-values are exchangeable; that is, we use Procedures 1
and 2 whose critical values are given in (2) and (5) respectively. To determine the critical values
of Procedure 1, we need only to estimate the values of H{«/(n — i+ 1)}; whereas for Proce-
dure 2, we need to estimate as well the values of h{a/(n —i+ 1)}, fori =1,...,n = 20.

In the two-group experimental setting, we used the permutation approach described in Dudoit
and van der Laan (2008, §2) to generate the distribution of the true null p-values. We consid-
ered generating B = 100, 000 permutations between the two groups that correspond to the two
leukemia types. For each permutated data, we used the two-sample ¢-test to calculate the corre-

sponding p-value Pi(b)

for each gene, wheret = 1,...,n=20and b= 1, ..., B. Then, for each
(b)
. J

P,gb) = max(Pi(b), Pj(b)), where k =1,..., N and N = n(n — 1)/2. Based on these calculated

values, ﬁlgb), =1,...,Nand b=1,..., B, we computed its empirical distribution H , an esti-

pair of p-values, (Pi(b), ), where 1 < i < j < n = 20, we calculated their maximum value,

mate of H. Also, we derived an estimate hof h using the R function density. Thus, we obtained
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Table 1. Estimated values of H and h and the calculated critical values in the order of Holm’s
procedure, Procedures I and 2 for n = 20 and o = 0.05.

i | H{a/(n—i+1)} hla/(n—i+1)} | a/(n—i+1) Qi af

1 0.0000069 0.0090777 0.0025000 0.0025066  0.0025066
2 0.0000078 0.0092484 0.0026316 0.0026390 0.0026390
3 0.0000085 0.0094381 0.0027778 0.0027859 0.0027859
4 0.0000096 0.0096500 0.0029412 0.0029503  0.0029503
5 0.0000112 0.0098885 0.0031250 0.0031355 0.0031356
6 0.0000125 0.0101588 0.0033333 0.0033450 0.0033451
7 0.0000144 0.0104677 0.0035714 0.0035849  0.0035850
8 0.0000169 0.0108241 0.0038462 0.0038618 0.0038619
9 0.0000192 0.0112399 0.0041667 0.0041843 0.0041844
10 0.0000225 0.0117863 0.0045455 0.0045660 0.0045661
11 0.0000275 0.0124501 0.0050000 0.0050249 0.0050251
12 0.0000342 0.0132615 0.0055556 0.0055861 0.0055863
13 0.0000429 0.0142756 0.0062500 0.0062878  0.0062880
14 0.0000555 0.0156962 0.0071429 0.0071908 0.0071911
15 0.0000741 0.0175943 0.0083333 0.0083955  0.0083960
16 0.0001061 0.0204084 0.0100000 0.0100856 0.0100863
17 0.0001611 0.0247778 0.0125000 0.0126220 0.0126231
18 0.0002785 0.0322859 0.0166667 0.0168544 0.0168564
19 0.0006144 0.0474240 0.0250000 0.0253110 0.0253146
20 0.0023727 0.0942955 0.0500000 0.0500000  0.0500000

the estimated values of both H{a/(n —i+ 1)} and h{a/(n —i+ 1)} fori=1,...,n, and
computed the critical values of Procedures 1 and 2, which are presented in Table 1.

We then generated the plots of H and h, and graphically checked whether H is convex and h
is increasing in v on an interval (0, o), with g > . As seen from Figure 4, H is indeed convex
on (0,1) and R is increasing on (0,0.9). Thus, the desired conditions for H and h are satisfied in
this real data example.

The above example illustrates how the distribution function H and the density function h of
the pairwise maxima of null p-values can be estimated from data by an appropriate resampling
method, and doing so, the assumptions pertaining to H and /h can be checked graphically.
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Fig. 4. Estimates of H and h



