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A model of graphite which is easy to comprehend and simple to implement for the simulation of scanning tunneling
microscopy (STM) images is described. This model simulates the atomic density of graphite layers, which in turn correlates
with the local density of states. The mechanism and construction of such a model is explained with all the necessary details
which have not been explicitly reported before. This model is applied to the investigation of rippling fringes which have been
experimentally observed on a superlattice, and it is found that the rippling fringes are not related to the superlattice itself. A
superlattice with abnormal topmost layers interaction is simulated, and the result affirms the validity of the moiré rotation
pattern assumption. The ‘‘odd-even’’ transition along the atomic rows of a superlattice is simulated, and the simulation result
shows that when there is more than one rotated layer at the top, the ‘‘odd-even’’ transition will not be manifest.
[DOI: 10.1143/JJAP.44.5365]
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1. Introduction

Scanning probe microscopy investigations have exten-
sively used graphite as a substrate due to its chemical
inertness and ease of cleaving. The atomically flat surface of
graphite has provided an ideal platform for surface scientists
to deposit various kinds of materials of interest for imaging
and examining. The natural graphite surface is worthy of
further understanding as it contains a variety of defects,1)

among which superlattice structures have been observed a
number of times, whose origin is not yet completely
understood.2)

A superlattice is a hexagonal lattice structure with
triangular symmetry, with its periodicity usually several to
tens of nanometers and its corrugation around several
angstroms to a nanometer. Kuwabara et al. has proposed
the moiré rotation pattern assumption to explain the origin of
superlattices, and eq. (1) relates the periodicity P of a
superlattice to its rotation angle � between two graphite
layers

P ¼
d

2 sinð�=2Þ
; ð1Þ

where d is the atomic lattice constant.3) Kobayashi has
suggested another mechanism that nanoscale features a few
layers underneath the surface can propagate through many
layers without decay to explain superlattice formation.4)

Although there is still no clear conclusion on the origin of
superlattices, the moiré rotation pattern should have a role in
the formation of superlattices since Rong et al.5) and Xhie et
al.2) have shown that the moiré pattern equation [eq. (1)] can
properly describe the experimental results of the periodicity
of the superlattice and the rotation angle by directly imaging
the related atomic lattice vectors with the STM. Therefore, it
is of paramount importance to investigate the origin of
superlattices from the moiré rotation pattern assumption
point of view.

In order to achieve this, a simulation model of a moiré
rotation-induced superlattice would be indispensable since a
superlattice cannot be experimentally prepared beforehand,

as it happens randomly. Without a simulation model, it
would be difficult to amass data for analysis. Having been
applied first in molecular dynamic simulations,6) this model
has been used to study superlattices a number of times.7–9)

2. Simulation Model

The model is based on a formula which describes a
continuous hexagonal lattice similar to the atomic lattice of
graphite.6,7) This formula has appeared in refs. 6–8, how-
ever, explanation and description on its formation was not
reported before. Here we describe all the necessary details of
the mechanism and construction of this model and the way
we simulate the relative shift between the alternating layers.
The atomic density of a layer n, �n, at a position (x, y) is:

�n ¼ 1�
2
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In eq. (2), there are three key cosine components with their
directions described by the vectors A, B, and C in Fig. 1,

Fig. 1. Vectors A, B, C represent the directions of the three key cosine

components in eq. (2). They point to three different directions which are

120� separated from each other, and their functions describe the

hexagonal lattice. Vectors X, Y are the unit vectors, with which the

vectors A, B, C can be formed as in eqs. (3)–(5). The atomic density

variation along directions A, B, C is approximately sinusoidal, which can

be simulated by the cosine functions in eq. (2).�Corresponding author. E-mail address: cd229@eng.cam.ac.uk
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and they correspond to the three vectors describing the
hexagonal lattice and pointing to three different directions
which are 120� separated from each other. Vectors X and Y
(see Fig. 1) are unit vectors directed to the X and Y

directions, and they are the component vectors for vectors A,
B, and C [eqs. (3)–(5)].

~AA ¼ ~XX þ tan 30� � ~YY ¼ ~XX þ
~YYffiffiffi
3

p ð3Þ

~BB ¼ � ~XX þ tan 30� � ~YY ¼ � ~XX þ
~YYffiffiffi
3

p ð4Þ

~CC ¼ �

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
12 þ

1ffiffiffi
3

p
� �2

s
� ~YY ¼

2ffiffiffi
3

p ~YY ð5Þ

Starting from the beginning of the vectors and propagating
along the vector directions, the varying atomic density can
be approximately simulated by a cosine function with a
period of 2.46 �A. The offset of 3/2 at the end inside the
bracket is to shift the whole function above zero value while
the 2/9 at the front of the square bracket is for normalizing
the bracket function. The operation of ‘‘1-’’ at the very front
is to make such a function in phase with the actual atomic
density variation. To build up a layered structure of graphite,
more than one layer needs to be modeled. However, bear in
mind that there is a relative shift between the alternating
layers (see Fig. 2). This can be taken care of by modifying
x; y in eqs. (6) and (7) so that the centre is shifted from C1 to
C2. In regard to the rotation of graphite layers which will
happen in a superlattice, eqs. (8) and (9) integrate the
rotation angle into the model by rotating the coordinates
with an angle �.

x0 ¼ xþ�x ¼ xþ 1:42� cos 30� ð6Þ
y0 ¼ yþ�y ¼ yþ 1:42� sin 30� ð7Þ
x00 ¼ x0 cos � � y0 sin � ð8Þ
y00 ¼ x0 sin � þ y0 cos � ð9Þ

3. Applications to Superlattices

A superlattice structure on graphite can be simulated with
this model for various kinds of investigations. First of all, we

show that by using this model, the atomic lattice and
superlattice structures of graphite can be simulated as
observed under the STM. Then, we apply it to the
investigations of the rippling fringes of the superlattice
which we observed on graphite. One of the unusual aspects
of superperiodic features on graphite proposed by Cee et al.7)

is compared with our corresponding simulation results. The
‘‘odd-even’’ transition along the atomic rows of the graphite
atomic lattice on which a superlattice is superimposed, is
simulated and investigated to observe how this transition
phenomenon evolves as the periodicity of the superlattice
changes.11)

3.1 Modeling of superlattice structure
A superlattice can be modeled as two graphite layers with

a rotation angle between them. Simulations of STM images
generally entail including the effect of a third layer under-
neath the first two. There is a different weighting for each
layer depending on the contribution of each layer to the
overall structure. In normal cases, 1, 0.5, and 0.125 (normal
weightings) are used for the 1st, 2nd, and 3rd layers
respectively to reflect the assumption that the influence of a
layer should decay with its depth from the surface.8) By
adding the atomic density contribution of each layer
together, an STM image can be simulated with the intensity,
I, at a point (x; y) as:

Iðx; yÞ ¼ �1ðx; yÞ �W2�2ðx; yÞ þW3�3ðx; yÞ; ð10Þ

where �n is the atomic density of layer n, andW2 andW3 are
the weightings representing the relative contribution of the
2nd and 3rd layers. Figures 3(a) and 3(b) are the 20 nm�
20 nm superlattice area simulated with a rotation angle of 1st
layer of 2.5�, W2 ¼ 0:5 and W3 ¼ 0:125. The three-fold
symmetry of a superlattice is shown as observed under the
STM.

3.2 Rippling fringes on superlattice
We have observed rippling fringes on a HOPG super-

lattice in our STM experiments. Those rippling fringes in the
central part of Fig. 4(a) on the superlattice are of periodicity
around 30 nm and corrugation 0.15 nm. In order to study
whether the rippling fringes are related to the superlattice, a
400 nm� 400 nm superlattice area, which resembles the one
in Fig. 4(a) where the rippling fringes appear, is simulated
with the normal weightings and with a rotation angle of
2.56� [Fig. 4(b)]. The simulated area is flat with the
superlattice structure but without any large-scale features
which can be associated with those rippling fringes in
Fig. 4(a). We have performed the simulations with transla-
tional dislocations, and still we cannot observe any kind of
fringes existing in the simulation result. Therefore the
rippling fringes on the graphite are not due to an electronic
effect of the superlattice and they are not part of the
superlattice itself. One possible explanation for those
rippling fringes is the physical buckling of the surface due
to the intralayer strain. We believe this arises because the
graphene sheet is bounded on three sides (laterally) by
graphene sheets at different orientations, and also this sheet
is rotated with respect to the substrate. This large degree of
mismatch causes strain which can be relieved in the layer by
buckling.

Fig. 2. The relative shift between alternating graphite layers is as shown.

The centre of the 2nd layer C2 is displaced from the centre of the 1st layer

C1 by a distance of 1.42 �A with the displacement of �x along X direction

and �y along Y direction. The angle 30� is found by simple geometry

from the hexagonal lattice structure. With the x and y coordinates

modified by �x and �y as in eqs. (6)–(7), the shift can be integrated into

the model.
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3.3 Investigation on the unusual aspect of superlattice
proposed by Cee et al.7)

Cee et al. have simulated a superlattice, and reported that
by using the exaggerated weightings of W2 ¼ 0:125 and
W3 ¼ 0:25 which are counterintuitive in the respect of the
moiré rotation pattern, a better contrast and three-fold
symmetry can be obtained on the simulated superlattice. We
have performed the same simulation with these weightings
and the same rotation angle of 5� but we obtain different
results. The difference in contrast in the simulated super-
lattice between using the normal weightings (W2 ¼ 0:5 and
W3 ¼ 0:125) [Fig. 5(c)] and the exaggerated weightings
(W2 ¼ 0:125 and W3 ¼ 0:25) [Fig. 5(d)] is not very signifi-
cant. Cee et al. did not specify in their paper how they
simulated the relative shift between alternating graphite
layers which may be the reason for the difference between
their results and ours. That is why we make the details of the
simulation model explicit in §2 which were not clearly
explained in the literature before, so that other workers can
compare their results with ours. Also the difference in
contrast would be more appropriately shown when the
simulation results are displayed in 3D with the same
absolute vertical scale. We found that the atomic lattice of
the superlattice generated with the exaggerated weightings
[Fig. 5(b)] does not have as obvious three-fold symmetry as
that generated with the normal weightings [Fig. 5(a)], and

indeed, it is difficult to observe the three-fold symmetry in
Fig. 5(b). This is expected because the three-fold symmetry
of the atomic lattice arises from the � and � sites on a
graphite surface which in turn are due to the subtraction of
the electronic density of states of the second graphite layer
from the first; by using the exaggerated weightings of W2 ¼
0:125 (instead of 0.5 for normal weightings), the effect of the
subtraction is significantly diminished. Therefore, our
simulation results show that the normal weightings which
are consistent with the moiré rotation pattern assumption can
generate a more physically realistic graphite atomic lattice
and superlattice structures. The validity of the moiré rotation
pattern assumption is asserted by our simulation model in
this case.

3.4 ‘‘Odd-even’’ transition along atomic rows
It has been observed that when a superlattice structure is

superimposed onto the underlying atomic lattice, the ‘‘odd-
even’’ transition, which is a shift along an atomic row, will
be manifested on the graphite surface (Fig. 12 in ref. 10).
Osing et al. have proposed that such a transition will only
occur if there is only one single layer rotated, thus it can be
used as a criterion for determining whether the number of
rotated layers is more than one.11) Osing’s proposal has been
proved by our simulation results [Fig. 6(a)] which show that
when there are two rotated layers, the ‘‘odd-even’’ transition
will not be manifested, whereas the transition phenomenon
will be obvious if there is only one rotated layer [Fig. 6(b)].

(a) 

(b) 

Fig. 4. Simulation of the rippling fringes on the superlattice of graphite.

(a) The STM image of 700 nm� 500 nm (It ¼ 0:36 nA, Vs ¼ 450mV) on

graphite wherein we can observe the rippling fringes with periodicity of

around 30 nm and corrugation 0.15 nm on the superlattice with a rotation

angle of around 2.56� (periodicity 5.51 nm). (b) A superlattice with

similar size and rotation angle is simulated with the normal weightings.

However, there are no comparable rippling fringes in the simulation

result.

(a) 

(b) 

Fig. 3. (a) The 2-dimensional image of the 20 nm� 20 nm superlattice

with a rotation angle of 2.5� (periodicity 5.64 nm) is simulated with

W2 ¼ 0:5 and W3 ¼ 0:125. The bright area is higher than the dark area.

(b) 3D image of the 20 nm� 20 nm superlattice in Fig. 3(a). The three-

fold symmetry is obvious in Fig. 3(b) where the height difference

between alternating peaks is discernible.
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(a)

(b)

(c)

(d)

Fig. 5. Comparisons between the normal weightings and exaggerated

weightings. (a) 1 nm2 superlattice area simulated with the normal

weightings. (b) 1 nm2 superlattice area simulated with the exaggerated

weightings. (c) 10 nm2 superlattice area simulated with the normal

weightings. (d) 10 nm2 superlattice area simulated with the exaggerated

weightings. All rotation angles are 5� (periodicity 2.82 nm). The three-

fold symmetry of the atomic lattice is more distinct in Fig. 5(a) than in

Fig. 5(b). The contrast in height is higher in Fig. 5(c) than in Fig. 5(d).

(a) 

(b) 

(c) 

(d) 

Fig. 6. ‘‘Odd-even’’ transition phenomenon on superlattice. (a) 5 nm2

superlattice area with 1st and 2nd layers rotated by 10� relative to 3rd

layer and periodicity of 1.41 nm. (b) 5 nm2 superlattice area with 1st layer

rotated by 10� relative to 2nd and 3rd layers and periodicity of 1.41 nm.

(c) 5 nm2 superlattice area with 1st layer rotated by 5� relative to 2nd and

3rd layers and periodicity of 2.82 nm. (d) 10 nm2 superlattice area with

1st layer rotated by 2.5� relative to 2nd and 3rd layer and periodicity of

5.64 nm. All images are simulated with the normal weightings of

W2 ¼ 0:5 and W3 ¼ 0:125. Osing’s proposal of the ‘‘odd-even’’ transition
is proven by the simulation results shown in Fig. 6(a) and Fig. 6(b) where

only Fig. 6(b) shows the transition. As the periodicity increases from

Fig. 6(b) to Fig. 6(d), the transition phenomenon gets smeared out over

distance.
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We have investigated the influence of the periodicity of a
superlattice on its ‘‘odd-even’’ transition phenomenon. From
our simulation results, it is found that as the periodicity of
the superlattice increases, the transition will be less
significant due to the fact that the transition occurs over a
longer distance and thus gets smeared out [see Figs. 6(b)–
6(d)]. In the STM scanning, as the scanning size increases,
the effect of thermal drift is likely to have a role in the
images, and therefore, it would be difficult to decide, if the
transition exists, whether it is due to the single layer rotation
or thermal drift, especially, when the scan size is more than,
for example, 10 nm.

4. Conclusion

Here we describe a model for graphite layers and its
applications in investigating superlattice structures as have
been observed by numerous STM experiments. This model
is shown to be a powerful tool for analyzing various kinds of
superlattice phenomena, which is important for the research
of superlattice whose origin is yet not totally understood.
Our simulations show different results from those of ref. 7,
however they are consistent with the moiré rotation pattern
assumption. The ‘‘odd-even’’ transition phenomenon and the
theory by Osing et al. are shown and proven in this work.

Our simulation works on superlattices with zigzag shaped
boundary,12) a screw dislocation,9) and a gradual change of
periodicity will be reported later.
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