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Abstract
The intrinsic magnetic low-frequency noise (LFN) is of fundamental scientific interest to the
study of magnetic tunnel junctions (MTJs). To gain insight into its mechanism, the
fluctuation-dissipation theorem, which describes the linear relation between magnetic LFN
and magnetic sensitivity product, has been utilized. However, deviation from the linear
correlation has been reported in some studies. To understand and effectively control the
magnetic LFN, a more elaborate analytical description and further experimental validation are
required. In this work, the magnetic LFN contributed from the magnetization fluctuation in the
pinned layer of MTJs with various shape anisotropies was investigated. The MTJs with
different shape anisotropies, achieved by altering their aspect ratios, possessed distinct
demagnetizing factors. Large magnetic noise was correlated with the increase of magnetic
phase loss of ferromagnetic layers during magnetization reversal at which magnetization
fluctuation was enhanced. Upon increasing the shape anisotropy, a notable reduction of the
magnetic phase loss in the antiparallel (AP) state was observed while it exhibited a slight
decrease in the parallel (P) state, revealing that the increase of the shape anisotropy caused a
more pronounced suppression of the equilibrium magnetization fluctuation in the AP state.
These phenomena were computationally validated by constructing a macrospin model to
describe the thermally-induced magnetization fluctuation in the pinned layer. This work
reveals the physical relation between MTJ shape anisotropy and magnetic LFN. The effect of
the shape anisotropy on the magnetic LFN can be extended to other types of in-plane uniaxial
anisotropies.
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Nomenclature

αmag Hooge parameter
AP antiparallel
εmag magnetic phase loss
FDT fluctuation-dissipation theorem
Hsa shape anisotropy
LFN low-frequency noise
MSP magnetic sensitivity product
MRTN magnetic random telegraph noise
MTJs magnetic tunnel junctions
P parallel
RevP reversed parallel
TMR tunnel magnetoresistance

1. Introduction

Magnetic tunnel junctions (MTJs) have drawn attention in
many applications such as magnetic random-access memories
and magnetic field sensors owing to their sensitive response
to external excitations [1–8]. One of the major limitations for
the performance of MTJ-based devices is their relatively high
intrinsic noise [7, 9–11]. Particularly at low frequency, the
intrinsic magnetic low-frequency noise (LFN) has a large mag-
nitude in the antiparallel (AP) state and during the magnetic
reversal process of magnetic layers [10–14]. To understand
and effectively control the magnetic LFN, both theoretical and
experimental works have been carried out [11, 15–20]. The
LNF of MTJs could be reduced by engaging magnetic flux
concentrators [21, 22], voltage bias [23], and magnetic shield-
ing [24], or by modifying the magnetic materials [20], under-
layer structure [25] and MTJ shapes [26]. However, while
these strategies were proved to be effective for noise reduction,
the origin of magnetic noise remains not well understood. Fur-
ther research is required to explore for the intrinsic properties
of magnetic noise in MTJs.

In MTJs, the magnetization fluctuation in ferromagnetic
layers can induce resistance changes, which is manifested as
voltage noise when MTJs are current-biased [27]. Using the
fluctuation-dissipation theorem (FDT), the magnetic LFN can
be related to the magnetic sensitivity product (MSP) of the
MTJ and the magnetic phase loss (dissipation) of the corre-
sponding magnetic layer [18, 28, 29]. Usually, the magnetic
LFN is linearly proportional to the MSP in thermal equilib-
rium, giving rise to the field-independent magnetic phase loss
[26, 30]. However, the deviation from the linear behaviour
between the MSP and magnetic LFN has been reported in the
literature as well [11, 18, 27]. This discrepancy lies in two

major causes: (1) the involvement of the magnetic random
telegraph noise (MRTN) that introduces extra magnetic noise
[10, 11, 31, 32], (2) the presence of magnetic inhomogeneities
(e.g., magnetic ripples and disorders) that lead to discrete mag-
netization jumps [18, 27, 32]. Although experiments show the
magnetic LFN is correlated with the magnetic phase loss, a
more complete analytical description and further experimen-
tal validation are lacking. Besides, the magnetic noise power
spectra of an MTJ is a superposition of noise from the uncor-
related fluctuation of both the free layer and the pinned layer
[33]. The contribution of the pinned-layer fluctuation is even
more pronounced in the AP state [11, 34]. While most of the
previous research investigated the noise of MTJs by consid-
ering only the fluctuation of the free layer while assuming
the pinned-layer magnetization is frozen, the character of the
pinned-layer-related noise is rarely reported.

In this work, the magnetic LFN of MTJs were investigated
under large negative magnetic field. The adoption of such field
range suppressed the fluctuation of the free layer and guar-
anteed the dominant role of pinned-layer fluctuation as the
noise source. The varied shape anisotropies were introduced
to tailor the magnetic LFN of MTJs. The experimental obser-
vations were analyzed by constructing a macrospin model.
The experimental results and the analytical model confirmed a
strong correlation between the magnetic phase loss and LFN,
while both factors could be effectively tuned by magnetic
shape anisotropy. This work has unravelled the physical mech-
anism of magnetic LFN originated from the magnetization
fluctuation of the pinned layer.

2. Experimental methods

The MTJ thin films were deposited on thermally oxidized sil-
icon substrates by magnetron sputtering. The base pressure of
the processing chamber was 2.66 × 10−7 Pa (2 × 10−9 Torr).
The structure of the prepared MTJ stacks was as follows
(units in angstroms): substrate/NiFeCuMo (200)/CoFe (10)/Al
(10) + plasma oxidization/CoFe (10)/NiFeCuMo (25)/CoFe
(5)/IrMn (100)/Ru (70). The Al oxide tunnel barrier was
formed by depositing a metal Al layer and subsequently oxi-
dizing it in a pure O2 plasma. After the deposition of the MTJ
thin films, the samples were annealed at 200 ◦C for 15 min
with a 70 mT magnetic field applied parallel to the film plane.
The MTJ thin films were then patterned to elliptical tunnel
junctions, shown in figure 1, by utilizing photolithography and
etching techniques. The long axis of the ellipse is patterned
along the direction of the annealing field so that the exchange
bias field of the pinned layer is parallel to the easy axis of
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Figure 1. Optical images of the MTJ (a) and closeups of the MTJ devices (b). Panel (c) shows schematics of the MTJ geometries.

Figure 2. Schematic of the experimental setup for noise
measurement.

the free layer. The MTJ junctions were patterned from the
same MTJ wafer to eliminate the experimental difference and
ensure the coherence of the noise measurement. Five groups of
MTJs with different aspect ratios were fabricated, whose opti-
cal images and schematics are illustrated in figures 1(b) and
(c), respectively. The tunnel magnetoresistance (TMR) curves
of the MTJs were measured by using a four-probe method with
the magnetic field applied along the long axis of the elliptical
MTJs.

The noise measurements were carried out in a metal enclo-
sure to suppress the external noise sources, as depicted in
figure 2. A battery and variable resistor were utilized to pro-
vide a constant bias current. Two low-noise voltage ampli-

fiers (FEMTO DLPVA-100-BLN-S6) were connected in par-
allel across the MTJ and their outputs were fed into a dual-
channel spectrum analyzer (HP 35670A6). A cross-correlation
method was used to reduce the uncorrelated amplifier and
external noise sources. Low-frequency spectra were measured
from 0.1 kHz to 10 kHz under the high-resistance and low-
resistance states of the MTJ. To eliminate the transient effects
(e.g., out-of-equilibrium effects associated with the magnetic
aftereffect [17]), each noise measurement was started after
the MTJ resistance had stabilized at least 10 min after the
external magnetic field was changed (supplementary material
(https://stacks.iop.org/JPCM/32/415805/mmedia)). The noise
power spectrum density was averaged for 1000 times by the
internal fast averaging function. The frequency spectrum of the
magnetic LFN (Smag

V ) was obtained by subtracting the contri-
butions of the thermal noise, shot noise, electronic 1/f noise,
amplifier noise, and system background noise from the mea-
sured one [26, 35] (supplementary material). To compare the
magnetic LFN in different MTJs, the LFN was parametrized
by a Hooge-like expression [18, 34]:

αmag =
Ω f βSmag

V

V2
, (1)

where αmag is the Hooge parameter, Ω is the volume of the

6 Disclaimer: the use of manufacturer names and trademarks are only for the
purpose of completely describing the experimental conditions and does not
imply an endorsement of the authors or their organizations.
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Figure 3. (a) Typical magnetoresistance curve of MTJ with the
in-plane easy-axis magnetic field sweeping from −100 mT to
+10 mT, (b) magnetic-field-dependence of the measured Hooge
parameter (αmag), (c) magnetic-field-dependence of MSP,
(d) magnetic-field-dependence of the magnetic phase loss (εmag).

corresponding magnetic layer, f is the frequency,β is the expo-
nent, and V is the applied voltage. All the measurements were
performed at room temperature.

Figure 4. (a) Demagnetizing factors with respect to the aspect ratio
(u) of the MTJs, (b) shape anisotropy (Hsa) of the pinned layer with
respect to the aspect ratio (u) of the MTJs.

3. Experimental results

The magnetic-field-dependence of the MTJ resistance and
noise were characterized, as shown in figure 3. A typical
TMR curve is illustrated in figure 3(a), which was obtained
by sweeping the applied magnetic field from −100 mT to
+10 mT. The magnetic state was switched from the reversed
parallel (RevP) to AP magnetization configuration and back
to the normal parallel (P) state. Between −40 mT and −20
mT, the MTJ resistance gradually increases, indicating that the
pinned layer was undergoing a magnetic reversal process. The
magnetic LFN of the MTJ was extracted and the corresponding
Hooge parameter (αmag) was determined using equation (1).
For all measured noise spectra, no Lorentzian features were
identified and the exponent (β) was close to 1, revealing that no
MRTN was involved in the measured noise [30]. The extracted
noise was notably dependent on the magnetization config-
uration, which confirmed its magnetic origin [36–38]. The
measured magnetic noise is attributed to the magnetization
fluctuation of the pinned layer, because the magnetization of
the free layer was presumably fixed for the applied magnetic
field ranging from −100 mT to −2 mT, while the magneti-
zation of the pinned layer switched within the field range of
−20 mT to −40 mT. This assumption is supported by the
observation of the noise peak at ∼−30 mT, which coincides
with the center of the magnetic reversal region of the pinned
layer. In this region, the noise level is enhanced significantly
indicating magnetic fluctuations of the pinned layer are pro-
nounced. Also, a much higher noise level was identified in
the AP state compared to that in the RevP state [39], sug-
gesting more remarkable magnetization fluctuation associated
with the AP state. It is noted that the magnetic after effect may
also contribute to the observed magnetic dependence of Hooge
parameters in figure 3(b) [17]. However, the data presented in
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Figure 5. (a) Magnetic-field-dependence of the Hooge parameter (αmag) of the MTJs with various shape anisotropies (Hsa) of the pinned
layer, (b) magnetic field dependence of the magnetic phase loss (εmag) of the MTJs with various shape anisotropies (Hsa) of the pinned layer.

this manuscript was believed to be the stationary noise instead
of artifacts since the measurement in this manuscript was con-
ducted after the magnetic aftereffect was well relaxed in 10
min (supplementary material).

To further investigate the magnetic noise of the MTJ, the
values of αmag were related to the MSP = ΔR

R ( 1
R

dR
dH ) and the

corresponding magnetic phase losses (εmag). εmag was charac-
terized by using the FDT [11, 18, 34], where R is the resis-
tance of the MTJ, ΔR is the resistance difference between the
P(RevP) and AP states, and 1

R
dR
dH is the MTJ’s homogeneous

sensitivity [38]. In thermal equilibrium, the magnetic noise can
be expressed by the following equation derived from the FDT
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Figure 6. Magnetic phase loss (εmag) with respect to the shape
anisotropy (Hsa) in the RevP and AP states.

[18, 40]:

αmag = εmag(H)
kBT

πμ0MS

ΔR
R2

dR
dH

, (2)

where kB is the Boltzmann’s constant, T is the temperature,
μ0 is the magnetic permeability of free space, and Ms is the
saturation magnetization of the corresponding magnetic layer.
In this MTJ, its pinned layer has a composite trilayer struc-
ture: CoFe thk1/NiFeCuMo thk2/CoFe thk3, where thk1, thk2,
and thk3 are the thickness values of each layer. The saturation
magnetization (Ms) of the pinned layer can be estimated by
using the equation [36]:

MS =
thk1MsCoFe + thk2MsNiFeCuMo + thk3MsCoFe

thk1 + thk2 + thk3
, (3)

where MsCoFe and MsNiFeCuMo denote the saturation magneti-
zations of CoFe and NiFeCuMo, respectively. The values of
MsCoFe and MsNiFeCuMo are 1592 emu/cm3 and 616 emu/cm3,
respectively [41, 42]. The thickness values are thk1 = 1.0 nm,
thk2 = 2.5 nm, and thk3 = 0.5 nm for the experimental MTJ
samples. Based on equation (3), the saturation magnetiza-
tion of the pinned layer is therefore Ms = 982 emu/cm3. As
shown in figures 3(b) and (c), the MSP curve closely resem-
bled the trend of αmag. The εmag values with respect to the
magnetic field were calculated using equation (2). As shown
in figure 3(d), no noticeable field dependence of εmag was
identified in the RevP and AP states, which was attributed to
a nearly linear proportionality between αmag and MSP. This
observation indicated that the magnetization fluctuations were
in thermal equilibrium regime in the RevP and AP magneti-
zation alignments [11, 34]. Compared to the RevP state, the
more remarkable magnetization fluctuation in the AP state also
greatly enhanced the magnetic phase loss in the pinned layer
and gave rise to relatively larger εmag values. When the mag-
netization configuration was switched from the RevP to AP
state during the magnetic reversal process, a substantial change
of εmag was identified, suggesting that the linear correlation
between αmag and MSP was no longer maintained.

To study the influencing factors of the magnetic noise,
elliptical MTJs with different aspect ratios were fabricated,
as illustrated in figure 1. Distinct demagnetizing factors arise
from their different aspect ratios, which gives rise to a notable
change in the effective shape anisotropy field of the pinned
layer in these MTJs [43, 44]. Defining the length (l) and width
(w) of the elliptical MTJ, one has its aspect ratio, u = l/w. The
demagnetizing factors along the short axis (nx) and long axis

Figure 7. (a) Theoretically calculated noise power as a function of
the shape anisotropy (Hsa) in the RevP (Hext ∼ −100 mT) and AP
states (Hext ∼ 0 mT), (b) theoretically calculated magnetic phase
loss (εmag) as a function of the shape anisotropy (Hsa) in the RevP
(Hext ∼ −100 mT) and AP states (Hext ∼ 0 mT), inset is the
calculated εmag with respect to a wider range of Hsa, (c) comparison
of theoretical and experimental results on the ratio of magnetic
phase losses (εAP

mag/ε
RevP
mag ) in the AP and RevP states. The parameters

used are α1 = 0.01, T = 300 K, γ0 = 1.76 × 1011 Hz/T, kB = 1.38
× 10−23 J/K, M1s = 982 emu/cm3.

(ny) were calculated as

nx =
u
2

∫ ∞

0

1

(u2 + s)
√

(u2 + s)(1 + s)s
ds·

ny =
u
2

∫ ∞

0

1

(1 + s)
√

(u2 + s)(1 + s)s
ds

(4)

The effective shape anisotropy field (Hsa) was derived by
inserting the equation (4) into the following expression

Hsa = 4πMs
thk
w

(nx − ny), (5)

where thk represents the thickness. The results are shown in
figures 4(a) and (b), respectively. Upon increasing the aspect
ratio, Hsa increased from∼4 mT to ∼12 mT. A sharp enhance-
ment of Hsa between the aspect ratio of 2.6 and 4.4 is due to
the reduction of w from 10 μm to 5 μm.

The Hooge parameter (αmag) and magnetic phase loss
(εmag) of the fabricated MTJs with various shape anisotropy
fields (Hsa) of the pinned layer were characterized, as shown
in figures 5(a) and (b), respectively. Compared to the RevP
state, the larger αmag values in the AP state were attributed to
the increase of the magnetic phase loss, which was confirmed
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by the extraction of the εmag data for all MTJs (figure 5(b)).
Upon increasing Hsa, a notable reduction of εmag

AP in the AP
state while a slight decrease of εmag

RevP in the RevP state
was observed (figure 6), revealing that the increase of the
shape anisotropy caused a more pronounced suppression of the
equilibrium magnetization fluctuations in the AP state. Fur-
thermore, the increased Hsa also lessened the εmag

RV in the
magnetic reversal region of the pinned layer and diminished
the substantial change of εmag

RV when the magnetization con-
figuration switched from the RevP to AP state in the magnetic
reversal region (figure 5(b)). This phenomenon indicated that

the magnetization fluctuations in the reversal region were also
hindered due to the increase of the shape anisotropy.

4. Theoritical analysis

To unveil the underlying physical mechanism of the exper-
imental observations, a macrospin model for describing the
magnetization fluctuation in the pinned layer and free layer
was constructed based on the FDT [15, 16]. The corresponding
resistance noise power at P (SR(RevP)(ω) ) and AP (SR(AP)(ω) )
states were calculated as:

SR(RevP)(ω) =
1
π

[
∂R(cos θRevP)

∂ cos θ
]2(

γ0kBTα1

M1SΩ1
)2

×
∫ +∞

−∞

(γ0Hxx
2 + v2) × [γ0

2Hxx
2 + (ω − v)2] + (γ0

2Hyy
2 + v2) × [γ0

2Hyy
2 + (ω − v)2] − 2γ0

2(Hxx + Hyy)2v(ω − v)
{(γ0

2HxxHyy − v2)2 + [γ0α1(Hxx + Hyy)v]2} × {[γ0
2HxxHyy − (ω − v)2]2 + [γ0α1(Hxx + Hyy)(ω − v)]2} dv

(6)

SR(AP)(ω) =
1
π

[
∂R(cos θAP)
∂ cos θ

]2(
γ0kBTα1

M1SΩ1
)2

×
∫ +∞

−∞

(γ0H′
xx

2
+ v2) × [γ0

2H′
xx

2
+ (ω − v)2] + (γ0

2H′
yy

2
+ v2) × [γ0

2H′
yy

2
+ (ω − v)2] − 2γ0

2(H′
xx + H′

yy)2v(ω − v)

{(γ0
2H′

xxH′
yy − v2)2 + [γ0α1(H′

xx + H′
yy)v]2} × {[γ0

2H′
xxH′

yy − (ω − v)2]2 + [γ0α1(H′
xx + H′

yy)(ω − v)]2} dv

(7)

where ∂R(cos θRevP)
∂ cos θ

and ∂R(cos θAP)
∂ cos θ

represents the differential
resistance at P and AP states, respectively. γ0, kB, α1, M1s, and
Ω1 are the gyrometric ratio of the electron, Boltzmann con-
stant, damping parameter, saturation magnetization, and vol-
ume of the magnetization fluctuator, respectively. Hxx (Hxx

′)
and Hyy (Hyy

′) stands for the effective field in the P and AP
states:

Hxx = Hext + Hsam1z − Heb + 4πm1zM1s

Hyy = Hext + Hsam1z − Heb

H′
xx = Hext − Hsam1z − Heb − 4πm1zM1s

H′
yy = Hext − Hsam1z − Heb

(8)

where Hext, Hsa, Heb are the external magnetic field, the
shape anisotropy field and the exchange bias field. Details of
the derivation procedures are presented in the supplementary
material.

Based on the theoretical model, the effect of the shape
anisotropy on the magnetic noise in both the RevP and AP
magnetization states is demonstrated in figure 7(a). The resis-
tance noise power was calculated by inserting all the related
parameters into equations (6) and (7). Hooge parameter of the
magnetic LFN was then estimated using equation (1). At low
frequencies, higher noise level was identified in the AP state
than that observed in the RevP state, which was coincident with
the experimental observation (figure 5(a)). The increase of the
shape anisotropy stabilized the magnetization fluctuation and

led to a reduction in magnetic noise. Making use of the mea-
sured ∂R(cos θ)

∂ cos θ data (the ratio of ∂R(cos θAP)
∂ cos θ / ∂R(cos θRevP)

∂ cos θ ∼ 2)
and inserting the calculated Hooge parameter into equation (2),
the corresponding magnetic phase losses in the RevP and AP
states were estimated (figure 7(b)). With the increase in the
shape anisotropy field (Hsa), the calculated results confirmed
that a more remarkable suppression of the magnetization fluc-
tuation in the AP magnetization alignment was responsible for
the steeper reduction of the magnetic phase loss in the AP state
(εAP

mag). Upon further increasing the shape anisotropy field (Hsa)
(inset of figure 7(b)), εAP

mag was further declined and its value
tended to be comparable to that in the RevP state (εRevP

mag ). For
the MTJ with sufficiently large Hsa, the magnetic phase loss
in the RevP and AP state could exhibit approximately equal
values. In other words, the magnetic phase loss can be nearly
constant over a wide magnetic field range from the RevP to
AP state when Hsa of the MTJ is sufficiently large, indicating
that the equilibrium magnetization fluctuation is maintained in
all magnetization configurations. As illustrated in figure 7(c),
the increased Hsa also significantly diminished the ratio of the
magnetic phase losses (εAP

mag/ε
RevP
mag ) in the AP and RevP states,

which is in good agreement with the experimental observation.

5. Discussions

The macrospin model describes the effect of shape anisotropy
on the MRTN due to fluctuation of pinned layer magnetization.
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The theoretically calculated noise spectra from equations (6)
and (7) exhibit a Lorentzian-like feature, having a frequency-
independent plateau at low frequencies and a 1/ f2 roll-off at
high frequencies. The presence of the Lorentzian-like feature
in the calculated spectra originates from modelling the pinned
layer as a single macrospin. These Lorentzian-like MRTN
noise spectra arising from a small number of large magnetic
fluctuators have been demonstrated both in experiment and
simulation [30, 45, 46]. In order to obtain the 1/f character-
istic at low frequencies, a superposition of a large number of
magnetic fluctuators with a certain energy distribution (e.g.,
lognormal distribution) are required to be considered in the
model [45, 47]. The introduction of these individual magnetic
fluctuators is physically reasonable because magnetic inho-
mogeneities existing in the magnetic layer can induce small
magnetic domains whose magnetization directions are slightly
misaligned with that of the total magnetization of the magnetic
layer. Each misaligned magnetic domain can act as a magnetic
fluctuator and produces a Lorentzian-like noise spectrum. The
difference in the energy gap of magnetic fluctuators results in
the varied probability of the two spin states in the measured
time-domain RTN signals, and is thus responsible for the vari-
ations in roll-off frequencies in the frequency domain noise
power spectra. The summation of noise spectra with differ-
ent roll-off frequencies could result in a 1/f noise spectrum
[30, 45].

6. Conclusion

In this work, the magnetic LFN of the MTJs with various
shape anisotropies was investigated. The increase of the shape
anisotropy stabilized the magnetization fluctuations of the
pinned layer and led to a reduction in magnetic noise. Upon
increasing the shape anisotropy, a notable suppression of the
magnetic phase loss was identified in the AP state while it
only exhibited a slight decrease in the RevP state. This sug-
gested that the increase of the shape anisotropy caused a more
pronounced reduction of the equilibrium magnetization fluc-
tuations in the AP state, which was responsible for the steeper
reduction of the magnetic phase loss in the AP state. The influ-
ence of the shape anisotropy on the magnetic noise was analyt-
ically described by constructing a macrospin model. This work
has revealed the correlation between magnetic phase loss and
magnetic LFN in the pinned layer. The comparison between
experimental data and theoretical analysis gains insight in
understanding the contribution of pinned layer fluctuation to
the noise in AP and RevP states of MTJs.
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