
FLSys: Toward an Open Ecosystem for
Federated Learning Mobile Apps

Xiaopeng Jiang , Han Hu, Thinh On, Phung Lai, Vijaya Datta Mayyuri, An Chen, Devu M. Shila,

Adriaan Larmuseau, Ruoming Jin, Cristian Borcea ,Member, IEEE, and NhatHai Phan

Abstract—This article presents the design, implementation, and evaluation of FLSys, a mobile-cloud federated learning (FL) system,

which can be a key component for an open ecosystem of FL models and apps. FLSys is designed to work on smart phones with mobile

sensing data. It balances model performance with resource consumption, tolerates communication failures, and achieves scalability. In

FLSys, different DL models with different FL aggregation methods can be trained and accessed concurrently by different apps.

Furthermore, FLSys provides advanced privacy preserving mechanisms and a common API for third-party app developers to access

FL models. FLSys adopts a modular design and is implemented in Android and AWS cloud. We co-designed FLSys with a human

activity recognition (HAR) model. HAR sensing data was collected in the wild from 100+ college students during a 4-month period. We

implemented HAR-Wild, a CNN model tailored to mobile devices, with a data augmentation mechanism to mitigate the problem of non-

Independent and Identically Distributed data. A sentiment analysis model is also used to demonstrate that FLSys effectively supports

concurrent models. This article reports our experience and lessons learned from conducting extensive experiments using simulations,

Android/Linux emulations, and Android phones that demonstrate FLSys achieves good model utility and practical system performance.

Index Terms—Federated learning, mobile sensing, smart phones

Ç

1 INTRODUCTION

FEDERATED Learning (FL) [4] has the potential to bring deep
learning (DL) on mobile devices, while preserving user pri-

vacy during model training. FL balances model performance
and user privacy through three design features. First, each
device trains a localmodel on its rawdata. Second, the gradients
of the local models from multiple users are sent to a server for
aggregation to compute a global model that is more accurate
than individual local models. Third, the server shares the global
model with all users. During this federated training, the raw
data from individual users never leave their devices. A wide
range of mobile apps, e.g., predicting or classifying health con-
ditions based onmobile sensing data, can benefit from running
DLmodels on smart phones using FL,which offers privacy-pre-
serving global training that incentivizes user participation.

Despite progress on theoretical aspects and algorithm/
model design for FL [11], [52], [54], [59], [65], the lack of a
publicly available FL system targeting mobile devices has
precluded the widespread adoption of FL models on smart
phones, even though such models can enable novel mobile
apps that apply DL on mobile data (many times collected
from sensors on the phones) in a privacy-preserving man-
ner. Furthermore, this has also limited our understanding
of how real-world applications can benefit from FL. Most of
existing FL systems are either unavailable for the research
and practice communities (e.g., Google [4], FedVision [37]),
under development [18], or do not support mobile devi-
ces [14]. Well-developed open systems enabling on-device
training [3], [49] do not provide support for third-party app
development and do not consider the constraints of mobile
devices. Most of the existing FL studies are based on simula-
tions [11], [45], [52], [54], [59], [65], which may lead to an
oversimplified view of the applicability of FL models in
real-world. In the meantime, although demonstrated in sev-
eral scenarios such as keyboard typing prediction [63], FL
lacks real-world applications, which can drive the design of
FL systems. Indeed, real-world benchmarks for FL are piv-
otal to help shape the developments of FL systems [32].

In this article, we take a unique application-system co-
design approach to design, build, and evaluate an FL sys-
tem. Our system design is informed by a critical mobile
app, which illustrates a large category of apps that use DL
on mobile sensing data: human activity recognition (HAR)
on smart phones, which is important for industry, public
health, and research. Simply speaking, mobile apps using
HAR can harness recognized human physical activities
using data collected from phone sensors. HAR is a represen-
tative FL app on smart phones that needs privacy-sensitive
mobile sensing data collected in the wild in order to work

� Xiaopeng Jiang, Han Hu, Thinh On, Phung Lai, Cristian Borcea, and
NhatHai Phan are with the New Jersey Institute of Technology, Newark,
NJ 07102 USA. E-mail: {xj8, hh255, to58, tl353, borcea, phan}@njit.
edu.

� Vijaya Datta Mayyuri and An Chen are with Qualcomm Incorporated,
San Diego, CA 92121 USA. E-mail: {vmayyuri, anc}@qualcomm.com.

� Devu M. Shila and Adriaan Larmuseau are with Unknot.id, Newark, NJ
33067 USA. E-mail: {devums, adriaan}@unknot.id.

� Ruoming Jin is with Kent State University, Kent, OH 44240 USA. E-
mail: rjin1@kent.edu.

Manuscript received 29 March 2022; revised 4 November 2022; accepted 7
November 2022. Date of publication 21 November 2022; date of current ver-
sion 5 December 2023.
This work involved human subjects or animals in its research. Approval of all
ethical and experimental procedures and protocols was granted by NJIT Insti-
tutional Review Board under Application No. F003-20, and performed in line
with the New Application and Expedited Review.
(Corresponding author: Xiaopeng Jiang.)
This article has supplementary downloadable material available at https://doi.
org/10.1109/TMC.2022.3223578, provided by the authors.
Digital Object Identifier no. 10.1109/TMC.2022.3223578

IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024 501

1536-1233 © 2022 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See ht _tps://www.ieee.org/publications/rights/index.html for more information.

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

https://orcid.org/0000-0002-0814-4514
https://orcid.org/0000-0002-0814-4514
https://orcid.org/0000-0002-0814-4514
https://orcid.org/0000-0002-0814-4514
https://orcid.org/0000-0002-0814-4514
https://orcid.org/0000-0003-0020-0910
https://orcid.org/0000-0003-0020-0910
https://orcid.org/0000-0003-0020-0910
https://orcid.org/0000-0003-0020-0910
https://orcid.org/0000-0003-0020-0910
https://orcid.org/0000-0002-1032-8275
https://orcid.org/0000-0002-1032-8275
https://orcid.org/0000-0002-1032-8275
https://orcid.org/0000-0002-1032-8275
https://orcid.org/0000-0002-1032-8275
mailto:xj8@njit.edu
mailto:hh255@njit.edu
mailto:to58@njit.edu
mailto:tl353@njit.edu
mailto:borcea@njit.edu
mailto:phan@njit.edu
mailto:vmayyuri@qualcomm.com
mailto:anc@qualcomm.com
mailto:devums@unknot.id
mailto:adriaan@unknot.id
mailto:rjin1@kent.edu
https://doi.org/10.1109/TMC.2022.3223578
https://doi.org/10.1109/TMC.2022.3223578

effectively. Most FL papers use simulations with data col-
lected offline and/or in controlled environment [2], [9], [10],
[21], [24], [29], [46], which do not work well in real-world.
Furthermore, they do not consider the inter-play between
concurrent data collection, training, and inference on model
utility and resource consumption on the phones. From an
industry point of view, accurate HAR can help the smart
phone manufacturers to intelligently allocate resources and
extend battery life. Users’ behaviors, revealed by HAR data
collected over long periods of time, may be privacy-sensi-
tive, especially when location data is collected in addition to
inertial measurement unit (IMU) data. Furthermore, collect-
ing user data at a central server for training may violate
recent privacy regulations (e.g., GDPR). In general, the pri-
vacy-sensitive nature of mobile sensing data, which may
also include photos and videos, makes HAR ideal for study-
ing the design of FL systems.

In addition to HAR, we analyzed other real-life applica-
tions [4], [26], [37], [62], [63] to inform the system design. A
list of important questions emerges, and many of them are
not addressed in existing FL system designs [4], [18], [62],
[63] that largely ignore the constraints of mobile devices:
How can we balance FL model performance with resource
constraints on the phones? How can we ensure the training
conducted on phones is completed on time, despite limited
resources, i.e., computation power and battery life? How
can the server achieve seamless scalability and accurate
model aggregation in the presence of large and variable
numbers of users who typically train different models and
how can the system simultaneously cope with potential
communication failures (e.g., connectivity lost on the
phone)? After a global model is shared with the phones,
how can a third-party DL app utilize this model? How does
the system support different types of advanced privacy pre-
serving mechanisms?

Key Contributions. This is the first article to provide a
comprehensive description of the design, implementation,
and evaluation of an FL system for smart phones, FLSys.
The two main challenges for an FL system on phones are
concurrent management of multiple FL activities under
resource constraints and frequent disconnections due to net-
working and battery issues. These two challenges are not
considered by any existing FL system. To solve them, we
propose a novel system architecture that provides (1) a uni-
fied system to manage resources on the phone in the pres-
ence of multiple models, third-party apps using these
models, and data collectors for these models; and (2) an
asynchronous protocol to manage the FL process in the
presence of disconnections. The FLSys components on
smart phones manage training, inference, data collection/
preprocessing, and privacy to balance model utility with
resource consumption, while tolerating disconnections.

Furthermore, the engineering of an effective and efficient
FLSys prototype on Android and AWS and its evaluation
with data collected in the wild is also a major novel contri-
bution of this article. No such system is currently available
to the research community. While implemented in Android
and AWS, FLSys has a general system design and API that
can be extended to other mobile OSs and cloud platforms.

At a more specific level, there are four novel contribu-
tions in the system architecture that combine solutions in

machine learning, fault-tolerance, software engineering,
and cloud systems. First, FLSys balances model perfor-
mance, privacy and resource consumption on-demand
through data collection and training configurations, such as
sampling rate, model structure, hyper-parameters, and dif-
ferential privacy (DP) mechanisms. Second, FLSys uses an
asynchronous protocol between the server and the phones
to handle phone failures to participate in training due to
resource constraints or disconnections, while maintaining
good model performance. This protocol allows the devices
to self-select for training when they have enough data and
resources and allows the sever to operate correctly in the
presence of communication failures with the phones. Third,
FLSys enables an ecosystem of third-party apps and mod-
els, as well as the ability to use different aggregators, data
collectors/preprocessors, and DP-based privacy mecha-
nisms through its modular design. FLSys provides a com-
mon API for third-party apps to retrieve inference results
from different DL models, while efficiently managing
resource consumption and contention. FLSys also flexibly
supports different types of DP mechanisms, both on the
mobile devices and in the cloud to protect user privacy
against an honest-but-curious server. Fourth, in FLSys, dif-
ferent aggregation algorithms and training policies can be
deployed selectively as modules in the cloud using function
as a service (FaaS) support, which makes operating FL more
cost-efficient. We also leverage FaaS and cloud storage solu-
tions to engineer a scalable FL server.

Another novel contribution of this article is theHARmodel
that we designed and built to test FLSys, which is tailored to
work efficiently on resource-constrained phones with non
independent and identically distributed (non-IID) data. For
HAR experiments on FLSys, we collected data from 100+ col-
lege students in two areas during a 4-month period. The stu-
dents used their own Android phones, and their daily-life
activities were not constrained in anyway by our experiment.
Data collected on mobile devices are non-IID, which affects
FL-trained models [26]. We have evaluated a variety of HAR
models with both centralized and federated training, and
designed HAR-Wild , a Convolution Neural Network (CNN)
model with a data augmentation mechanism to mitigate the
non-IID problem. HAR-Wild was also designed to have a
small memory footprint, which is appropriate for resource-
constrained devices. To showcase the ability of FLSys to work
with different FL models, we also built and evaluated a natu-
ral language sentiment analysis (SA) model on a dataset with
46,000+ tweets from 436 users.1

We carried out a comprehensive evaluation of FLSys
together with HAR-Wild and SA to quantify the model utility
and the system feasibility in real life conditions. This article is
the first in the literature to share an extensive FL evaluation on
smart phones, using an end-to-end mobile-cloud FL system
andmobile data collected in thewild.We performed the evalu-
ation under three training settings: 1) centralized training, 2)
simulated FL with advanced privacy preserving mechanisms,
and 3) Android FL. Centralized training provides an upper
bound on model accuracy and is used to compare our HAR-
Wildmodelwith baseline approaches. The results demonstrate

1. The dataset was downloaded and evaluated by the NJIT team.

502 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

that HAR-Wild outperforms the baseline models in terms of
accuracy. Furthermore, the federated HAR-Wild performance
using simulations (TensorFlow and DL4J2), Android emula-
tions, and Android phone experiments is close to the upper
bound performance achieved by the centralized model. The
results on smart phones demonstrate that FLSys can perform
communication and training tasks within the allocated time
and resource limits, while the FL server is able to handle a vari-
able number of users. Finally, micro-benchmarks on Android
phones show FLSys with HAR-Wild and SA are practical in
terms of training and inference time, as well as memory and
battery consumption.

The rest of the article is organized as follows. Section 2
discusses related work. Section 3 explains the design of
FLSys, while Section 4 describes its prototype implementa-
tion. Section 5 presents the HAR model and data. Section 6
shows the experimental results. The article concludes in Sec-
tion 7 with lessons learned and future work.

2 RELATED WORK

This section reviews related work for FL systems, heteroge-
neity issues in FL federated training, and HAR models.

2.1 Federated Learning Systems

FL can be categorized into Horizontal FL, Vertical FL, and
Federated Transfer Learning (FTL) [62]. In Horizontal FL,
data are partitioned by device user Ids, such that users share
the same feature space [62]. In Vertical FL, different organi-
zations have a large overlapping user space with different
feature spaces. These organizations aim at jointly training a
model to predict the same model outcomes, without sharing
their data. In FTL, the datasets of these organizations differ
in both the user space and the feature space. In Vertical FL
and FTL, different organizations need to align their com-
mon users and exchange intermediate results by applying
encryption techniques [15]. The server cannot just average
the gradients, but it needs to minimize a joint loss. At infer-
ence stage, the organizations may have to send their indi-
vidual intermediate results to the server to compute a final
result. The systems of these two categories rely on cryptog-
raphy and their interactions are more complex. Our FLSys
focuses on Horizontal FL, with an option for extension to
Vertical FL and FTL in the future. For simplicity, we will
use FL to indicate Horizontal FL in the rest of our paper.

Table 1 shows the comparison between FLSys and other
FL systems/frameworks across several features required
for an efficient and effective FL system. FLSys is the only
system that supports all these features, and it is also the
only one that supports third-party apps and efficient mobile
sensing data collection. Specifically, FLSys addresses unan-
swered questions on concurrent training of multiple models
for different apps and APIs for third party app developers.
Furthermore, unlike all the other systems, FLSys enables
models that work with data collected from the phones’ sen-
sors, which adds challenges related to efficient and effective
data collection.

Among the comparison systems, the FL work done at
Google is the best known. However, despite work [4] that

describes the conceptual design of a scalable FL system for
mobile devices, Google has not published the implementa-
tion and evaluation of an end-to-end FL system to address
the features in Table 1. Recently, its TensorFlow Lite [56]
framework started to support on-device training, but this
framework does not attempt to provide any other type of
system support required by FL.

Systems such as FATE [58] and FedVision [37], introduce FL
architectures basedonweb-services. They focus oneither institu-
tional collaboration or a target application, and they do not have
any support for mobile devices. Similarly, Nvidia’s FLARE [48]
is a domain-agnostic, open-source, and extensible SDK for FL,
but it does not support mobile device training. Among the sys-
tems supporting mobile devices, Syft [49] offers KotlinSyft for
on-device training and provides an FL server, PyGrid, with a
web-UI. However, Syft does not address scalability or provides
advanced privacy preserving mechanism. FedML [18] shares
somegoalswith FLSys.However, this open source system is still
under construction. In addition, FedML focuses more on soft-
ware engineering aspects, rather than on system aspects such as
efficient sensor data collection or scalability. The closest FL sys-
tem to ours is Flower [3], which provides a high-level FL pro-
gramming library, employs TensorFlow Lite for on-device
training, and evaluates scalablity with a number of embedded
edge computing devices. However, this system does not focus
on mobile devices and does not provide a solution to support
third-party apps or mobile sensing data collection. The evalua-
tion is conducted on embedded edge computing devices instead
of real mobile devices. Last but not least, FLSys is the only sys-
tem designed to provide modular deployment. The policies,
algorithms, and functions are implemented at fine granularity.
The system can be deployed as interchangeable modules with
serverless cloud resources, instead of an always-on server. This
makes it easy to both upgrade the system and achieve cost-effi-
ciencywhen scaling up.

2.2 Coping With Heterogeneity in FL

A well-reported issue restricting the performance of FL
models is the resource and data heterogeneity among users.
Resource heterogeneity arises as the on-device training per-
forms at devices with varying computational and communi-
cation capabilities. Data heterogeneity arises because either
the numbers of training samples are different, or the classes
and features are non-IID [28], [65].

TABLE 1
Comparison of Different FL Frameworks

TF-Lite Syft FLARE FATE FedML Flower FLSys

On-device training ✓ ✓ * ✓ ✓

Scalability ✓ ✓

Fault-tolerance ✓ ✓ ✓

Client heterogeneity ✓ ✓ ✓ ✓

Advanced privacy

preserving

* ✓ ✓ ✓ ✓

Concurrent third-

party app support

✓

Efficient sensor data

collection

✓

Modular deployment ✓ ✓

(* denotes planned feature).

2. https://deeplearning4j.org/

JIANG ETAL.: FLSYS: TOWARDAN OPEN ECOSYSTEM FOR FEDERATED LEARNING MOBILE APPS 503

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

To mitigate device heterogeneity, Chai et al. [8] divides
clients into tiers based on their training time, and updates
the tiers on-the-fly based on the observed training time and
accuracy. However, training time is determined by both
data amount and computation power. In real world, the
training time has to be reported by the clients, which may
introduce an additional opening for malicious users. To
address device heterogeneity, FLSys adapts asynchronous
communication. The server provides support for flexible cli-
ent selection policies, and allows clients to self-select based
on their current resources.

Different from centralized learning, the datasets among dif-
ferent users may follow different distributions in FL, due to
imbalanced class distributions, different user behaviors, etc. As
a result, DL models trained in FL algorithms usually suffer
from inferior performance when compared with centralized
models [28]. To mitigate the data heterogeneity issue, Reddi
et al. [51] propose three different adaptive algorithms as aggre-
gators for the server to aggregate client updates. There are stud-
ies [11], [16], [33], [38], [41], [52], [54], [59], [65] beyond
aggregation algorithms on the server to mitigate non-IID. In
FedProx [52], a regularization is introduced tomitigate the gra-
dient distortion from each device. Sarkar et al. [54] presented a
cross-entropy loss to downweigh easy-to-classify examples
and focus training on hard-to-classify examples. Verma et al.
[59] propose to estimate the global objective function by averag-
ing different objective functions given a common region of fea-
tures among users, and keep different objective functions
estimated from local users’ data in different regions of the fea-
ture space. In FedDC [16], the authors propose to add the
penalized term, and a gradient correction term on the top of
the local empirical loss term in the objective function, and each
client corrects its local model parameters using the local drift
variables. Data augmentation approaches have been pro-
posed [65], including a global data distribution based data aug-
mentation [11]. Thanks to the modular design, FLSys can add
or swap its components to support new mechanisms in FL.
Our HAR-Wild and SAmodels use a uniform data augmenta-
tionmethod to achieve the bestmodel accuracy.We also imple-
ment and show the results of different aggregators in FLSys.

2.3 Human Activity Recognition

Our HAR model focuses on sensing and classification of
physical activities through smart phone sensors. Recent
works show that deep learning models are effective in HAR
tasks. For example, Ignatov [24] proposed a CNN based
model to classify activities with raw 3-axis accelerometer
data and statistical features computed from the data. Sev-
eral works [10], [21], [46] proposed LSTM-based models
and achieved similar performance.

Most research on HAR models uses centralized learning
on data collected in controlled lab environments with stan-
dardized devices and controlled activities, in which the par-
ticipants only focus on collecting sensor data with a usually
high and fixed sampling rate frequency, i.e., 50 Hz or
higher. Although there are good publicly available HAR
datasets, e.g., WISDM [29], UCI HAR [2], and Opportu-
nity [9], they are not representative for real-life situations.
Different from existing works, this paper shows that HAR-
Wild over FLSys performs well on data collected in the

wild, which are subject to fluctuating sample rates (e.g., the
sampling may be decreased temporarily to save battery
power) and non-IID data distribution.

3 FLSYS DESIGN

This section presents the design of FLSys. Specifically, it
describes the system requirements derived from an applica-
tion-system co-design, the novel FLSys architecture that
addresses these requirements, along with the four operation
phases of FLSys, namely data collection and processing, pri-
vacy protection, federated training, and inference at the
phones.

3.1 System Requirements

Our aim is to design and build an FL system that addresses
the questionsmentioned in Section 1.We use theHARmodel,
detailed in Section 5, to illustrate an entire category of FL
models based on mobile sensing data collected in the wild.
We extract seven key requirements derived from this model
and from other real-world FL applications, such as next word
prediction, on-device search query suggestion [63], on-device
robotic navigation [35], on-device item ranking [4], object rec-
ognition [37], sentiment analysis, etc., and utilize them to
guide our FLSys design: (R1) Effective data collection: The
data collection on the phonemust balance resource consump-
tion (e.g., battery) with sampling rates required by different
models; (R2) Support for advanced privacy preserving mech-
anisms: Even though FL is privacy-preserving by design,
there are still potential privacy issues (e.g., learn user informa-
tion from the gradients) [5], [50]. Therefore, the system must
provide a plugin interface for advanced privacy protection
mechanisms, such as local differential privacy; (R3) Tolerate
phone unavailability during training: Since the phones may
sometimes be disconnected from the network or choose not to
communicate to save battery power, the interaction between
the phones and the cloud must tolerate such unavailability
during federated training; (R4) Scalability: The cloud-based
FL server of our systemmust be able to scale to large numbers
of users in terms of both computation and storage; (R5) Model
flexibility: The system must support different DL models for
different application scenarios and different aggregation
functions in the cloud; (R6) Support for third-party apps: The
system must provide programming support for third party
apps to concurrently access different models on the phones,
while efficientlymanaging resource consumption and conten-
tion; and (R7) Modularity: The system shall not be heavy to
deploy, and its policies, algorithms, and functions shall be
designed and implemented as interchangeable modules for
simple, cost-effective deployment and scalability.

3.2 FLSys Overview

FLSys addresses requirements R1�R7 synergistically in a
novel system architecture. For some requirements, we pro-
pose novel solutions, as no current FL system addresses
them, while for others we customize existing solutions for
our needs in order to provide a complete design and imple-
mentation. Fig. 1a shows the system architecture, and
Fig. 1b shows the overall process of one training round.
These figures emphasize five novel contributions made in
FLSys, compared with existing FL systems: (1) FLSys allows

504 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

the phones to self-select for training when they have enough
data and resources; (2) FLSys has an asynchronous design
(Fig. 1b), in which the server in the cloud tolerates client fail-
ures/disconnections and allows clients to join training at
any time. (3) FLSys supports multiple DL models that can
be used concurrently by multiple apps; each phone trains
and uses only the models for which it has subscribed; (4)
FLSys acts as a “central hub” on the phone to manage the
training, updating, and access control of FL models used by
different apps; and (5) FLSys allows apps/models to use
different privacy mechanisms that trade model accuracy for
privacy guarantees.

These features balance model utility with mobile device
constraints and privacy, and can help create an ecosystem
of FL models and associated apps. FLSys allows different
developers to build FL models/apps and provides a simple
way for users to take advantage of these apps, as it offers a
unifying system for the development and deployment of FL
models and apps that use these models. FLSys acts as com-
mon middleware layer for all these apps and models. The
users just need to download/install the apps, and FLSys
will take care of downloading/installing the FL models
used by the apps, will perform FL training as needed, and
will run FL inference on behalf of the apps.

3.3 System Architecture

The architecture (Fig. 1a) has two main components: (1) FL
Phone Manager, which coordinates the FL activities on the
phone; and (2) FL Cloud Manager, which coordinates the FL
activities in the cloud. These two components work together
to support the four phases of the FL operation: data collec-
tion and preprocessing, privacy protection, model training
and aggregation, and mobile apps using inference. In the
following, we describe each phase and explain how the sys-
tem architecture satisfies the seven system requirements.

Data Collection and Preprocessing. The FL Phone Man-
ager controls the data collection using one or multiple Data
Collectors. A basic Data Collector is tasked with collecting
data from one sensor at a given sampling rate. Such basic

Data Collectors could be embedded in more complex ones to
collect different types of data at the same time. It is important
to have one app that coordinates data collection because hav-
ingmultiple apps collecting overlapping sets of datamultiple
times is inefficient. Having the FL Phone Manager to coordi-
nate the data collection also simplifies sensor access control.

To satisfy requirement R1, FLSys supports on-demand
configuration of sensor types, sampling rates, and the period
to flush data from memory to storage. Each model informs
the FL Phone Manager of the type of data and sampling rate
it needs. In this way, the FL Phone Manager knows which
Data Collectors to invoke and which sampling rates are
needed. The FL Phone Manager balances sensing accuracy
(i.e., high sampling rate) with resource consumption.

To regulate and keep such balance aligned with the user
experience, the FLSys has three features: (1) include several
built-in sampling rate settings, with empirical values from
our experience; and (2) collect key statistics of the data col-
lection (e.g., CPU time consumed, battery life impact, etc.)
and show them to the user, upon request; and (3) provide
global level controls for the user to adjust the data collection
behaviors, should the user feel that their experience is
impacted by data collection.

The Data Collectors store the sensed data in the Raw Data
Storage and inform the FL Phone Manager each time new
data is added to the Raw Data Storage. For efficiency, the
Data Collectors can buffer a certain amount of sensed data
in memory before committing it to the storage. The FL
Phone Manager can dynamically reconfigure the data flush-
ing period that defines when the data is written to storage.
Data Collectors set this data flushing period. Some models
may use the raw data directly, while others may require
additional processing. The FL Phone Manager decides
when to invoke the model-specific Data Processors, which
will store the data in the Processed Data Storage. This is a
matter of policy and can be done any time new data is avail-
able in the Raw Storage Data or at a regular interval. The
only constraint is to have all the data preprocessed before a
new local model training operation.

Fig. 1. FLSys Architecture and Asynchronous Protocol. Typical operations:�1 Phone Manager of Client #1 registers with the Cloud Manager of Model
1, which grants registration based on training settings. �2 Phone Manager of Client #1 fetches up-to-date global model from a designated storage,
trains it with local data, and uploads local gradients to a designated storage.�3 Phone Manager of Client #2 tries to register, but is denied.�4 Phone
Manager of Client #2 successfully registers at a later time, but the training misses the deadline, thus its gradients upload is denied.�5 Clients #1 and
#2 try to register during server aggregation and are denied.�6 Each model’s Aggregator loads the gradient updates, aggregates them, and saves the
aggregated model.

JIANG ETAL.: FLSYS: TOWARDAN OPEN ECOSYSTEM FOR FEDERATED LEARNING MOBILE APPS 505

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

To deal with the problem of non-IID data distribution,
described in Section 2, the Data Preprocessor can augment
the data collected locally on the device with data received
from the cloud. The augmentation dataset is model-specific
and mitigates the distortion the data classes by providing
data samples for classes with not enough data. When the
users join FLSys for a new model, their phones receive an
augmentation dataset from the FL Cloud Manager for models
that use data augmentation techniques.

Privacy Threat Model and Protection. To satisfy require-
ment R2 , the Local Privacy Preserving Manager delivers
advanced privacy protection mechanisms on the phone
component of FLSys. It is designed to work with different
privacy mechanisms, which are available on a per-model
basis.

Threat Model. In this paper, we focus on defending against
privacy inference attacks from an honest-but-curious server,
which can attempt to infer clients’ local training data. Note that
the server knows the identity of the clients to coordinate the FL
training. The server may try to extract the clients’ local data or
infer membership information of specific clients’ training data
samples by using training data extraction attacks [7] andmem-
bership inference attacks [20], [22], [47], respectively, via
observing the clients’ local gradients. Third-party apps on the
phones, whichmay or may not use FLSys, may act maliciously
by trying to access the model data or performing inference
attacks, etc. There are many OS-based, programming lan-
guage-based, and networking-based approaches that can pre-
vent or alleviate these issues. All these solutions can be applied
outside of FLSys.

Defenses. An effective way to protect clients’ local train-
ing data against an honest-but-curious server is to use local
differential privacy (LDP) [27], specifically to preserve
�-LDP in FL [55]. LDP provides rigorous privacy protection,
without computational overhead, compared with other
techniques such as secure multi-party computation [57] and
homomorphic encryption [60]. Meanwhile, anonymizers
(shuffler [30], faking source IP, VPN, Proxy, mixnets,
etc. [55]) could be compromised or could collude with the
server to extract sensitive information from local gra-
dients [13]. This introduces extra privacy risks for the cli-
ents’ local training data. In addition, it is challenging for
dimension reduction-based privacy-preserving techniques
to achieve good utility under rigorous privacy guarantees
with complex models and tasks [36].

Therefore, our system supports existing LDP-preserving
approaches in FL, which are currently the most suitable sol-
utions. Existing LDP-preserving approaches in FL can be
divided into two categories: (1) Clients add noise to local
gradients to protect the values of the local gradients [40];
and (2) Clients add noise to each training sample to protect
the value of each training sample [39], and then they use
these perturbed samples to derive local gradients. For both
approaches, the clients send the LDP-preserved local gra-
dients to the server for model updates. Our system further
supports User-level DP (User-DP) [44] to protect the mem-
bership information of clients against inference attacks.
These supported mechanisms [31], [44] use DP to provide
different levels of privacy protection. Within a DP budget
allocated to a given privacy mechanism, the global model
converges without an undue cost of model utility. In User-

DP , the aggregated gradients at the FL Cloud Manager are
perturbed to protect clients’ participation (membership)
information in training the global model (Definition 2,
Appendix A), which can be found on the Computer Society
Digital Library at http://doi.ieeecomputersociety.org/
10.1109/TMC.2022.3223578. In LDP , every training sample
is perturbed under LDP ensuring that the legitimate value
of the training sample is protected against being inferred by
the server through observing local gradients (Definition 3,
Appendix A), available in the online supplemental material.
As these two mechanisms illustrate, the Model Aggregator in
the cloud may (e.g., User-DP) or may not (e.g., LDP) apply
privacy preserving mechanisms. Generally speaking, pri-
vacy mechanisms in FLSys are handled by the Local Privacy
Preserving Manager on the phones, with potential collabora-
tion from theModel Aggregator in the cloud.

Federated Training. To satisfy requirement R3, we make
two design decisions. First, FLSys allows the phones to self-
select for training when they have enough data and resour-
ces. This is different from traditional FL architectures [4],
where the server selects the phones to participate in train-
ing, which may not be available or may not have enough
data or resources for training. Second, in FLSys, the commu-
nication between the phones and the cloud is asynchronous
to cope with phone disconnections. The software at the
cloud side is designed to tolerate missing messages from
the phones. Overall, FLSys reduces communication over-
head and increases client utility, at the expense of less con-
trol in the client sampling process, compared to [4].

In order to use a given model on the phone, the FL Phone
Manager first registers the phone with the FL Cloud Manager.
If the phone model and mobile OS are known to work with
the model, the FL Cloud Manager registers the phone with
the New Model Notification Service, which works as a Publish-
Subscribe cloud service, and returns the subscription to the
phone. This subscription allows the phone to receive asyn-
chronous notifications when a new global model is available
for download. The FL Phone Manager downloads the model
at a time determined based on the model usage frequency
and power settings. The training for each model is done in
rounds. The FL Cloud Manager decides the duration of a
round, based on preferences associated with each model. For
example, the server may start a new aggregation (i.e., by
invoking the Model Aggregator for a certain model) when a
given time interval has passed or when a certain number of
local training updates have been received from the phones.
The FL Phone Manager decides when to participate in train-
ing. This decision is done based on local policies that attempt
to balance inference accuracy, the amount of input data for
training, and the resources consumed during training. The
intention to participate in training for a given model is con-
veyed by a message sent to the FL Cloud Manager. Based on
the model preferences (e.g., amount of data, and the number
of users in a training round), the server may decide to ask the
phone to train for the model and to provide the FL Phone
Manager with a URL to upload the results in the Cloud Local
Gradients Storage. If there is a deadline for participation in the
round, the FL Cloud Manager lets the FL Phone Manager
know about it.

The FL Phone Manager invokes the Model Trainer for the
given model and passes as parameter the location of the

506 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

http://doi.ieeecomputersociety.org/10.1109/TMC.2022.3223578
http://doi.ieeecomputersociety.org/10.1109/TMC.2022.3223578

data in the Processed Data Storage. After the training is
done, the Model Trainer stores the newly computed gra-
dients in the Phone Local Gradients Storage. The FL Phone
Manager decides when to upload these gradients to the
Cloud Local Gradients Storage. The FL Cloud Manager will
invoke the Model Aggregator for the model when the dura-
tion for the round expires or when enough updates have
been uploaded. The Model Aggregator reads the updates
from the Cloud Local Gradients Storage, computes the
aggregated weights, and stores them in the Cloud Global
Model Weights Storage. The intermediate training state is
stored in the Training State Storage to provide lower I/O
latency compared with the other types of cloud storage in
our design. This is because FLSys needs frequent access to
these data during training. Then, the Model Aggregator
sends a notification via the New Model Notification Service
to let the phones know that a new model version is
available.

The cloud-side system satisfies requirement R4, as it can
scale to large numbers of users due to its modular design
that decouples computation, communication, storage, and
notification services. The cloud elasticity features of each
service allow different services to scale up or down accord-
ing to the workload.

As we observe from the architecture, each model is man-
aged individually by FLSys, and multiple models can
co-exist both at the phones and the cloud. In the cloud, dif-
ferent models use independent cloud resources, which can
be scaled independently. On the phone, independent model
trainers and inference runners are responsible for different
applications. The cloud contains all the models in the sys-
tem, while each phone contains only the models for which it
has subscribed. This modular design allows our system to
satisfy requirement R5.

Mobile Apps Using Inference. We decouple mobile
apps that need inference on the phones from the models
that provide the inference. This allows an app to use multi-
ple models, while the same model can be used by multiple
apps. FLSys provides an API and a library that can be used
by third-party app developers to perform inference using
DL models on the phone. In this way, the system architec-
ture satisfies requirement R6. When an app needs inference
from a model, it sends a request to the FL Phone Manager
using one of the OS IPC mechanisms. The FL Phone Man-
ager then generates the input for the inference from the data
stored in the Processed Data Storage or the Raw Data Stor-
age, and then invokes the Model Runner with this input. The
Model Runner sends the result to the App using IPC. When
possible, the FL Phone Manager re-uses preprocessed data
to reduce resource consumption or performs one inference
for several applications that invoke the same model
concurrently.

Model Concurrency. Given the design of FLSys, both the
FL Phone Manager and the FL Cloud Manager are able to
handle multiple models concurrently. However, the mean-
ings of concurrency are slightly different for each side. FL
Cloud Manager needs to handle the aggregation of all mod-
els that are registered with it. Also there is the need to com-
municate to a potentially large number of clients for each
model at the same time. FLSys handles this concurrency
through services provided by the underlying cloud

platform, which support concurrency by design. FLSys just
needs to orchestrate the invocation of these services. The FL
Phone Manager needs to handle concurrent training and
inference. Our preliminary experiments on smart phones
show parallel training of multiple models is very slow due
to resource contention. It also affects the user experience on
the phones. Therefore, we decided to train models sequen-
tially. The FL Phone Manager can request to participate in
training rounds for multiple models concurrently, but it
locally decides a sequential order in which to train these
models, based on parameters such as frequency of model
usage by apps, the training round deadlines, and historical
training latency for each model. Finally, the inference
requests from the apps are executed as soon as they are
received to maintain good user experience.

System Modularity. FLSys components are designed
and implemented at fine granularity as interchangeable
modules for different policies and algorithms to satisfy
requirement R7. This design makes it easy to deploy differ-
ent data collection modules, DP-based privacy preserving
mechanisms, model trainers at the clients (with different
optimizers or loss functions), and aggregation functions at
the server. Furthermore, new models can be added on-
demand, based on the apps that need them. This modular
design can be readily deployed in a serverless manner in
the cloud, which leads to improved scalability (i.e., scale up
only the components that are overloaded) and cost-effi-
ciency (i.e., no need to run always-on servers).

4 PROTOTYPE IMPLEMENTATION

We implemented an end-to-end FLSys prototype in
Android and AWS cloud, which have been chosen because
they are the market leaders for mobile OSs and cloud plat-
forms, respectively. However, the FLSys design is general
and it can be implemented in other mobile OSs and cloud
platforms. The prototype implements all of the components
described in the system architecture (Fig. 1a). This section
reviews the implementation technologies, the reasons for
selecting them, and then focuses on the Android implemen-
tation and the AWS implementation of FLSys.

4.1 Implementation Technologies

Deep Learning Framework. We chose Deep Learning for Java
(DL4J) as the underlying framework for the on-device DL-
related operations (i.e., training and model execution)
because it was the only mature framework that supported
model training on Android devices until very recently,
when TensorFlow Lite [56] and KotlinSyft [49] became
available for on-device training. While the Model Aggrega-
tor in the cloud could be implemented using other DL tech-
nologies, for consistency, we implement it in DL4J as well.
The models are stored as zipped JSON and bin files in fold-
ers on the phone and in AWS S3 buckets in the cloud.

On-Device Communication. For IPC among Android
apps/services, we use Android Bound Service and Android
Intent. A bound service can efficiently serve another appli-
cation component because it does not run in the background
indefinitely. Through IPC, the FL Phone Manager can pro-
vide third-party apps with an interface to request inference

JIANG ETAL.: FLSYS: TOWARDAN OPEN ECOSYSTEM FOR FEDERATED LEARNING MOBILE APPS 507

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

results without revealing the model or the data. Further-
more, it can communicate with the Data Collector.

Cloud Platform and Services. We opt to utilize the Func-
tion-as-a-service (FaaS) architecture for our cloud computa-
tion. The core cloud components of FLSys are implemented
and deployed as AWS Lambda functions [1]. We decided to
choose FaaS for our implementation for five reasons. First, it
matches our asynchronous, event-based design, as Lambda
functions are triggered by events. Second, it provides fine-
grained scalability at the function level; therefore leading to
less resource consumption in the cloud. Furthermore, com-
putation and storage are scaled automatically and indepen-
dently by the cloud platform. Third, unlike other cloud
platforms, it does not require running virtual machines
when no computation is necessary; this saves additional
resources and reduces cost. Fourth, FaaS simplifies the
development and deployment of our prototype because it
does not require software installation, system configuration,
etc. Fifth, different functions can be implemented in differ-
ent programming languages making the implementation
even more flexible.

Lambda functions are triggered in different ways in our
prototype. We use the AWS API Gateway to define and
deploy HTTP and REST APIs. For instance, we create a
REST API to relay clients’ requests to participate in the FL
training to the Lambda function that handles these requests.
We also use the AWS EventBridge to define rules to trigger
and filter events for Lambda functions.

FLSys uses a number of cloud services for storage,
authentication, and publish-subscribe communication. For
model storage, validation datasets, and FL Cloud Manager
configuration files, we use AWS S3, which offers a reliable
and cost-effective solution for data accessed infrequently.
More importantly, AWS S3 buckets can be accessed directly
by phones, which simplifies the asynchronous communica-
tion in FLSys. To authenticate clients and allow them to
upload and download models from the AWS S3, FLSys uses
Identity Pool in AWS Cognito. To store data that is accessed
frequently, such as training round states and model states,
we use AWS DynamoDB, a reliable NoSQL database. AWS
SNS is utilized in conjunction with the Google FCM to
notify clients when newly trained models are ready. The
use of a Google Cloud service in our AWS implementation
was necessary in order to push notifications directly to apps
on the phones when a new global model is ready in the
cloud.

4.2 Phone Implementation

The phone implementation (left-side of Fig. 1a) consists of
three apps: a FL Phone Manager, a HAR Data Collector,
and a Testing App used to test model inference.

Data Collector. We implemented a HAR Data Collector
app designed for long-term and battery efficient data collec-
tion. This Data Collector was implemented as an app that
can be used independent of FLSys, but for better efficiency,
the Data Collectors can be implemented as modules of the
FL Phone Manager. To that end, sensor values are not col-
lected at an enforced fixed high frequency, but are instead
collected independently through Android listeners whose
actual frequency is variable, determined by the underlying

OS. This is appropriate for data collection in the wild. In our
experience, this tends to be much friendlier to the perfor-
mance and battery life of the user devices, lowering the risk
that a user abandons FLSys prematurely due to concerns
about how it is affecting their device resources. Further-
more, users are given the option to pause or stop data col-
lection of all or a subset of sensors in case they have
resource consumption or privacy concerns. For simplicity,
the raw data and the processed data are stored as files.

FL Phone Manager. The FL Phone Manager app decides to
initiate an on-device training round based on evaluating a
Ready To Config policy (RTCp). We implemented a simple
policy to check if the phone is charging and is connected to
the network before declaring its availability for training. If
yes, it sends a Ready To Config message (RTCm) to the FL
Cloud Manager. RTCm is implemented as an HTTP request
with JSON payload and is sent to a REST API URL in AWS.
The FL Cloud Manger either accepts or denies the phone’s
participation in this training round, based on a simple
Accept/Deny for Training policy (A/DFTp) that checks the
phone model and client identity.

The phone is accepted for a round of training when it
receives an Accept For Training message (AFTm). AFTm
contains the information of the AWS S3 locations from
where to download the latest global model weights and
where to upload the local gradients. The message also con-
tains the deadline for this training round’s completion. The
FL Phone Manager evaluates a Start To Train policy (STTp)
based on the available device resources and the round’s
deadline to determine whether to actually perform the on-
device training for this round or not. The FL Phone Manager
will create the corresponding Model Trainer if it decides to
train. The Model Trainer is implemented with Android
native AsyncTask class to ensure the trainer is not termi-
nated by Android, even when the app is idle. AsyncTask
also enables multiple trainers to train in the background.
Once the training is complete, the Model Trainer uploads
the local gradients to the corresponding AWS S3 location.

Model inference is implemented as a background service
with Android Interface Definition Language (AIDL), and it
gets inference requests from third-party apps. When such a
request is received, the FL Phone Manager uses the current
sensor data from the Data Collector as input for the model,
runs the inference, and responds to the third-party apps
with the inference results.

Testing App. We implemented a simple testing App to
test model inference. The App uses AidlConnection to inter-
face with the FL Phone Manager. Let us note that the App
itself does not access any data or model.

4.3 Cloud Implementation

The cloud implementation (right-side of Fig. 1a) consists of
two main components: FL Cloud Manager and Model
Aggregator.

FL Cloud Manager. The FL Cloud Manager is imple-
mented as a series of Lambda Functions (FaaS service in
AWS). When starting a training round, it reads a configura-
tion file and determines the deadline for the round (i.e., the
time when the round must finish). During the period
between the start time and the deadline, the FL Cloud

508 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

Manager accepts or denies clients’ requests for training
(RTCm). When the deadline is reached, the FL Cloud Man-
ager executes the Model Aggregator according to the Start
for Aggregation policy (SFAp). The current policy checks if
enough clients have submitted their local gradients in the
AWS S3 (a configurable parameter). Then, the Lambda func-
tion implementing the FL CLoud Manager schedules an
event for itself to perform the next training round and ter-
minate. The training process stops when the pre-defined
number of rounds is achieved, or the desired performance
(model accuracy) is achieved, if the model developers pro-
vided a validation dataset.

Model Aggregator. For implementation simplicity, the
Model Aggregator uses the federated average tech-
nique [43], with the assumption that each client contributes
equally to the global model in each training round. When it
is invoked, it loads the uploaded local gradients, and aggre-
gates their gradients to the global model of this round. Once
the global model is updated, the Model Aggregator invokes
AWS SNS to notify clients that they can download the
newly aggregated model. Note that the Model Aggregator
is called dynamically through reflection, such that different
aggregation functions can be dynamically swapped.

4.4 Asynchronous Federate Averaging
Implementation

Algorithm 1 shows the pseudo-code of our asynchronous
federated averaging process. The algorithm consist of three
procedures, which execute asynchronously. “ClientLoop”
(lines 1-12) runs at clients and executes a round of training
(lines 7-12), if the phone self-selects for training and the
cloud accepts it (lines 1-6). “ServerRTCmHandler” (lines 13-
17) is a part of the FL Cloud Manager and decides whether
a phone is accepted for training. “ServerLoop” (lines 18-40)
also runs at the FL Cloud Manager. It performs the aggrega-
tion of local gradients and controls the progression of train-
ing. The clients participating in a training round must
submit their local gradients before the deadline for the
round expires. When the deadline comes, the procedure
first evaluates the Start for Aggregation policy, which
checks whether there are enough local gradient updates in
order to preform aggregation. If yes, the aggregation is pre-
formed (line 24-26); if not, this round is aborted, but the
uploaded gradient updates will be carried to the next
round. After aggregation, the procedure may check against
pre-defined conditions to decide whether this aggregation
outcome should be accepted or not (lines 27-30). Finally, the
procedure checks if a new round should be started by eval-
uating the Start New Round policy. If a new round is to be
started, a new deadline will be set (lines 33-36). Otherwise,
the procedure terminates.

4.5 FLSys Setup Workflow

By design, FLSys acts as a service provider that handles
multiple FL models with minimum input from the users.
The setup procedures for FLSys are divided into two stages.
The first stage involves the FL Cloud Manager and the app
developers, without user involvement. The second stage
involves the FL Phone Manager and the mobile apps that
use FL models, and it requires minimum user involvement.

The FL Cloud Manager is deployed before the first stage,
and the FL Phone Manager should be installed on the user’s
device before the second stage. To illustrate these stages, let
us briefly explain the setup workflow using the HAR app as
an example.

Algorithm 1. AsyncFedAveraging

1: procedure CLIENTLOOP

2: while true do
3: readyToConfig EVALUATEREADYTOCONFIGPOLICY

(powerState, wifiState,...)
4: if readyToConfig then
5: response SENDRTCM()
6: if response == “AFT” then
7: B SAMPLING(DL)
8: ul ut

9: for batch b 2 B do
10: ul ul � hrLðul; bÞ
11: Dl ul � ut

12: UPLOADCLIENTGRADIENTS(Dl)
13: procedure SERVERRTCMHANDLERRTCm
14: if EVALUATEACCEPTFORTRAININGPOLICY(RTCm) then
15: RETURNRESPONSE(“AFT”)
16: else
17: RETURNRESPONSE(“DFT”)
18: procedure SERVERLOOP

19: deadlineTriggered false
20: SETUPDEADLINE() (deadlineTriggered true when

triggered)
21: while true do
22: if deadlineTriggered then
23: if EVALUATESTARTFORAGGREGATIONPOLICY() then
24: fD1; . . .Dkg LOADCLIENTGRADIENTS()
25: Dt ¼ ð

P
k DkÞ=k

26: utþ1 ut þ gDt

27: if ISROUNDACCEPTABLE() then
28: ACCEPTROUND(utþ1)
29: else
30: ABORTROUND()
31: else
32: ABORTROUND()
33: if EVALUATESTARTNEWROUNDPOLICY() then
34: STARTNEWROUND()
35: deadlineTriggered false
36: SETUPDEADLINE()
37: else
38: STOPTRAINING()
39: else
40: WAIT()

In the first stage, the developers of the HAR app need
to register the model with the FL Cloud Manager. The
app developers need to provide the FL model to be
trained and the training plan (e.g., training frequency,
number of rounds, number of participants in a round,
etc.) to register the app. The model can be developed by
the app developers or by a third party. After registra-
tion, a unique key for the authentication between the
app and the FL Phone Manager in the second stage will
be provided.

The second stage is typically triggered during the instal-
lation process of the HAR app on the user’s device. The app

JIANG ETAL.: FLSYS: TOWARDAN OPEN ECOSYSTEM FOR FEDERATED LEARNING MOBILE APPS 509

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

will communicate with the FL Phone Manager and authen-
ticate itself using the aforementioned unique key. Once the
app is successfully authenticated, the FL Phone Manager
will perform a series of operations and eventually become
ready to serve the FL model for the app. These operations
include: (1) Register the phone with the FL Cloud Manager;
(2) Set up communication channels with the app; (3) If the
model does not exist on the phone, download the model
specified by the app and the training plan from the FL
Cloud Manager; If the model already exists on the phone,
establish the connection between the app and that model;
and (4) Set up the local training schedule and notify the
user. After the second stage, the FL model that the HAR
app needs is installed on the phone, ready for inference and
training. The training plan can be adjusted by the develop-
ers through the FL Cloud Manager. User-experience related
parameters can be adjusted by the user through the FL
Phone Manager.

5 HAR-WILD: DATA, MODEL, AND TRAINING

We co-designed FLSys with a HAR model, which was used
to extract the main requirements for FLSys and, then, to
demonstrate the efficiency and effectiveness of FLSys. To
show that FLSys works with different concurrent models,
we also implemented and evaluated a sentiment analysis
(SA) model, as described in Section 6. In this section, we
describe the HAR dataset, our HAR-Wild model, and its
training algorithm using data augmentation to deal with
non-IID data in the wild.

5.1 Data Collection

Although there are good HAR datasets publicly available,
e.g., WISDM [29], UCI HAR [2], they are not representative
for real-life situations because they were collected in rigor-
ously controlled environments on standardized devices and
controlled activities, in which the participants only focused
on collecting sensor data with a usually high and fixed sam-
pling rate frequency, i.e., 50 Hz or higher. Thus, given our
goal to test FLSys with data collected in the wild, we have
used our Data Collector, described in Section 4.2, to collect
data from 116 users at two universities.

The data collection was approved by the IRBs at both
universities. The students collected data for four months.
Each user provided accelerometer data and labels of their
activities on their personal Android phones. We provided
labels in five categories for participants to choose form:
“Walking,” “Sitting,” “In Car,” “Cycling,” and “Running”.
The phones were naturally heterogeneous, and the daily-
life activities were not constrained by our experiments.

Therefore, we collected a novel HAR dataset in the wild
that is different from the existing datasets in the following
three aspects: (1) The sensors’ sampling rates vary from
time to time and from user to user, due to battery constrains,
device heterogeneity, and usage differences; (2) The same
basic activity will generate different signals since different
users will have different habits of carrying smart phones;
(3) Label distributions are not just biased, but vary signifi-
cantly among users.

5.2 Data Preprocessing

Our data processing consists of the following steps: (1) Any
duplicated data points (e.g., data points that have the same
timestamp) are merged by taking the average of their sensor
values; (2) Using 300 milliseconds as the threshold, continu-
ous data sessions are identified and separated by breaking
up the data sequences at any gap that is larger than the
threshold; (3) Data sessions that have unstable or unsuitable
sampling rates are filtered out. We only keep the data ses-
sions that have a stable sampling rate of 5 Hz, 10 Hz, 20 Hz,
or 50 Hz; (4) Data sessions are also filtered with the follow-
ing two criteria to ensure good quality: (a) The first 10 sec-
onds and the last 10 seconds of each data session are
trimmed, based on our observations of the user behavior
and data. The first 10 seconds allow the users enough time
to completely change from one activity to another, without
affecting the label annotation. The last 10 seconds allow the
users enough time to finish their activity and label annota-
tion. Without giving the users enough time to begin and
end their activities, the labeled data will be in noisy. As
future work, an automatic solution in FLSys may be able to
adapt dynamically such cut-off points for data across differ-
ent models and types of data. (b) Any data session longer
than 30 minutes is trimmed down to 30 minutes, in order to
mitigate the potential inaccurate labels due to users’ negli-
gence (forgot to turn off labeling); and (5) We sample data
segments at the size of 100 data points with sliding win-
dows. Different overlapping percentages were used for dif-
ferent classes and different sampling rates. The majority
classes have 25% overlapping to reduce the number of data
segments, while the minority classes have up to 90% over-
lapping to increase the available data segments. The same
principle is applied to sessions with different sampling
rates. We sample 15% of data for testing, while the rest are
used for training. Details are shown in Section 6.

Data Normalization. In our models, the accelerometer data
is normalized as x 2 ½�1; 1�3 to achieve better model utility.
We compute the mean and variance of each axis (i.e., X, Y ,
and Z) using only training data to avoid information leak-
age from the training phase to the testing phase. Then, both
training and testing data are normalized with z-score, based
on the mean and variance computed from training data.
Based on these results, we choose to clip the values in
between ½min;max� ¼ ½�2; 2� for each axis, which covers at
least 90% of possible data values. Finally, all values are line-
arly scaled to ½�1; 1� to finish the normalization process

x ¼ 2� ½ x�min

max�min
� 1=2�: (1)

5.3 Model Design

The design of our HAR-Wild model has two requirements:
low computational complexity and small memory footprint.
Satisfying these requirements ensures the model can work
efficiently on resource-constrained phones. Fig. 2 shows our
model architecture. For low computation complexity, HAR-
Wild is based on CNN (instead of RNN, e.g., LSTM) and tai-
lored to work well on mobile devices. In addition, instead of
using data from multiple sensors, HAR-Wild can achieve

510 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

comparable results with several baseline approaches by using
only accelerometer data, whichmakes the training faster.

The accelerometer data are processed into data segments of
shape ½3; 100�, indicating 100 data points of 3 axis: X, Y, and Z.
We leverage the recipe of ResNet model [19] into a small-size
model, by using the processed accelerometer data as input of
(1) a sequence of a 1D-CNN - a Batch Norm - a 1D-CNN - a
Batch Norm - a Flatten layer, and (2) a sequence of a 1D-CNN
- a Batch Norm - a Flatten layer. The two flatten layers are
concatenated before feeding them into a sequence of a Drop
Out layer - a Dense layer - and an Output layer. By doing so,
HAR-Wild canmemorize and transfer the low level latent fea-
tures learned from the very first 1D-CNN, directly derived
from the input data, to the output layer for better classifica-
tion. We use Global Average Pooling [34] given its small
memory footprint, instead of the popular LocalMax/Average
Pooling [17]. In addition to being appropriate for resource-
constrained phones, a small-size model such as HAR-Wild is
expected to perform better on data collected in the wild, since
the datawill likely havemore distribution drift, increasing the
chance ofmodel overfitting on large-sizemodels.

5.4 HAR-Wild Async Augmented Training

The performance of FL models is negatively affected by non-
IID data distribution [26], [28], [65], and we observed this to
be true for HAR-Wild as well. Fig. 3 shows the distribution of
the dataset we collected for HAR-Wild. To address this prob-
lem, we leverage data augmentation training [25] and tailor it
tomitigate the distortion in computing gradients at client-side
by balancing the client datawith a small number of augmenta-
tion data sampleswithout an undue computational cost.

The pseudo-code for HAR-Wild’s asynchronous aug-
mented learning is shown in Algorithm 2. This algorithm is
integrated in Algorithm 1 by replacing lines 7-12 from Algo-
rithm 1 with the AugmentedGradients() procedure in Algo-
rithm 2. Before the whole training process starts, the FL
Cloud Manager executes the procedure Init() (lines 1-3,
Algorithm 2), which first collects a small pool of random
samples for each class that will be used for data augmenta-
tion (line 2). These data can be collected from a small num-
ber of volunteers or controlled users who share IID data
with the FL Cloud Manager in FLSys. The augmentation
data pool could also come from publicly available datasets.
Then, the augmentation data pool A is delivered to each cli-
ent (line 3). In each training round, each client (i.e., phone)
randomly samples the augmentation data (line 8). Then, the

sampled augmentation data DA will be combined with the
local data DL (line 10, Concatenate(DA, DL)) to compute the
local gradients (lines 11-13, LocalTraining()). The local gra-
dients are then sent to the cloud for the asynchronous aver-
age aggregation and model update (line 14).

Algorithm 2. HAR-Wild Asynchronous Augmented
Learning

1: procedure INITclients
2: augmentation pool A SAMPLEAUGMENTDATA(clients)
3: DELIVERAUGMENTPOOL(A, clients)
4: procedure AUGMENTEDGRADIENTSROUND t, Client i
5: Augmentation data pool A
6: Local data pool Li

7: ul ut

8: augmentation data DA = SAMPLEAUGMENTDATA(A)
9: local data DL = SAMPLEDATA(Li)
10: training data DT = CONCATENATE(DA, DL)
11: for batch b 2 DT do
12: ul ul � hrLðul; bÞ
13: Dl ul � ut

14: UPLOADCLIENTGRADIENTS(Di)

In order to deliver the augmentation data to the clients (line
3), we consider two objectives: (i) privacy protection, and (ii)
communication efficiency. One naive approach is to send data
to augment the missing classes at the clients in each training
round, since the local missing data can change over time. In
this approach, the FL Cloud Manager needs to know which
classes are missing for each client in each training round. This
could increase the communication cost and significantly
increase data privacy risk, since the cloud learns certain
aspects of the user behavior based on the classes that miss
data over time. To achieve both privacy protection and com-
munication efficiency, the approach implemented in FLSys
(Algorithm 2) first delivers the entire augmentation data to
every client only once at the beginning of the training process.
Then, the clients use only the data necessary to augment their
missing data. The clients check the missing classes when they
receive the data, and re-check every time they accumulate
enough new data (the amount of new data is a model-specific
configuration parameter).

6 EVALUATION

The evaluation has two main goals: (i) Analyze the perfor-
mance of the two FL models, HAR-Wild and sentiment

Fig. 2. HAR-wild model architecture. Fig. 3. Number of data points of each class for each user.

JIANG ETAL.: FLSYS: TOWARDAN OPEN ECOSYSTEM FOR FEDERATED LEARNING MOBILE APPS 511

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

analysis (SA) with different aggregators and DPmechanisms.
(ii) Quantify the system performance of FLSys with HAR-
Wild and SAonAndroid andAWS. In terms of systemperfor-
mance, we investigate energy efficiency and memory con-
sumption on the phone, system tolerance to phones that do
not upload local gradients, and FL aggregation scalability in
the cloud. We also study the overall response time for third
party apps that use FLSys on the phone. For model evalua-
tion, we use Accuracy, Precision, Recall, and F1-score metrics.
For system performance, we report execution time and mem-
ory consumption for both the phones and the cloud, and bat-
tery consumption on the phones.

Most of the evaluation is done with HAR-Wild, which
illustrates a typical FL model based on mobile sensing data.
To demonstrate that FL works for different models, we also
show results for the SA model. The rest of the section is
organized as follows: Section 6.1 compares HAR-Wild
against baseline models and evaluates the effect of data aug-
mentation, different aggregators, and advanced privacy
mechanisms on HAR-Wild’s performance. Section 6.2
describes the sentiment analysis (SA) model, used to dem-
onstrate FLSys’s support for different models, and shows its
performance. Section 6.3 shows the HAR-Wild performance
over the FLSys prototype, in terms of model accuracy, fault
tolerance, and scalability. Since we did not have enough
phones for larger-scale experiments, we show these results
using Android/Linux emulators to replay each user’s data.
Finally, Section 6.4 presents results for HAR-Wild and SA
over FLSys on two types of Android phones.

6.1 HAR-Wild Model Evaluation

Table 2 shows the basic information of our collected dataset
used for all HAR-Wild experiments. Some users have very
limited numbers of labeled activities; thus, we select data
from 51 users who labeled a reasonable amount of samples.

Comparison With Baseline Approaches. We perform central-
ized evaluation to assess HAR-Wild’s utility compared to
several baselines. Centralized training works as an upper
bound performance for FL models. In addition, it allows us
to fine-tune the model’s hyper parameters. The evaluation
includes three variants of HAR-Wild: HAR-W-32, HAR-W-
64, and HAR-W-128, which have the numbers of convolu-
tion-channels set to 32, 64, and 128. For comparison, we
consider two baseline models: (1) Bidirectional LSTM with
3-axial accelerometer data as input. This is a typical model for
time-series data, and we fine-tune it based on grid-search of
hyperparameters; and (2) The CNN-based models proposed
by Ignatov [24], with(CNN-Ig) and without(CNN-Ig_featureless)
additional features using the author’s recommended settings
in [24]. For a fair comparison, we used TensorFlow implemen-
tations for all models. Table 3 shows all the hyper-parameters
and model configurations.

Fig. 4 shows that HAR-Wild models outperform the
baseline approaches. While the experiments run for up to
10,000 epochs to determine the performance upper bound,
we observe the accuracy achieves acceptable performance
after 1,000 epochs. On average, HAR-W-64 performs best
and achieves 82.49% accuracy compared with 78.68%,
76.39%, and 77.08% of the BiLSTM, CNN-Ig and CNN-Ig-
featureless. The results in Table 4 demonstrate that our
HAR-Wild models also achieve the best performance in all
the other metrics. Let us note that the absolute performance
results may appear low when compared to HAR models
run on data collected in controlled environment. This is
because the data collected in the wild is noisier and non-
IID. Overall, HAR-W-64 (60,613 trainable weights) has the
best trade-off among model accuracy, convergence speed,
and model size, and we use it in all the following experi-
ments for HAR-Wild.

Comparison of Different FL Versions of HAR-Wild. We also
perform FL simulations to compare HAR-Wild’s perfor-
mance across three dimensions: (1) with and without data
augmentation (2) with different aggregators (3) with and
without advanced privacy mechanisms. Since the simula-
tions are in TensorFlow, we can also compare the FL results
with the centralized training results. In the simulated FL,
we replay the data collected in the wild for each user.

In the following, the basic FL HAR-Wild model without
data augmentation and without privacy mechanisms is
called HAR-W-64-stock. The model with data augmentation,
but without privacy mechanisms, is called HAR-W-64-uni-
form. The augmentation data, consisting of 640 samples of
each class, is fixed and shared with all clients.

The modular design of FLSys supports different FL
aggregators. In addition to the standard FedAvg, we train
the HAR-Wild model in FL with three aggregators designed
to handle non-IID data [51]: FedYogi, FedAdam and FedA-
dagrad. To evaluate privacy protection in HAR-Wild, we
apply the two types of privacy-preserving mechanisms
available in FLSys (described in Section 3 and Appendix A),
available in the online supplemental material: User-level DP
(User-DP) and Local DP (LDP). We experiment with one
User-DP mechanism proposed by [44] and five LDP mecha-
nisms: BitRand [31], Duchi [12], Piecewise [61], Hybrid [61],
Three-Outputs [64]. All the hyperparameters are provided in
Table 3.

Table 4 shows the results for different FL versions of
HAR-Wild. HAR-W-64-fed-uniform (FedAvg with data
augmentation) achieves 71.8% accuracy, which is about 10%
less than the accuracy of the centralized-trained HAR-Wild.
This is the cost of privacy-protection provided by FL. We
tested FedYogi, FedAdam and FedAdagrad with and with-
out data augmentation, and in both case they achieve com-
parable accuracy with FedAvg. Table 4 shows the results
with data augmentation. Surprisingly, due to the noisy
nature of HAR sensor data, the aggregators designed to
handle non-IID data do not guarantee better performance
than FedAvg. Therefore, the rest of the experiments will use
FedAvg, which is the prevailing aggregator in FL.

For privacy protection mechanisms, we train the HAR-
W-64-fed-uniform model with the aforementioned DP
mechanisms. Then, we evaluated the trade-offs between
model utility and privacy budget for different versions of

TABLE 2
Number of Samples in the Dataset for 51 Users

Type Class 0
Walking

Class 1
Sitting

Class 2 In
Car

Class 3
Cycling

Class 4
Running

Training 48855 51499 49185 14281 1920
Testing 8514 8828 8595 2514 319

512 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

HAR-Wild with privacy mechanisms, as shown in Table 5.
As expected, the model utility decreases as privacy budget
" tightens. From this table, we select the best User-DP model
(i.e., the one with " ¼ 8) and the best LDP model (i.e.,
BitRand with "X ¼ "Y ¼ 8) in terms of accuracy, and com-
pare them with the models with and without augmentation
in Fig. 5. The results show that HAR-Wild with User-DP
achieves a model accuracy of 69.70%, which is just 2.11%
lower than the model without privacy protection. HAR-
Wild with LDP (BitRand) achieves an accuracy of 69.43%,
which is just 2.38% lower than the noiseless model. Note
that our defense successfully prevents the server to recon-
struct recognizable sensor signals and infer its associated
ground-truth labels. One of the reasons is that it is more
challenging to infer whether a time series of sensor signals
belongs to a particular client than other domain applica-
tions. When using a tighter privacy budget, e.g., "X ¼ "Y ¼
4 or 2, the gap between BitRand and Non-DP model
becomes bigger. This is due to the fact that BitRand has not
been designed for imbalanced data and cannot work well
with significantly imbalanced data as our HAR dataset,
especially when reducing the privacy budget "Y for protect-
ing the labels. Let us also emphasize that both privacy pro-
tection mechanisms offer rigorous privacy guarantees in
FLSys without significant computational overhead.

The different aggregators and privacy preserving mecha-
nisms also showcase how the modularity of FLSys can be used
to easily exchange different implementations of amodule.

6.2 Sentiment Analysis (SA) Model Evaluation

FLSys is designed and implemented to be flexible, in the
sense that training and inference of multiple models can
run concurrently. On the server, different applications use
independent AWS resources. On the phone, independent
model trainers and inference runners are responsible for
different applications. This subsection showcases the train-
ing performance of the SA model, a text analysis model that
interprets and classifies the emotions (positive or negative)
from text data. For example, with the inferred emotions of
mobile users’ private text data, a smart keyboard may auto-
matically generate emoji to enrich the text before sending.

We build the SA model for tweet data. We use the FL
benchmark dataset Sentiment140,3 which consists of
1,600,498 tweets from 660,120 users. We select the users
with at least 70 tweets, and this sub-dataset contains 46,000
+ samples from 436 users. Our SA model first extracts a fea-
ture vector of size 768 from each tweet with DistilBERT [53].
Then, it applies two fully connected layers with ReLU and
Softmax activation, respectively, to classify the feature vec-
tor into positive or negative. The number of hidden states of
the first fully connected layer is set to 128 to balance the con-
vergence speed and model size. In the FL version of the
model, 5% of the users are used for data augmentation, and
the rest of the users follow 4:1 train-test split.

While the reference implementation associated with this
benchmark dataset reached 70% accuracy [6] using 100
users with stacked LSTM in FL simulation, our SA model
achieves superior performance, as shown in Table 6. Cen-
tralized learning achieves 81% accuracy, while FL achieves
79% accuracy (an acceptable drop). The FL version of this
SA model will be further evaluated while running over
FLSys on Android phones in Section 6.4.

TABLE 3
Model Settings of HAR-W and Baselines

Model Optimizer Other key parameters

HAR-Wild (centralized) Adam LR=0.0005, dropout_rate=0.4, batch_size=1024
Sampling: Same as class distribution

HAR-Wild (sim-FL) Adam client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=128,
Sampling: [50,100] samples per class, [15,30] augment samples per class

HAR-Wild (sim-FL with
additional aggregators)

Adam client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=128
degree_of_adaptivity = 1, decay_parameters = 0.1, 0.9

Sampling: [50,100] samples per class, [15,30] augment samples per class

HAR-Wild (sim-FL with DP) Adam client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=256
Sampling: [50,100] samples per class, [15,30] augment samples per class

HAR-Wild (FLSys) Adam client_LR=0.005, server_LR=1.0, dropout_rate=0.4, batch_size=64
Sampling: [50,100] samples per class, [15,30] augment samples per class

CNN-Ig (centralized) Adam LR=0.0005, dropout_rate=0.05, batch_size=1024
Sampling: Same as class distribution

BiLSTM (centralized) Adam LR=0.0005, dropout_rate=0.2, batch_size=1024
Sampling: Same as class distribution

Fig. 4. Centralized training evaluation. 3. http://help.sentiment140.com/home

JIANG ETAL.: FLSYS: TOWARDAN OPEN ECOSYSTEM FOR FEDERATED LEARNING MOBILE APPS 513

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

6.3 HAR-Wild Over FLSys Emulation Performance

To evaluate the performance of HAR-Wild over the FLSys
prototype at scale, we use Android emulation because we
did not have enough phones for these experiments. Fur-
thermore, since Android emulation is slow and costly, we
run several larger-scale experiments with the same DL4J
algorithms and functions in Linux, which is much faster.
We train the model in these experiments for only 1,000
rounds because the simulation results showed that the
accuracy is acceptable starting with this number of
rounds.

All the phone components of the prototype, except for
Data Collector and Data Preprocessor, run in the emulators.
The cloud part of the prototype runs in AWS. The Android
emulators run on top of virtual machines (VMs) in Google
Cloud, as AWS does not support nested virtualization. We
run 10 VMs in Google Cloud, and each VM has 16 vCPUs
and 60 GB memory. On each instance, we run 4 Android
v10 emulators from AVD manager in Android Studio. Each
emulator is loaded with 3 users’ data files, and each file is
sampled twice as different clients. In each round, each
Android emulator participates in training on behalf of a few

clients. We set the deadline for the round in the FL Cloud
Manager to 6 minutes.

Accuracy. Fig. 6 shows that HAR-Wild with 64 clients
emulation in both Android and Linux on FLSys achieve
comparable accuracy with the simulated FL with Tensor-
Flow, i.e., 69.07%, 68.50%, and 66.00%. Table 7 shows HAR-
Wild’s performance per class using FLSys and Android
emulation. Although our data collected in the wild are inev-
itably unbalanced (Table 2), every class performs reason-
ably well with F1-scores between 66.7% and 76.8%. Fig. 7
shows the results of HAR-Wild with higher number of cli-
ents (up to 960) using Linux emulations. The client data was
over-sampled from the original 51 users. HAR-Wild model
achieves up to 69.17% accuracy, and more clients help the
model converge quicker with better performance.

Fault Tolerance. In daily life, some clients may fail to
upload a trained model to the FL Cloud Manager due to
network or computation issues. This set of experiments
verifies the fault tolerance of FLSys in terms of model per-
formance as a given percentage of clients drop out ran-
domly in each round. Fig. 7 shows the accuracy of HAR-
Wild with up to 50% clients dropping out randomly from
480 clients in each round. With 1,000 rounds of training, the
accuracy is reduced by at most 3.11%. This is a promising
result showing that FLSys can tolerate reasonably large
dropout rates during training.

Scalability. As discussed in Section 4, computation and
storage scale independently in the cloud for FLSys. This set
of experiments verifies the scalability of FLSys across train-
ing rounds. The only FL function that may be computation-
ally intensive in the cloud is the Model Aggregator. Fig. 8
shows the Model Aggregator in AWS scales linearly with
the number of participating clients. We also observe that the
aggregation of 960 clients generally finishes in less than 4
minutes. By interpolating these results and given the cur-
rent 15 minutes execution time limit of an AWS Lambda

TABLE 4
HAR-Wild Using Centralized and FLTraining versus Baselines:

Macro-Model Performance

Model Accuracy Precision Recall F1-score

HAR-W-32-centralized 0.8186 0.8486 0.8360 0.8409
HAR-W-64-centralized 0.8249 0.8512 0.8354 0.8428
HAR-W-128-centralized 0.8262 0.8529 0.8449 0.8484
BiLSTM 0.7868 0.8074 0.7831 0.7941
CNN-Ig 0.7639 0.7970 0.7715 0.7834
CNN-Ig_featureless 0.7708 0.8004 0.7779 0.7878
HAR-W-64-fed-stock 0.5368 0.3828 0.3569 0.3190
HAR-W-64-fed-uniform 0.7181 0.7464 0.7419 0.7378
HAR-W-64-fed-yogi 0.7107 0.6865 0.7731 0.7130
HAR-W-64-fed-adam 0.7072 0.6829 0.7592 0.7058
HAR-W-64-fed-adagrad 0.6691 0.6030 0.7429 0.6358

TABLE 5
Macro-Model Performance for HAR-W-64-Fed-Uniform for Dif-
ferent Types of Privacy Protection Mechanisms and Different

Parameters

DP
Mechanism

Privacy
Budget

Accuracy Precision Recall F1-
score

Non-DP "!1 0.7181 0.7464 0.7419 0.7378
User-DP " ¼ 2 0.5399 0.5264 0.5797 0.5259
User-DP " ¼ 4 0.5973 0.5603 0.6297 0.5502
User-DP " ¼ 8 0.6970 0.6333 0.7264 0.6523
BitRand "X ¼ "Y ¼ 2 0.4251 0.3667 0.3715 0.3277
BitRand "X ¼ "Y ¼ 4 0.5193 0.4607 0.5110 0.4416
BitRand "X ¼ "Y ¼ 8 0.6943 0.6885 0.7359 0.7031
Duchi " ¼ 2 0.4846 0.4286 0.5233 0.4201
Duchi " ¼ 4 0.5122 0.4307 0.4998 0.4360
Piecewise " ¼ 2 0.4857 0.4086 0.4267 0.3944
Piecewise " ¼ 4 0.5065 0.4245 0.4686 0.4222
Hybrid " ¼ 2 0.4791 0.3961 0.3714 0.3714
Hybrid " ¼ 4 0.5353 0.4521 0.4508 0.4431
Three-Outputs " ¼ 2 0.2906 0.2662 0.2348 0.0192
Three-Outputs " ¼ 4 0.2946 0.3288 0.2424 0.2386

Fig. 5. Comparison of FL HAR-wild versions, w/ and w/o data augmenta-
tion, and w/ and w/o privacy protection.

TABLE 6
SA Model Performance Per Class for Centralized and Federated

Learning

Class Accuracy Precision Recall F1-score Support

CL
negative 0.81 0.75 0.69 0.72 3159
positive 0.84 0.88 0.86 5746

FL
negative 0.79 0.73 0.64 0.68 3159
positive 0.81 0.87 0.84 5746

514 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

process [1], the FLSys prototype (with single-threaded
aggregator) can handle up to 3,600 clients, which is a suffi-
cient number of clients, per training round. This number
can be multiplied substantially by implementing both
thread-level and process-level parallelization to handle real-
world traffic volume.

Overall, the results for accuracy, fault-tolerance, and scal-
ability demonstrate that FLSys and HAR-Wild can work
well in real-life, where they are deployed on Android
phones and the AWS cloud.

6.4 FLSys Performance on Smart Phones

We benchmarked FLSys with HAR-Wild and SA on
Android phones using a testing app to evaluate training
and inference performance. We also assessed the resource
consumption on the phones. We used three phones with dif-
ferent specs (Nexus 6P, Google Pixels 3 and 3a). The results
demonstrate the on-device feasibility of FLSys, even for a
low-end Nexus 6P phone, unveiled in 2015 and running
Android 7. Since FLSys works well on such a low-end
phone and people change their Android phones every 2-3
years on average,4 we expect FLSys to work well on most of
today’s phones.

Training Performance. Table 8 shows the training time and
the resource consumption on the phones. The training time
is recorded by training 650 samples for 5 epochs for HAR-
Wild, and 100 samples for 5 epochs for SA, which are the
optimum scenarios determined in Section 6.3. Foreground
training is done while leaving the screen on, and it uses the
full single core capacity. It provides a lower bound for the
training time. However, in reality, we expect training to be

done in the background, either on battery or on charger. As
in practice, other apps or system processes working in
background may interfere with training. We take 10 meas-
urements for each benchmark, and report the mean and
standard deviation.

Training for one round is fast on the phones. The fore-
ground training time on the more powerful phone, Pixel 3,
is just 0.7 min for HAR-Wild, and 0.22 min for SA. The back-
ground training time on charger, which is the expected situ-
ation for FL training, is good for any practical situation. The
phones experience a higher training time compared with
the foreground case (completed one training round in less
than 4 minutes). The background training time on battery is
notably longer, since Android attempts to balance computa-
tion with battery saving.

The results show training is also feasible in terms of
resource consumption. The maximum RAM usage of the
app is less than 165 MB, and modern phones are equipped
with sufficient RAM to handle it. While we did not perform
experiments for battery consumption in the foreground (as
this test was used just for a lower bound on computation
time), we measured battery consumption for background
training on battery. The phones could easily perform hun-
dreds of rounds of training on a fully charged battery. It is
worth noting that, typically, one round of training per day
is enough, as the users need enough time to collect new
data.

Inference Performance. The results in Table 9 demonstrate
that FLSys can be used efficiently by third-party apps. The
inference time is measured within the third party testing
app. Let us note that the inference is performed locally by

Fig. 6. HAR-wild over FLSys using Android/Linux emulation.

TABLE 7
Performance Per Class of HAR-Wild Over FLSys Using Android

Emulation

Class Accuracy Precision Recall F1-score

0

0.6907

0.7003 0.6628 0.6810
1 0.5922 0.8655 0.7032
2 0.8606 0.5443 0.6668
3 0.8324 0.6450 0.7268
4 0.6682 0.9028 0.7680

Fig. 7. Linux emulation of HAR-wild over FLSys, while varying total num-
ber of users and number of users dropping from training.

Fig. 8. Aggregation time and participating clients.

4. https://www.statista.com/statistics/619788/average-smart-
phone-life/

JIANG ETAL.: FLSYS: TOWARDAN OPEN ECOSYSTEM FOR FEDERATED LEARNING MOBILE APPS 515

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

the FL Phone Manager, without any network communica-
tion. Thus, the measured time consists of the inference com-
putation time and the inter-process communication time.
We continuously perform predictions for 30 minutes and
report the average values. The inference time for the three
scenarios on the third-party app, foreground, background
on charger, and background on battery, follows a similar
trend as training. FLSys and HAR-Wild/SA have reason-
able resource consumption, which make them effective in
practice.

In addition to HAR and SA, many other applications
may benefit from FLSys. For example, FL models are appro-
priate for privacy-sensitive image and video data collected
on mobile devices. Existing research confirms that such
models are feasible on resource-constrained mobile devices.
For training, Mathur et al. [42] demonstrated that training a
2-layer DNN classifier on top of a pre-trainedMobileNet [23]
on Android clients for the Office-31 dataset takes about 30
minutes to converge. For inference, we tested the inference
time of MobileNet on 224*224 images, and it takes about
120 ms for a single CPU thread. These numbers are compa-
rable with our results on HAR and confirm that such mod-
els could run over FLSys.

7 CONCLUSIONS, LESSONS LEARNED, AND
FUTURE WORK

This paper presented our experience with designing, build-
ing, and evaluating FLSys, an end-to-end federated learning
system. FLSys was designed based on requirements derived
from real-life applications that learn from mobile user data
collected in the wild, such as human activity recognition
(HAR). Compared with existing FL systems, FLSys balances
model utility with resource consumption on the phones, tol-
erates client failures/disconnections and allows clients to
join training at any time, supports multiple DL models that
can be used concurrently by multiple apps, provides sup-
port for advanced privacy protection mechanisms, and acts
as a “central hub” on the phone to manage the training,
updating, and access control of FL models used by different
apps. We built a complete prototype of FLSys in Android
and AWS, and used this prototype to demonstrate that
FLSys is effective and efficient in practice in terms of model
performance, privacy protection, resource usage, and
latency. We believe FLSys can open the path toward creat-
ing an FL ecosystem of models and apps for privacy-

preserving deep learning on mobile sensing data. In terms
of actual deployment of FLSys in practice, we believe it can
be offered as FL as a Service (FLaaS) by cloud providers.

Next, we report lessons learned and future work. The les-
sons learned are based on our experience with running
FLSys on data collected in the wild from 50+ users over a 4-
month period. Larger scales and longer periods are neces-
sary for additional insights into system scalability and
robustness, as well as model performance at scale.

Build Mechanisms to Cope With Non-IID Data. Since our
data collection happened during the Covid-19 pandemic,
we expected to see somewhat similar data from users who
mostly stayed indoors. However, the data was non-IID,
strengthening the idea that data collected in the wild will
almost always be non-IID. A future work in FLSys is to pro-
vide support for model and data-specific augmentation and
other approaches to cope with non-IID data.

Beware the Simulation Pitfalls. One common practice in FL
simulations is to use the same instances/placeholders in
memory for the different clients. Such simulations must
carefully reset the instances for different clients to avoid
any information leakage among clients, which can never
happen in a real system. Our initial experiments showed
unexpectedly different results between simulations and
Android emulators with DL4J for the same settings. The
first problem we discovered was that Batch Normalization
(BN) is not supported in DL4J for specific data shapes. We
implemented our own BN in DL4J, but the simulation
results still did not match the experimental results. Finally,
we realized that BN does not work well for FL (consistent
with [33]), but it does work in the simulations due to shared
instances among the simulated clients. Thus, the FL models
used in the reported experiments do not use BN. The second
problem we noticed was that the Adam optimizer worked
well for simulation, but not for the Android emulator
experiments. This was also caused by shared instances
accessed by all clients in the simulation. This should not
happen in practice given privacy leakage through the
shared instances. The lesson learned was that simulation
may show better results than experiments with real systems
for FL. Since most of FL papers in the literature are based on
simulations, their results may suffer from similar problems
with the ones described here. We believe FLSys offers an
opportunity to test such FL models in real-life conditions.

Balance Mobile Resources and Model Accuracy. In the cur-
rent FL literature, there are no results to show the FL models

TABLE 8
Training on Android Phones: Resource Consumption and Latency

Model Phone Max RAM
Usage
(MB)

Foreground
Training Time
Mean/SD (min)

Background Training
Time on Charger
Mean/SD (min)

Background Training
Time on Battery
Mean/SD (min)

Battery
Consumption

per Round (mAh)

Number of
Training Rounds
for Full Battery

HAR
Nexus 6P 219 4.95/0.94 39.10/26.10 45.34/24.31 35.10 98

Google Pixel 3a 156 1.23/0.01 3.94/0.04 85.82/33.07 9.72 308
Google Pixel 3 165 0.70/0.06 3.58/0.10 79.96/36.82 3.79 769

SA

Nexus 6P 139 1.62/0.08 5.04/0.13 29.79/17.13 7.94 435
Google Pixel 3a 128 0.33/0.005 0.84/0.006 25.42/5.72 2.02 1481
Google Pixel 3 136 0.22/0.002 0.76/0.02 24.19/8.12 0.76 3846

516 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

work well on mobile devices, while consuming a limited
amount of resources on these devices (e.g., battery power,
memory). A lesson that we understood early on is that
FLSys will need to balance resource usage on mobiles with
model accuracy. Therefore, FLSys used an asynchronous
design in which policies on the mobile devices are evalu-
ated to decide when it makes sense for the device to partici-
pate in training and consume resources. Our results show
that good model accuracy can be achieved even when a sig-
nificant number of mobile devices do not participate in
training in order to save resources. Let us also note that real
systems cannot expect to run the same number of rounds
that we observe in simulations. For example, it is common
to see 10,000 rounds in simulations. However, in real life,
mobile devices may not train more than once a day due to
both resource consumption and lack of enough new data. In
such a situation, running 10,000 rounds will take over 27
years. Thus, models must be optimized for a realistic num-
ber of rounds.

Design for Flexibility. FLSys was designed for model flexi-
bility on the phones from the beginning (i.e., allow apps to
use multiple interchangeable models). However, we did not
originally design for flexiblity in the cloud. At first, we used
virtual machines in the cloud and durable cloud storage for
all FL operations. However, when we analyzed scalability
and performance issues, we realized that an FaaS solution
and different types of storage are necessary. Therefore, we
changed the design of the FLSys in the cloud to allow for
different types of cloud platforms and storage options.
Thus, FLSys can easily be ported to other cloud platforms
beyond AWS.

Future Work. FLSys provides a solid foundation to extend
the privacy and security threat model and defense solu-
tions. For example, the clients can be compromised to poi-
son the federated training process by sending poisoning
gradients to the server. To defend against such attacks,
approaches such as robust aggregators, robust predictions,
and certified guarantees for model classification can be inte-
grated into the FLSys system. In fact, we can replace our
current supported aggregators with robust aggregators in
the FL Cloud Manager. In addition, robust predictions and
certified guarantees can be integrated into the Model Run-
ner in the FL Phone Manager.

In addition to the work on security/privacy, we will add
features to allow FLSys to support continuous data collec-
tion, which is what we expect to see in real-life scenarios.

Finally, if FLSys is successful in creating an ecosystem of
third-party apps and models, the long-term goal is to have
it offered as an OS service, which improves efficiency and
security.

REFERENCES

[1] Amazon Web Services. Lambda quotas. 2021. [Online]. Available:
https://docs.aws.amazon.com/lambda/latest/dg/
gettingstarted-limits.html

[2] D. Anguita, A. Ghio, L. Oneto, X. Parra, and J. L. Reyes-Ortiz, “A
public domain dataset for human activity recognition using
smartphones,” in Proc. Eur. Symp. Artif. Neural Netw., 2013,
Art. no. 3.

[3] D. J. Beutel et al., “Flower: A friendly federated learning research
framework,” 2021, arXiv:2007.14390.

[4] K. Bonawitz et al., “Towards federated learning at scale: System
design,” 2019, arXiv:1902.01046.

[5] K. Bonawitz et al., “Practical secure aggregation for privacy-pre-
serving machine learning,” in Proc. ACM SIGSAC Conf. Comput.
Commun. Secur., 2017, pp. 1175–1191.

[6] S. Caldas et al., “LEAF: A benchmark for federated settings,”
2019, arXiv:1812.01097.

[7] N. Carlini et al., “Extracting training data from large language
models,” 2020, arXiv:2012.07805.

[8] Z. Chai et al., “TiFL: A tier-based federated learning system,” in
Proc. 29th Int. Symp. High- Perform. Parallel Distrib. Comput., 2020,
pp. 125–136.

[9] R. Chavarriaga et al., “The opportunity challenge: A benchmark
database for on-body sensor-based activity recognition,” Pattern
Recognit. Lett., vol. 34, no. 15, pp. 2033–2042, 2013.

[10] Y. Chen, K. Zhong, J. Zhang, Q. Sun, and X. Zhao, “LSTM net-
works for mobile human activity recognition,” in Proc. Int. Conf.
Artif. Intell.: Technol. Appl., 2016, pp. 50–53.

[11] M. Duan, D. Liu, X. Chen, R. Liu, Y. Tan, and L. Liang, “Self-bal-
ancing federated learning with global imbalanced data in mobile
systems,” IEEE Trans. Parallel Distrib. Syst., vol. 32, no. 01, pp. 59–
71, Jan. 2021.

[12] J. C. Duchi, M. I. Jordan, and M. J. Wainwright, “Local privacy
and statistical minimax rates,” in Proc. IEEE 54th Annu. Symp.
Found. Comput. Sci., 2013, pp. 429–438.

[13] �U. Erlingsson, V. Feldman, I. Mironov, A. Raghunathan, K. Tal-
war, and A. Thakurta, “Amplification by shuffling: From local to
central differential privacy via anonymity,” in Proc. 30th Annu.
ACM-SIAM Symp. Discrete Algorithms, 2019, pp. 2468–2479.

[14] FATE, “An industrial grade federated learning framework,” 2021.
[Online]. Available: https://fate.fedai.org/

[15] Z. Feng et al., “SecureGBM: Secure multi-party gradient boosting,”
in Proc. IEEE Int. Conf. Big Data, 2019, pp. 1312–1321.

[16] L. Gao, H. Fu, L. Li, Y. Chen, M. Xu, and C.-Z. Xu, “FedDC: Feder-
ated learning with non-IID data via local drift decoupling and
correction,” in Proc. IEEE/CVF Conf. Comput. Vis. Pattern Recognit.,
2022, pp. 10112–10121.

[17] I. Goodfellow, Y. Bengio, A. Courville, and Y. Bengio, Deep Learn-
ing, vol. 1. Cambridge, MA, USA: MIT Press, 2016.

[18] C. He et al., “FedML: A research library and benchmark for feder-
ated machine learning,” 2020, arXiv:2007.13518.

TABLE 9
Inference on Android Phones: Resource Consumption and Latency

Model Phone Max RAM
Usage
(MB)

Foreground Inference
Time Mean/SD
(millisecond)

Background Inference
Time on Charger

Mean/SD (millisecond)

Background Inference
Time on Battery

Mean/SD (millisecond)

Battery
Consumption per
prediction (mAh)

Millions of
inferences for
Full Battery

HAR
Nexus 6P 161 54.65/16.36 1963.04/1540.29 7646.73/16349.49 4.49 0.77

Google Pixel 3a 158 38.48/10.07 99.73/19.76 100.11/19.69 4.12 0.73
Google Pixel 3 177 36.59/6.43 99.60/33.69 100.11/21.45 1.94 1.50

SA

Nexus 6P 114 19.66/6.06 20.10/20.04 20.25/28.11 3.35 1.03
Google Pixel 3a 108 11.90/3.71 20.65/4.45 19.58/3.93 2.3 1.30
Google Pixel 3 129 10.11/2.88 15.59/5.89 17.42/5.69 0.17 17.63

JIANG ETAL.: FLSYS: TOWARDAN OPEN ECOSYSTEM FOR FEDERATED LEARNING MOBILE APPS 517

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://docs.aws.amazon.com/lambda/latest/dg/gettingstarted-limits.html
https://fate.fedai.org/

[19] K. He, X. Zhang, S. Ren, and J. Sun, “Deep residual learning for
image recognition,” in Proc. IEEE Conf. Comput. Vis. Pattern Recog-
nit., 2016, pp. 770–778.

[20] Z. He, T. Zhang, and R. B. Lee, “Model inversion attacks against
collaborative inference,” in Proc. 35th Annu. Comput. Secur. Appl.
Conf., 2019, pp. 148–162.

[21] F. Hern�andez, L. F. Su�arez, J. Villamizar, and M. Altuve, “Human
activity recognition on smartphones using a bidirectional LSTM
network,” in Proc. XXII Symp. Image, Signal Process. Artif. Vis., 2019,
pp. 1–5.

[22] B. Hitaj, G. Ateniese, and F. P�erez-Cruz, “Deep models under the
GAN: Information leakage from collaborative deep learning,”
2017, arXiv:1702.07464.

[23] A. G. Howard et al., “MobileNets: Efficient convolutional neural net-
works for mobile vision applications,” 2017, arXiv:1704.04861.

[24] A. Ignatov, “Real-time human activity recognition from acceler-
ometer data using convolutional neural networks,” Appl. Soft
Comput., vol. 62, pp. 915–922, 2018.

[25] E. Jeong, S. Oh, H. Kim, J. Park, M. Bennis, and S.-L. Kim,
“Communication-efficient on-device machine learning: Federated
distillation and augmentation under non-IID private data,”
2018, arXiv:1811.11479.

[26] P. Kairouz et al., “Advances and open problems in federated
learning,” 2019, arXiv:1912.04977.

[27] M. Kim, O. G€unl€u, and R. F. Schaefer, “Federated learning with
local differential privacy: Trade-offs between privacy, utility, and
communication,” 2021, arXiv:2102.04737.

[28] J. Kone�cn�y, H. B. McMahan, D. Ramage, and P. Richt�arik,
“Federated optimization: Distributed machine learning for on-
device intelligence,” 2016, arXiv:1610.02527.

[29] J. R. Kwapisz, G. M. Weiss, and S. A. Moore, “Activity recognition
using cell phone accelerometers,” ACM SigKDD Explorations
Newslett., vol. 12, no. 2, pp. 74–82, 2011.

[30] L. Ruixuan, C. Yang, C. Hong, G. Ruoyang, and Y. Masatoshi,
“FLAME: Differentially private federated learning in the shuffle
model,” 2020, arXiv:2009.08063.

[31] P. Lai et al., “Bit-aware randomized response for local differential
privacy in federated learning,” 2022. [Online]. Available: https://
openreview.net/forum?id=ZUXZKjfptc9

[32] T. Li, A. K. Sahu, A. Talwalkar, and V. Smith, “Federated learning:
Challenges, methods, and future directions,” IEEE Signal Process.
Mag., vol. 37, no. 3, pp. 50–60, May 2020.

[33] X. Li, M. Jiang, X. Zhang, M. Kamp, and Q. Dou, “FedBN: Feder-
ated learning on non-IID features via local batch normalization,”
2021, arXiv:2102.07623.

[34] M. Lin, Q. Chen, and S. Yan, “Network in network,” 2013,
arXiv:1312.4400.

[35] B. Liu, L. Wang, and M. Liu, “Lifelong federated reinforcement
learning: A learning architecture for navigation in cloud robotic
systems,” IEEE Robot. Automat. Lett., vol. 4, no. 4, pp. 4555–4562,
Oct. 2019.

[36] R. Liu, Y. Cao, M. Yoshikawa, and H. Chen, “FedSel: Federated
SGD under local differential privacy with top-k dimension
selection,” in Proc. Int. Conf. Database Syst. Adv. Appl., 2020,
pp. 485–501.

[37] Y. Liu et al., “FedVision: An online visual object detection plat-
form powered by federated learning,” in Proc. AAAI Conf. Artif.
Intell., 2020, pp. 13172–13179.

[38] M. Luo, F. Chen, D. Hu, Y. Zhang, J. Liang, and J. Feng, “No fear
of heterogeneity: Classifier calibration for federated learning with
non-IID data,” in Proc. Adv. Neural Inf. Process. Syst., 2021,
pp. 5972–5984.

[39] L. Lyu, Y. Li, X. He, and T. Xiao, “Towards differentially private
text representations,” in Proc. 43rd Int. ACM SIGIR Conf. Res.
Develop. Inf. Retrieval, 2020, pp. 1813–1816.

[40] M. Malekzadeh et al., “Dopamine: Differentially private federated
learning on medical data,” 2021, arXiv:2101.11693.

[41] O. Marfoq, G. Neglia, R. Vidal, and L. Kameni, “Personalized fed-
erated learning through local memorization,” in Proc. Int. Conf.
Mach. Learn., 2022, pp. 15070–15092.

[42] A. Mathur et al., “On-device federated learning with flower,”
2021, arXiv:2104.03042.

[43] B. McMahan, E. Moore, D. Ramage, S. Hampson, and B. A. y
Arcas, “Communication-efficient learning of deep networks from
decentralized data,” in Proc. Artif. Intell. Statist., 2017, pp. 1273–
1282.

[44] H. B. McMahan, D. Ramage, K. Talwar, and L. Zhang, “Learning
differentially private recurrent language models,” 2017,
arXiv:1710.06963.

[45] V.Mugunthan, A. Peraire-Bueno, and L. Kagal, “PrivacyFL: A simula-
tor for privacy-preserving and secure federated learning,” in Proc. 29th
ACM Int. Conf. Inf. Knowl.Manage., 2020, pp. 3085–3092.

[46] A. Murad and J.-Y. Pyun, “Deep recurrent neural networks for
human activity recognition,” Sensors, vol. 17, no. 11, 2017,
Art. no. 2556.

[47] M. Nasr, R. Shokri, and A. Houmansadr, “Comprehensive pri-
vacy analysis of deep learning: Passive and active white-box infer-
ence attacks against centralized and federated learning,” in Proc.
IEEE Symp. Secur. Privacy, 2019, pp. 739–753.

[48] Nvidia. FLARE. 2021. [Online]. Available: https://nvidia.github.
io/NVFlare/index.html

[49] OpenMined. PySyft. 2021. [Online]. Available: https://blog.
openmined.org/tag/pysyft/

[50] L. T. Phong, Y. Aono, T. Hayashi, L. Wang, and S. Moriai,
“Privacy-preserving deep learning via additively homomorphic
encryption,” IEEE Trans. Inf. Forensics Security, vol. 13, no. 5,
pp. 1333–1345, May 2018.

[51] J. Sashank et al., “Adaptive federated optimization,”
2020, arXiv:2003.00295.

[52] A. K. Sahu, T. Li, M. Sanjabi, M. Zaheer, A. Talwalkar, and V.
Smith, “On the convergence of federated optimization in hetero-
geneous networks,” 2018, arXiv:1812.06127.

[53] V. Sanh, L. Debut, J. Chaumond, and T. Wolf, “DistilBERT, a dis-
tilled version of BERT: Smaller, faster, cheaper and lighter,”
2019, arXiv:1910.01108.

[54] D. Sarkar, A. Narang, and S. Rai, “Fed-focal loss for imbalanced
data classification in federated learning,” 2020, arXiv:2011.06283.

[55] L. Sun, J. Qian, and X. Chen, “LDP-FL: Practical private aggrega-
tion in federated learning with local differential privacy,” in Proc.
Int. Joint Conf. Artif. Intell., 2021, pp. 1571–1578.

[56] TensorFlow, “On-device training with TensorFlow lite,” 2021.
[Online]. Available: https://www.tensorflow.org/lite/examples/
on_device_training/overview

[57] Y. Tian, R. Wang, Y. Qiao, E. Panaousis, and K. Liang,
“FLVoogd: Robust and privacy preserving federated learning,”
2022, arXiv:2207.00428.

[58] D. Verma, G. White, and G. de Mel, “Federated AI for the enter-
prise: A web services based implementation,” in Proc. IEEE Int.
Conf. Web Serv., 2019, pp. 20–27.

[59] C. Dinesh et al., “Approaches to address the data skew problem in
federated learning,” in Proc. Artif. Intell. Mach. Learn. Multi-
Domain Oper. Appl., 2019, pp. 542–557.

[60] S. Wagh, X. He, A. Machanavajjhala, and P. Mittal, “Dp-cryptog-
raphy: Marrying differential privacy and cryptography in emerg-
ing applications,” Commun. ACM, vol. 64, no. 2, pp. 84–93, 2021.

[61] X. Xiao et al., “Collecting and analyzing multidimensional data
with local differential privacy,” Apr. 2019, arXiv:1907.00782.

[62] Q. Yang, Y. Liu, T. Chen, and Y. Tong, “Federated machine learn-
ing: Concept and applications,” ACM Trans. Intell. Syst. Technol.,
vol. 10, no. 2, pp. 1–19, 2019.

[63] T. Yang et al., “Applied federated learning: Improving Google
keyboard query suggestions,” 2018, arXiv:1812.02903.

[64] Y. Zhao et al., “Local differential privacy-based federated learning
for Internet of Things,” IEEE Internet of Things J., vol. 8, no. 11,
pp. 8836–8853, Jun. 2021.

[65] Y. Zhao, M. Li, L. Lai, N. Suda, D. Civin, and V. Chandra,
“Federated learning with non-IID data,” 2018, arXiv:1806.00582.

Xiaopeng Jiang received the MS degree in com-
puter science from NJIT, in 2016. He is currently
working toward the PhD degree in computer science
with the New Jersey Institute of Technology. His
research interests include deep learning systems
and applications, mobile computing and sensing.

518 IEEE TRANSACTIONS ON MOBILE COMPUTING, VOL. 23, NO. 1, JANUARY 2024

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

https://openreview.net/forum?id=ZUXZKjfptc9
https://openreview.net/forum?id=ZUXZKjfptc9
https://nvidia.github.io/NVFlare/index.html
https://nvidia.github.io/NVFlare/index.html
https://blog.openmined.org/tag/pysyft/
https://blog.openmined.org/tag/pysyft/
https://www.tensorflow.org/lite/examples/on_device_training/overview
https://www.tensorflow.org/lite/examples/on_device_training/overview

Han Hu received the PhD degree in information
system from NJIT, in December 2021. His
research focuses on deep learning and federated
learning for both industrial and social good appli-
cations. He has made publications in venues
such as ICML, ICDM, IJCNN, SIGSPATIAL, ICHI,
MedInfo, ICTAI and CSoNet.

Thinh On is currently working toward the first-
year PhD degree in information systems with the
New Jersey Institute of Technology. His research
mainly focuses on deep learning and federated
learning with an emphasis on privacy and secu-
rity. He is also interested in investigating fairness,
robustness, and trustworthiness of deep learning
and federated learning.

Phung Lai is currently working toward the PhD
degree in information systems with NJIT. Her
research focuses on trustworthiness in machine
learning and deep learning, including privacy preser-
vation, explainability, robustness, and fairness tech-
niques, with manifold applications such as natural
language modeling, computer vision, social network
analysis, finance, and healthcare. She is a holder of
several patents in privacy preservation in NLP.

Vijaya Datta Mayyurireceived themaster’s degree
in computer science from The University of Texas at
Dallas, in 2006. He is a principal engineer with Qual-
comm Incorporated. He has more than 15 years of
industry experience leading projects in various
domains including 5G cellular connectivity, 4G/LTE,
Wi-Fi, BLE, IOT, Medical Devices, and Machine
Learning.

An Chen received the PhD degree in electrical
engineering from the University of California, San
Diego. She is a vice president of engineering with
Qualcomm Incorporated with years of experience
in the wireless industry. She has done research
and product development in advanced wireless,
machine learning, mobile health, and IoT. She is
a prolific inventor with more than 400 utility pat-
ents worldwide. She is a member of Phi Beta
Kappa and Tau Beta Pi.

Devu M. Shila received the PhD degree in com-
puter engineering from the Illinois Institute of Tech-
nology, in 2011. She is the founder and CEO of
Unknot.id. She is a seasoned leader in building pri-
vacy-preserving mobile/wearable based human
behavioral analytics products. She served as the
principal investigator and product leader for
advanced cyber security programs funded by
DARPA,NSF,DoD,DHSS&T, andDOE.

Adriaan Larmuseau received the PhD degree in
computer science from Uppsala University, in
2016. His research has focused on the cyber
security of compilers, machine learning for patch
management and genomic privacy. He has auth-
ored 12 published US &WIPO patents.

Ruoming Jin is a full professor with the Depart-
ment of Computer Science, Kent State University.
His research areas include artificial intelligence/
deep learning, recommendation systems, Big
Data, graph databases, and health informatics.
He has published more than 150 research papers
in these areas, most of them are in the top ven-
ues, such as KDD, ICDM, ICML, NIPS, SIGMOD,
PVLDB etc. His research has been funded by
NSF, NIH, SAMHSA, and industry partners. He is
the recipient of the NSF CAREER award.

Cristian Borcea (Member, IEEE) received the
PhD degree from Rutgers University. He is a pro-
fessor with the Department of Computer Science,
NJIT. He is also a visiting professor with the
National Institute of Informatics in Tokyo, Japan.
His research interests include mobile computing
and sensing, ad hoc and vehicular networks, dis-
tributed systems, and cloud computing. He is a
member of the ACM.

NhatHai Phan received the PhD degree in com-
puter science from the University of Montpellier
2, in 2013. He is an assistant professor with the
Department of Data Science, NJIT. His main
topics of interests are privacy and security,
machine learning, health informatics, social net-
work analysis, and spatio-temporal data mining.
He has published more than 50 publications, with
many of them were published at leading venues
such as ICML, ECML, AAAI, IJCAI, IEEE ICDM,
etc. His research is generously funded by NSF,
Adobe Research, Qualcomm Incorporated, etc.

" For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.

JIANG ETAL.: FLSYS: TOWARDAN OPEN ECOSYSTEM FOR FEDERATED LEARNING MOBILE APPS 519

Authorized licensed use limited to: New Jersey Institute of Technology. Downloaded on January 03,2024 at 18:05:23 UTC from IEEE Xplore. Restrictions apply.

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /sRGB
 /DoThumbnails true
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize true
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Algerian
 /Arial-Black
 /Arial-BlackItalic
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BaskOldFace
 /Batang
 /Bauhaus93
 /BellMT
 /BellMTBold
 /BellMTItalic
 /BerlinSansFB-Bold
 /BerlinSansFBDemi-Bold
 /BerlinSansFB-Reg
 /BernardMT-Condensed
 /BodoniMTPosterCompressed
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /BritannicBold
 /Broadway
 /BrushScriptMT
 /CalifornianFB-Bold
 /CalifornianFB-Italic
 /CalifornianFB-Reg
 /Centaur
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /Chiller-Regular
 /ColonnaMT
 /ComicSansMS
 /ComicSansMS-Bold
 /CooperBlack
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FootlightMTLight
 /FreestyleScript-Regular
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /HarlowSolid
 /Harrington
 /HighTowerText-Italic
 /HighTowerText-Reg
 /Impact
 /InformalRoman-Regular
 /Jokerman-Regular
 /JuiceITC-Regular
 /KristenITC-Regular
 /KuenstlerScript-Black
 /KuenstlerScript-Medium
 /KuenstlerScript-TwoBold
 /KunstlerScript
 /LatinWide
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaBright
 /LucidaBright-Demi
 /LucidaBright-DemiItalic
 /LucidaBright-Italic
 /LucidaCalligraphy-Italic
 /LucidaConsole
 /LucidaFax
 /LucidaFax-Demi
 /LucidaFax-DemiItalic
 /LucidaFax-Italic
 /LucidaHandwriting-Italic
 /LucidaSansUnicode
 /Magneto-Bold
 /MaturaMTScriptCapitals
 /MediciScriptLTStd
 /MicrosoftSansSerif
 /Mistral
 /Modern-Regular
 /MonotypeCorsiva
 /MS-Mincho
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /NiagaraEngraved-Reg
 /NiagaraSolid-Reg
 /NuptialScript
 /OldEnglishTextMT
 /Onyx
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Parchment-Regular
 /Playbill
 /PMingLiU
 /PoorRichard-Regular
 /Ravie
 /ShowcardGothic-Reg
 /SimSun
 /SnapITC-Regular
 /Stencil
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TempusSansITC
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanMTStd
 /TimesNewRomanMTStd-Bold
 /TimesNewRomanMTStd-BoldCond
 /TimesNewRomanMTStd-BoldIt
 /TimesNewRomanMTStd-Cond
 /TimesNewRomanMTStd-CondIt
 /TimesNewRomanMTStd-Italic
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Times-Roman
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /VinerHandITC
 /Vivaldii
 /VladimirScript
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZapfChanceryStd-Demi
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 150
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 150
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 150
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.40
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Suggested" settings for PDF Specification 4.0)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

