
Efficien and Scalable Data Evolution with
Column Oriented Databases

Ziyang Liu1, Bin He2, Hui-I Hsiao2, Yi Chen1

Arizona State University1, IBM Almaden Research Center2
ziyang.liu@asu.edu, binhe@us.ibm.com, hhsiao@almaden.ibm.com, yi@asu.edu

ABSTRACT
Database evolution is the process of updating the schema
of a database or data warehouse (schema evolution) and e-
volving the data to the updated schema (data evolution).
It is often desired or necessitated when changes occur to
the data or the query workload, the initial schema was not
carefully designed, or more knowledge of the database is
known and a better schema is concluded. The Wikipedia
database, for example, has had more than 170 versions in
the past 5 years [8]. Unfortunately, although much research
has been done on the schema evolution part, data evolu-
tion has long been a prohibitively expensive process, which
essentially evolves the data by executing SQL queries and
re-constructing indexes. This prevents databases from being
flexibly and frequently changed based on the need and forces
schema designers, who cannot afford mistakes, to be high-
ly cautious. Techniques that enable efficient data evolution
will undoubtedly make life much easier.

In this paper, we study the efficiency of data evolution,
and discuss the techniques for data evolution on column ori-
ented databases, which store each attribute, rather than
each tuple, contiguously. We show that column oriented
databases have a better potential than traditional row ori-
ented databases for supporting data evolution, and propose
a novel data-level data evolution framework on column ori-
ented databases. Our approach, as suggested by experimen-
tal evaluations on real and synthetic data, is much more
efficient than the query-level data evolution on both row
and column oriented databases, which involves unnecessary
access of irrelevant data, materializing intermediate results
and re-constructing indexes.

Categories and Subject Descriptors
H.2.4 [Systems]: Relational databases

General Terms
Algorithms, Performance

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profi or commercial advantage and that copies
bear this notice and the full citation on the firs page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specifi
permission and/or a fee.
EDBT 2011, March 22–24, 2011, Uppsala, Sweden.
Copyright 2011 ACM 978-1-4503-0528-0/11/0003 ...$10.00

Keywords
column oriented database, bitmap index, schema, data evo-
lution

1. INTRODUCTION
Database evolution is the process of updating the schema

of a database/data warehouse (schema evolution) and evolv-
ing the data to the new schema (data evolution). The needs
of database evolution arise frequently in modern databas-
es [16, 15, 27, 29] and data warehouses [10, 18] in both OLTP
and OLAP applications due to emerging of new knowledge
about data and/or changes in workload, and from both new
application demand perspective and analytical experiments
perspective. As observed by Curino et. al [16], “the serious
problems encountered by traditional information system-
s are now further exacerbated in web information systems
and cooperative scientific databases where the frequency of
schema changes has increased while tolerance for downtimes
has nearly disappeared.”

For instance, the Ensembl Genetic DB has involved in
over 400 schema changes in nine years [16]. Another ex-
ample is a data warehouse containing raw data and derived
data (analytical results on the raw data). Since there are
more and more new analytical requirements nowadays, the
derived data and their schema often become complex and
frequently evolving. Even for a single analytical task, it is
also often true that it may take some time to develop and ex-
periment before being stabilized, which will generate many
schemas during the process. Consider a patent database as
an example. In the first round of building an annotator to
extract chemical compounds from patents, we may extrac-
t SMILES1 in the patents, chemical names and the corre-
sponding usages. Later on, we may want to put SMILE and
chemical name attributes into a separate table to reduce the
redundant information [13].

In general, a database evolution may be desired or neces-
sitated when new information about the data and/or the
workload emerges. In the remainder of this paper we use
the tables in Figure 1 as a simplified example to illustrate
the motivation and the proposed methodologies.

1. New Information about the Data. In a dynamic
application scenario, new information about the da-
ta may become available, which requires to update,
add or remove attributes in a database, as well as re-
organize the table structure. Consider table R in Fig-

1SMILES are string expressions for chemicals

105

Employee Skill Address

Jones Typing 425 Grant Ave

Jones Shorthand 425 Grant Ave

Roberts Light Cleaning 747 Industrial Way

Ellis Alchemy 747 Industrial Way

Jones Whittling 425 Grant Ave

Ellis Juggling 747 Industrial Way

Harrison Light Cleaning 425 Grant Ave

Employee Address

Jones 425 Grant Ave

Roberts 747 Industrial Way

Ellis 747 Industrial Way

Harrison 425 Grant Ave

Employee Skill

Jones Typing

Jones Shorthand

Roberts Light Cleaning

Ellis Alchemy

Jones Whittling

Ellis Juggling

Harrison Light Cleaning

S

T

R

schema 1

schema 2

Figure 1: Example of Database Evolution

ure 1. Suppose originally, it only has attributes Em-
ployee and Skill. If later on the address information
emerges, we would like to add an attribute Address to
R. Furthermore, at the schema design time, the de-
signer might have believed that each Employee has a
single Skill. When more data tuples are added, it is
revealed that each employee may have multiple skill-
s. Thus it is better to decompose R to two tables
S and T, as shown in schema 2, in order to preven-
t data redundancy and update anomaly. As we can
see, updating the data content may reveal or invali-
date functional dependencies that may not be known
when the schema was originally designed, and thus re-
quires schema changes.

2. New Information about the Workload. Query
and update workload of a database may vary from time
to time. Different workloads may have different da-
ta access patterns, and demand different schemas for
optimized performance. Consider Figure 1 again, as-
sume that the original workload is update intensive, for
which Schema 2 is desirable. Later workload charac-
teristics change and become query intensive, and most
queries look for addresses given skills. Now Schema 1
becomes more suitable, as it avoids joins of two tables.

A database evolution involves both updating the schema
of a database and evolving the data to the new schema.
Existing work on database evolution mainly studies schema
evolution and its effects [15, 27, 11, 14, 20, 34, 37]. However,
efficient algorithms to actually evolve the data to the new
schema has yet to be developed. Currently data evolution
is performed at query-level, expressed and implemented by
SQL queries [26]. As an example, the following SQL queries
can be executed to evolve the data from R to S and T in
Figure 1:

1. insert into S select Employee, Skill from R

2. insert into T select distinct Employee, Address

from R

Such a query-level data evolution framework is notorious-
ly inefficient in terms of both time and space for two rea-
sons. First, it has excessive data accesses; every (distinct)
attribute value in every tuple is accessed. Second, after the
query results are loaded into the new tables, indexes have to
be built from scratch on the new table. This approach makes
data evolution prohibitively expensive and even inapplica-
ble, as to be shown in this paper and is also observed in [15].
The inflexibility of schema change on current database sys-
tems not only results in degraded system performance over
time, but forces schema designers to be highly cautious and
thus severely limits the database usability [21].

In this paper, we study the problem of efficient data evolu-
tion in designing an agile database system. Ideally, an agile
data evolution should minimize data accesses; and it is also
desirable if we can derive the new indexes from the original
indexes, rather than constructing the indexes on the new
table from scratch.

To minimize data accesses, we observe that when chang-
ing the database schema, usually many columns in a table
remain unchanged. For example, the columns in table S in
Figure 1 are exactly the same as the corresponding ones in
R, thus these columns are unchanged during the decompo-
sition from R to S and T. As a result, a column-oriented
database, or column store, becomes a natural choice for ef-
ficient data evolution. In a column-oriented database, each
column, rather than each row, is stored continuously on the
storage. Column stores usually outperforms row stores for
OLAP workloads, and studies have shown that column s-
tores fit OLTP applications as well [6, 33].

However, performing a query-level data evolution on a
column oriented database is still very expensive. First, we
need to generate query results, during which the columns
need to be assembled into tuples; second, result tuples need
to be disassembled into columns; at last, each column of the
results needs to be re-compressed and stored. These steps
incur high costs, as to be shown in Section 5.

To address these issues, we propose a framework of data-
level data evolution on column oriented databases, which
achieves storage to storage data evolution without involv-
ing queries. A system of our data level approach has been
demonstrated in VLDB ’10 [25]. We support various opera-
tions of schema changes, among which two important ones,
decomposing a table and merging tables, are the focus of
this paper. We design algorithms that exploit the char-
acteristics of column oriented storage to optimize the data
evolution process for better efficiency and scalability. Our
approach only accesses the portion of the data that is af-
fected by the data evolution, and has the unique advantages
of avoiding SQL query execution and data decompression
and compression. We report a comprehensive study of the
proposed data evolution algorithms on column oriented s-
torages, compared with the traditional query-level data evo-
lution. Experiments show that data-level data evolution on
column oriented databases can be orders of magnitude faster
than query-level data evolution on both row and column ori-
ented storages for the same data and schemas. Besides, it is
observed that our approach is more scalable, while the per-
formance of query-level data evolution deteriorates quickly
when the data become large. Our results bring a new per-
spective to help users make choices between column orient-
ed storage and row oriented storage, considering both query
processing and database evolution needs. Due to the advan-

106

tage in data evolution, column stores may get an edge over
row stores even for OLTP workloads in certain applications.

Our contributions in this paper are summarized as:

1. This is, to the best of our knowledge, the first study
of data evolution on column oriented storages, and
the first on designing algorithms for efficient data-level
evolution, in contrast to the traditional query-level da-
ta evolution. Our techniques make database evolution
a more feasible option. Furthermore, our results bring
a new perspective to help users make choices between
column oriented storage and row oriented storage, con-
sidering both query processing and database evolution
needs.

2. We propose a novel data-level data evolution frame-
work that exploits column oriented storages. This ap-
proach only accesses the portion of the data that is
affected by the data evolution, and has the unique ad-
vantages of avoiding SQL query execution, indexes re-
construction from the query result, and data decom-
pression and compression.

3. We have performed comprehensive experiments to e-
valuate our approach, and compared it with traditional
query-level data evolution, which show that our ap-
proach achieves remarkable improvement in efficiency
and scalability.

The following sections of this paper are structured as: Sec-
tion 2 introduces necessary backgrounds on column orient-
ed databases and the types of schema changes. Then we
present the algorithms for two important types of schema
change: decomposition (Section 3) and merging (Section 4).
We report the results of experimental evaluations to test the
efficiency of data evolution in Section 5. Section 6 discusses
related works and Section 7 concludes the paper.

2. PRELIMINARIES

2.1 Column Oriented Databases
Unlike traditional DBMSs which store tuples contiguous-

ly, column oriented databases store each column together.
Column store improves the efficiency of answering queries,
as most queries only access a subset of the columns, and
therefore storing each column contiguously avoids loading
unnecessary data into memory. In addition, as values in
a column are often duplicate and/or similar, compression
and/or encoding technologies can be applied in column s-
tores to reduce the storage size and I/O time.

Studies show that column store is suitable for read-mostly
queries typically seen in OLAP workloads, and it is a good
choice for many other application scenarios, e.g., databases
with wide tables and sparse tables [3], vertically partitioned
RDF data [4], etc. In these applications, schema evolution is
common. For instance, in OLAP applications, a warehouse
may add/delete dimensions. When new data or workload
emerges, a warehouse may want to evolve a dimension from
star schema to snowflake schema (or verse visa), which is
exactly the decomposition (or merging) operations studied
in this paper. This paper proposes novel techniques that
efficiently support schema evolution in column stores.

Bitmap is the most common encoding scheme used in col-
umn stores [5]. The state-of-the-art bitmap compression

86 71

000 11......100......01111

(a)

0 3, 1 28× ×

0FFFFFFF
literal

1 31×

C0000001
1-fill

7FFFFFF0
literal

1 27, 0 4× ×

07C00000
literal

0 5, 1 4× ×

(b)

80000002
0-fill

0 62×

Figure 2: WAH Compression of Bitmap

methods and encoding strategies have made bitmap index-
es widely applicable. Modern bitmap indexes can be ap-
plied on all types of attributes (e.g., high-cardinality cate-
gorical attributes [35], numeric attributes [28] and text at-
tributes [32]). Studies show that a compressed bitmap index
occupies less space than the raw data and provides better
query performance for equal queries [36], range queries [35],
and keyword queries [32]. Besides, [36] shows that with
proper compression, bitmaps perform well for columns with
cardinality up to 55% of the number of rows, indicating that
they can be widely adopted. Nowadays, bitmap indexing is
supported in many commercial database systems (e.g, Or-
acle, Sybase, Informix), and is often the default (or only)
indexing option in column-oriented database systems (e.g.,
Vertica, CStore, LucidDB), especially for applications with
read-mostly or append-only data, such as OLAP applica-
tions and data warehouses. In this paper we assume that,
unless an attribute (also referred to as a column) is a pri-
mary key, it is compressed using bitmap encoding.2

Various compression methods for bitmaps have been pro-
posed. Among those, Word-Aligned Hybrid (WAH) [36],
Position List Word Aligned Hybrid [17] and Byte-aligned
Bitmap Code (BBC) [9] can be applied to any column and be
used in query processing without decompression. We adop-
t Word-Aligned Hybrid (WAH) to compress the bitmaps
in our implementation. In contrast, run length compres-
sion [33] can be used only for sorted columns.

WAH organizes the bits in a vector by words. A word
can be either a literal word or a fill word, distinguished by
the highest bit: 0 for literal word, 1 for fill word. Let L
denote the word length in a machine. A literal word encodes
L − 1 bits, literally. A fill word is either a 0-fill or a 1-fill,
depending on the second highest bit, 0 for 0-fill and 1 for
1-fill. Let N be the integer denoted by the remaining L− 2
bits, then a fill word represents (L− 1) ×N consecutive 0s
or 1s. For example, the bitmap vector shown in Figure 2(a)
is WAH-compressed into the one in Figure 2(b).

In order to find the corresponding vector in a bitmap given
a value in a column, we use a hash table for each column
to map from each value to the position of the vector. The
number of entries in the hash table is the number of distinct
values in the column. We also build an offset index similar
to the one in [33] for each bitmap to find the value in a
column given a position.

2Other compression schemes are sometimes used for special
columns, such as run length encoding for sorted column-
s. In this paper we focus on the general case with bitmap
encodings for all non-key attributes. Supporting other com-
pression/encoding schemes is one of our future works.

107

Table 1: Types of Schema Updates
SMO Description
DECOMPOSE TABLE Decompose a table into two ta-

bles. The union of the at-
tributes in the two output ta-
bles equals to the attributes of
the input table

MERGE TABLES Create a new table on storage
by joining two tables

CREATE TABLE Create a new table in the
database

DROP TABLE Delete a table from the database
RENAME TABLE Rename a table, keeping its da-

ta unchanged
COPY TABLE Create a copy of an existing ta-

ble
UNION TABLES Combine the tuples of two ta-

bles with the same schema into
one table

PARTITION TABLE Partition the tuples into a table
into two tables with the same
schema with a condition

ADD COLUMN Create a new column for a ta-
ble and load the data from user
input or by default

DROP COLUMN Delete an existing column and
its associated data

RENAME COLUMN Change the name of a column
without changing data

2.2 Schema Updates
We support all the Schema Modification Operators (S-

MO) introduced in [15], which are listed in Table 1. Create,
Drop, and Rename Table operations incur mainly schema
level operations and are straightforward. Copy, Union and
Partition Table operations require data movement, but no
data change. Thus existing approaches for data movemen-
t can be applied. For column level SMO, especially Add
Column and Drop Column, column oriented databases have
obvious advantages, as data in other columns do not need
to be accessed. In this paper, we discuss Decompose and
Merge in details. We will propose algorithms for efficient de-
composition and merging, and show empirically that these
operations are much more efficient on column stores than on
row stores.

Decomposition. This operation decomposes a table into
two tables. As an example, see Figure 1. Table R is decom-
posed into two tables (S and T). We assume that a decompo-
sition is lossless [31], since only a lossless-join decomposition
ensures that the original table can be reconstructed based
on the decomposed tables. In a lossless-join decomposition
of table R into S and T, the common attributes of S and
T must include a candidate key of either S or T, or both.
Decomposing a table into multiple tables can be done by
recursively executing this operation.

Merging. It joins two tables to form a new table, such
as S and T in Figure 1 into R. Merging multiple tables can
be done by recursively executing this operation.

Next, we will discuss the data-level evolution algorithms
for decomposition and merging respectively in Section 3 and
Section 4.

3. DECOMPOSING A TABLE
In this section we discuss the details of lossless-join de-

composition. We use R to denote the original table, and S,
T to denote the two output tables.

We start by introducing two critical properties of a lossless-
join decomposition which will be exploited by our algorithm-
s:

Property 1: In a lossless-join decomposition which decom-
poses a table into two, at least one of the two output tables
has the same number of rows as the input table.

Property 2: For an output table with a different number of
rows as the input table, its non-key attributes have func-
tional dependency on its key attributes in the original table.

Now we prove these two properties. Without loss of gen-
erality, let R denote the input table and S, T the output
tables. By the definition of lossless-join decomposition, the
common attributes of S and T must include a candidate key
of either S or T. Suppose the common attributes, denoted
by Ac, are a candidate key of T. Then if we join S and T,
since they join on Ac and each tuple of T has a unique value
of Ac, each tuple in S can have at most one matching tuple
in T. Therefore, S has the same number of rows as the input
table R, and property 1 holds. Furthermore, since the join is
essentially extending each of T’s key value with S’s matching
non-key attributes, thus for any of T’s key values in R, the
corresponding T’s non-key values should be the same, and
thus Property 2 holds.

Property 1 can be effectively utilized by column oriented
databases. Since each column is stored separately, the un-
changed output table can be created right away using the
existing columns in R without any data operation. Column-
store makes it possible to only access the data that is neces-
sary to change in data evolution, and thus save computation
time.

3.1 Algorithm Overview
In our algorithm description below, let the set of attributes

in R, S,T be (A1, · · · , Ak, Ak+1, · · · , An), (A1, · · · , Ak,
Ak+1, · · · , Ap), and (A1, · · · , Ak, Ap+1, · · · , An) respective-
ly. Assume that the common attributes of S and T, A1, · · · ,
Ak, comprise the key of T, which means S is the unchanged
output table.

Intuitively, to generate T, we can take the following steps:

1) For each distinct value v of T’s key attributes A1, · · · ,
Ak, we locate a tuple position in R that contains v. The
result of this step is a list of tuple positions in R, one for
each distinct value of T’s key attributes.

Each v presents a list of k values from T’s key attributes.
Because of Property 2, all tuples in R with the same v have
the same values on Ap+1, · · · , An. We thus can choose any
one of these tuples and do not need to access all of them.

2) Given the position list, we can directly generate new
bitmaps of T’s attributes from their corresponding bitmaps
in R. That is, for each attribute, we can shrink their bitmap
in R by only taking the bits specified in the position list. We
name such an operation as “bitmap filtering”.

During this process, the hash and offset index for each of
T’s attributes are also updated. After we shrink each vec-
tor using the bitmap filtering operation, we insert an entry
to the corresponding hash table for the attribute, recording

108

the position of the shrunk vector. For each position in the
position list, we access the offset index of the original at-
tribute (in R) to retrieve the attribute value, and insert an
entry accordingly to the corresponding offset index for the
attribute in T.

The pseudo-code for the above two steps is presented in
Algorithm 1. Step one is realized by calling a distinction
function, which is to be described in Section 3.2. It returns
keyvalues, which records the distinct values of A1, · · · , Ak,
and keypos, storing one position of each of these values in R.
The positions in keypos are then sorted to support efficient
search in step two.

Example 3.1. In Figure 1, the key of table T is a sin-
gle attribute Employee. We first compute its distinct values
stored in keyvalues, which are Jones, Roberts, Ellis and
Harrison. We also find one position of each of them in R

stored in keypos, which are, for example, rows 1, 3, 4 and
7 respectively.

In step two (lines 3-9 of Algorithm 1), When T only has
one key attribute A1 (i.e., k = 1), it is unnecessary to s-
tore A1 with a bitmap structure as each A1’s value only
occurs once. We thus simply output the distinct values in
keyvalues (line 4). For other cases and non-key attributes,
we conduct the “bitmap filtering” operation for each at-
tribute. The details of the filtering operation is described
in Section 3.3. It is easy to see that, since we deal with one
attribute at a time in step two, the number of attributes
to be processed does not bring a memory constraint for our
algorithm.

Algorithm 1 Decomposing a Table

Decompose (R(A1, · · · , An), k, p)
Output: T(A′

1, · · · , A′
k, A

′
p+1, · · · , A′

n)

1: keyvalues, keypos =distinction(R,A1, · · · , Ak)
2: sort keypos
3: if k = 1 then
4: A′

1 =output(keyvalues)
5: else
6: for i = 1 to k do
7: A′

i = filtering(Ai, keypos)
8: for i = p+ 1 to n do
9: A′

i = filtering(Ai, keypos)

Example 3.2. In the running example, table T has a s-
ingle key attribute: Employee. According to line 4 of Algo-
rithm 1, column Employee in table T consists of the values
in keyvalues, which are Jones, Roberts, Ellis and Harrison.

Given the list of positions keypos = {1, 3, 4, 7}, in or-
der to generate column Address in the output table T, we
need to perform a filtering operation on column Address in
R. There are two vectors for this attribute, corresponding to
425 Grant Ave and 747 Industrial Way. Their vectors in the
bitmap are 1100101 and 0011010 respectively. We retrieve
the values of the two vectors at positions 1, 3, 4 and 7. For
425 Grant Ave, the values are 1001, and for 747 Industri-
al Way the values are 0110. Therefore, the new bitmap of
Address consists of two vectors, 1001 and 0110.

Next we discuss the two procedures involved in a decom-
position, distinction and filtering, in details.

3.2 Distinction
We start with the easier case – distinction on a single

attribute, such as attribute Employee in Figure 1. Since the
attribute on which distinction is performed is not the key
of table R, it is encoded as a bitmap structure.

Algorithm 2 Distinction on a Single Attribute A

Distinction (Bitmap of Attribute A)
Output: keyvalues, keypos

1: keyvalues = ∅
2: keypos = ∅
3: for each distinct value v of A do
4: vec = v’s vector in A’s bitmap
5: elapsed = 0
6: for i = 1 to vec.size do
7: if vec[i] is a literal word then
8: j = position of the first seen 1-value bit in vec[i]
9: keypos = keypos ∪ {elapsed+ j}
10: keyvalues = keyvalues ∪ {v}
11: break
12: else if vec[i] is a 1-fill word then
13: keypos = keypos ∪ {elapsed+ 1}
14: keyvalues = keyvalues ∪ {v}
15: break
16: else
17: N = the number of 0s encoded in vec[i]
18: elapsed += N
19: return keyvalues, keypos

Algorithm 2 presents the steps for distinction on a single
column, denoted as A. Recall that A’s bitmap has a vector
for each of A’s distinct values, and therefore the bitmap
directly gives the distinct values of A. To find the position of
each distinct value, we traverse A’s value → vector position
hash; for each of A’s distinct value v, we locate the position
of v’s vector (line 4), and then find the position of the first
“1” in the vector (lines 6-18), which is the position of the
first occurrence of v in column A (recall that actually the
position of any other “1” can be used). The position of the
first “1” in each vector is stored in array keypos and the
distinct values in keyvalues.

To find the position of the first “1” for each distinct value,
we can simply scan each vector. We notice that in a bitmap
compressed using WAH, the first “1” of any vector always
appears in the first two words, unless the table has more
than 31 × 230 (≈ 30 billion) rows (assuming the machine
word length is 32), which is rarely seen. Therefore in the
majority of cases, we do not need to access the entire bitmap
of a column at all. Instead, we can additionally record the
first two words of each vector in the bitmap in a separate
file, called the snapshot of the bitmap. When we perform
distinction on this column, this file can be used instead of
the bitmap itself to find the position of the first “1” in each
vector. The snapshot file is tiny compared to the bitmap, as
regardless of the length of the bitmap vector, in a snapshot
each vector has only two words.

When there are more than one key attribute, we cannot
directly get distinct values from the bitmap, as the bitmap is
constructed on a per attribute basis. There are two ways to
deal with this case. The first method is to combine bitmaps
of multiple attributes. Consider two attributes A and B,
each encoded as a bitmap. For each value vA of A and
vB of B, if we perform an AND operation on their vectors,
the resulting vector indicates the position where vA and vB
occur together. Therefore, if we perform AND on every

109

vector of A and B and keep the non-zero vectors, we can
get the distinct values of (A,B) and their positions with
similar process of Algorithm 2. It is easy to generalize this
method on three or more attributes. This approach works
well if A and B have a small number of distinct values, as its
processing time is proportional to the product of the number
of A’s distinct values and the number of B’s distinct values.
As an alternative, we can also scan the offset index of the
involved columns to access each row of these columns, and
use hashing to recognize each distinct values during the scan.

3.3 Filtering
The filtering operation generates a new bitmap of an at-

tribute given its original bitmap and a list of positions,
keypos. Each vector in the new bitmap only contains rows
specified by keypos in the original bitmap, and thus this op-
eration can be considered as “filtering” the original bitmap.

Algorithm 3 Filtering a Bitmap Based on a List of Posi-
tions
Filtering (Bitmap and offset index for Attribute A, keypos)
Output: the filtered bitmap tgtBitmap, the new hash tgtHash
and offset index tgtOffset

1: for each vector vec of A’s bitmap do
2: vec′ = an empty vector
3: elapsed = 0
4: currpos = 1
5: for i = 1 to vec.size do
6: if vec[i] is a literal word then
7: elapsed += 31
8: while currpos ≤ keypos.size and keypos[currpos] ≤

elapsed do
9: add the (keypos[currpos]− elapsed)th bit of vec[i]

to vec′
10: encode the new added bits in the vector vec′ if

necessary using WAH encoding
11: currpos++
12: else
13: elapsed += the number of 0s (1s) encoded in vec[i]
14: endpos = use a binary search to find the largest po-

sition in keypos satisfying keypos[endpos] ≤ elapsed
15: add (endpos− currpos+1) 0s (1s) to the vector vec′
16: encode the new added bits in the vector vec′ if nec-

essary using WAH encoding
17: currpos = endpos+ 1
18: add the vector vec′ to tgtBitmap
19: add the position of tgtBitmap to tgtHash
20: for i = 1 to keypos.size do
21: value = the value of A at row keypos[i]
22: add entry (i, value) into tgtOffset
23: return tgtBitmap

The algorithm for the filtering operation is shown in Al-
gorithm 3. For each vector vec of attribute A, we traverse
the list of positions keypos. Specifically, for each word vec[i]
in vec, if it is a 0-fill or a 1-fill word, we directly jump from
the current position in keypos to the largest position that
is still in the range of vec[i]. This can be done using a bi-
nary search since keypos is sorted. All positions in between
are either 0 if vec[i] is a 0-fill, and 1 otherwise. Suppose
we jumped p positions, then we can directly insert p 0s (or
1s) into the corresponding vector vec′ in the target bitmap
(lines 13-15). If vec[i] is a literal word, we traverse keypos,
and for each position in the range of vec[i], we test whether
the value is 0 or 1 in that position in vec[i], and insert one
bit of 0 or 1 into the target vector vec′ (lines 6-11). In both
cases, we check the recently added bits and compress them

using WAH encoding if possible (line 10 and line 16). In this
way, a target bitmap is efficiently built. The hash table for
the target bitmap is constructed by inserting an entry after
a vector has been built (line 19). The offset index for the
target bitmap is constructed by inserting an entry for each
position in keypos (lines 20-22).

4. MERGING TWO TABLES
In this section we discuss efficient evolution techniques for

another important type of data evolution – merging. Since
merging more than two tables can be done by recursively
merging two tables at a time, we focus on the discussion of
merging two tables.

Similar as a decomposition, a merging operation can be
performed on a row oriented database by running SQL joins.
However, for the same reason as decomposition, the process-
ing time of such a query level data evolution can be huge
and prohibitive for big tables. This is true for both row
and column stores. In this section, we present techniques
for utilizing the storage scheme of column stores to perform
data-level evolution which avoids materializing query results
and decompressing the bitmap encodings. Without loss of
generality, we use S (A1, · · · , Ak, Ak+1, · · · , Am), T (A1,
· · · , Ak, Am+1, · · · , An) to denote the two input tables, and
our goal is to merge S and T into table R (A1, · · · , An).

Note that a merging essentially creates a new table by
joining two tables. From the perspective of data evolution,
we can classify mergings into three scenarios: 1) Both input
tables can be reused for merging, 2) Only one input table
can be reused for merging, and 3) Neither input table can
be reused for merging.

In scenario 1, the two input tables have the same primary
key attributes and their join attributes contain these key
attributes. This is a trivial situation for column-store, as
the generated table R can simply reuse the existing column
storages of S and T.

Our focus in this section is thus to discuss algorithms for
the other two scenarios. For scenario 2, the join attributes
of the two input tables comprise the key of one input table,
and thus the other input table’s columns are reusable. For
example, tables S and T in Figure 1 merge into table R. Em-
ployee is the only common attribute of S and T, which is the
key of T. As we can see, the columns in S can be directly
used as the corresponding columns in R. We refer to this
case as key-foreign key based merging and present the algo-
rithm to specifically deal with this scenario in Section 4.1.
Section 4.2 presents a general algorithm to cope with any
scenarios and is mainly used for scenario 3.

4.1 Key-Foreign Key Based Merging
In the key-foreign key based merging, instead of generat-

ing all columns in R, we can reuse the columns in S (i.e.,
A1, · · · , Am) and only generate n−m columns Am+1, · · · ,
An for R. The new bitmap of each Ai (m+1 ≤ i ≤ n) in
R can be obtained by deploying the bitmap of Ai in T and
the bitmap of the key attributes in S. The example below
shows how the new bitmap generation works.

Example 4.1. We again use Figure 1 as our running ex-
ample, in which we merge S and T into R. In this case,
S and T have a single join attribute Employee (i.e., k=1),
which is also the key of S. When we build R, the bitmap-
s, hash tables and offset indexes of attributes Employee and

110

Skill can reuse the ones of S, and only those of Address need
to be generated.

The bitmap vector of 425 Grant Ave in T is 1001, which
means this address should appear in rows of R with employ-
ee name Jones or Harrison. Since the vectors of Jones and
Harrison are 1100100 and 0000001 (in both S and R) re-
spectively, the new bitmap vector of 425 Grant Ave is thus
1100100 OR 0000001 = 1100101. Similarly, the new bitmap
vector of address 747 Industrial Way is the vector of Roberts
OR the vector of Ellis = 0010000 OR 0001010 = 0011010.

As the example above shows, to generate a new bitmap
vector of a value u in R, intuitively, we should examine u’s
bitmap vector in T to find the key values co-occurred with
u, and then combine the bitmap vectors of these key values
in S with an OR operation.

However, such an approach needs to find the key values
for each vector of each attribute Ai (k+1 ≤ i ≤ m). Con-
sequently, doing so for each value u requires the key values
in T to be randomly accessed, which is not efficient. There-
fore, instead of scanning each vector of each attribute, we
can sequentially scan each attribute value of each tuple in
T, which can generate the same result.

Algorithm 4 Key-Foreign Key Based Merging

merging (S(A1, · · · , Ak, Ak+1, · · · , Am),
T(A1, · · · , Ak, Am+1, · · · , An))
Output: The bitmaps, hash tables and offset indexes of
Am+1, · · · , An in R

1: RS = number of rows in S

2: RT = number of rows in T

3: for i = 1 to RT do
4: v1, · · · , vk = the values of key attributes A1, · · · , Ak of T

in row i
5: u1, · · · , un−m = the values of non-key attributes

Am+1, · · · , An of T in row i
6: vec = findvector(v1, · · · , vk, S)
7: for j = 1 to n−m do
8: if uj has not been seen before in the bitmap of Aj+m

then
9: set vec as the bitmap vector of Aj+m for value uj

10: insert an entry for vec into the hash table of Aj+m

11: insert an entry for each position of “1” in vec into the
offset index of Aj+m

12: else
13: vec′ = the current vector of Aj+m for value uj

14: vec = vec′ OR vec
15: insert an entry for each position of “0” in vec and “1”

in vec′ into the offset index of Aj+m

16: replace the bitmap vector of Aj+m for value uj with
vec

Algorithm 4 presents our merging algorithm by realizing
the idea just discussed. Line 3 shows the sequential scan of
T. For each row during the scan, procedure findvector is
called to find the vector of the key value of this row in table
S (line 6). The details of the findvector procedure will be
discussed later. After calling findvector, we generate the
bitmap vectors for values of non-key attributes (lines 7-16).
We check, for each value, whether its bitmap vector exists
(line 8). If not, we can directly output the bitmap vector
generated in this iteration (line 9). We also insert an entry
for this new vector into the hash table of the attribute (line
10). Besides, for each “1” appearing in vec, we insert an
entry accordingly to the offset index (line 11). Otherwise,
we combine the vector with the previously generated one
with OR operation (lines 13-14). During the OR operation,

Figure 3: A Non-Reusable Merging Example

for each position such that the value in vec′ is 1 and the
value in vec is 0, we insert an entry accordingly into the
offset index (line 15).

Example 4.2. In our running example, we sequentially
scan table T. The first tuple of T contains employee Jones.
Jones’s vector in S is 1100100, and thus the vector of the
corresponding non-key attribute address 425 Grant Ave in R

is 1100100. Meanwhile, we insert an entry for this vector
into the hash table of address, and insert three entries (1,
747 Industrial Way), (2, 747 Industrial Way) and (5, 747
Industrial Way) into the offset index of address. The em-
ployee of T’s second tuple Roberts has vector 0010000 in S,
so we set the vector of the corresponding address 747 Indus-
trial Way in R as 0010000, and update the hash table and
offset index accordingly. The employee of the third tuple in
T is Ellis, which has vector 0001010 in S. Since the corre-
sponding address, 747 Industrial Way, has occurred before,
we perform an OR operation on its existing vector and get
0010000 OR 0001010 = 0011010. We also insert two en-
tries, (4, 747 Industrial Way) and (6, 747 Industrial Way)
into the offset index of address. Similarly, the last tuple in
T has address 425 Grant Ave, and we thus preform an OR
operation with its existing vector and get 1100101.

The findvector function takes two parameters. The first
parameter v is a list of values from key attributes, and the
second is a table X. It returns the vector of occurrences of v
in X. If v has only a single attribute A, we simply return the
vector corresponding to v in A’s bitmap. If v has multiple
attributes, we perform an AND operation on the vector of
each individual value in v, and return the result vector.

4.2 General Merging

When neither input table can be reused, the merging op-
eration has to generate bitmaps for all the attributes in S

and T. This is the most complicated scenario, which hap-
pens when the common attributes of the two input tables
are not the key of either of them.

As an example, consider Figure 3. It is a variation of Fig-
ure 1 such that each employee may have multiple addresses.
This means that the join attribute Employee of S and T are
the key of neither S nor T. As we can see, during the merging

111

Figure 4: Non-Reusable Merging with Re-
Organization.

operation, the columns of R cannot reuse existing columns
of either S or T.

Intuitively, this case demands a more complex algorithm,
as we are not only unable to reuse existing tables, but face
difficulties to efficiently determine the positions of attribute
values in R. For example, in Figure 3, we cannot compute
the positions of the employee Jones in R only from Jones’s
bitmaps in S and T. Instead, we have to consider the join
results of all employee values to accurately compute the po-
sitions of every employee. Conducting joins and holding the
join results of the key attribute in memory are neither time
nor space efficient.

We solve the general merging problem by developing an
efficient merging algorithm to output R in a specific orga-
nization. Figure 4 shows the re-organized R. We can see
that tuples in R are first clustered by the join attributes
(i.e., Employee), then by attributes in T (i.e., Address), and
finally by attributes in S (i.e., Skill). This re-organized R is
the same as the one in Figure 3 from relational perspective.
But it can be generated more quickly, since we can derive
the positions of attribute values in a much easier way.

In particular, we design a two-pass algorithm to quickly
generate the target table for the non-reusable merging sce-
nario. Since other scenarios can be viewed as simpler cases
of the non-reusable scenario, this two-pass algorithm is ac-
tually a general merging algorithm to handle any merging
situations, although in practice, it is mainly used for the
non-reusable merging scenario.

The first pass is only on the join attributes of S and T.
In this pass, we compute the number of occurrences of each
distinct join value in S and T. After this pass, we are able to
easily generate the bitmaps for the join attributes: If a join
value v has n1 occurrences in S and n2 occurrences in T, then
it has n1×n2 occurrences in R. Further, since R is clustered
by the join attributes, the bitmap vector of each value, as
well as the hash table and offset index of each attribute, can
be directly derived from the occurrence counts.

Example 4.3. Consider Figure 4. We scan the distinct
values of the join attribute Employee. For each distinct Em-
ployee value, we count how many times it occurs in S and
T, and store the counting results in a hash structure. As we
can see, Jones appears three times in S and twice in T; Ellis

Algorithm 5 General Merging

merging (S(A1, · · · , Ak, Ak+1, · · · , Am),
T(A1, · · · , Ak, Am+1, · · · , An))
Output: R(A1, · · · , An)

1: keyocc = empty hash table
2: for each distinct value v of the join attributes A1, · · · , Ak do
3: occS = number of occurrences of v in S

4: occT = number of occurrences of v in T

5: keyocc{v, S} = occS
6: keyocc{v,T} = occT
7: generate bitmaps, hash tables and offset indexes for join at-

tributes
8: processTable (S, k, keyocc, consecutive)
9: processTable (T, k, keyocc, non-consecutive)

processTable (X, k, keyocc, type)

1: keyelapsed = empty hash table
2: rowelapsed = 0
3: for each distinct value v of join attribute in X do
4: occ = keyocc{v,X}
5: occ′ = keyocc{v,Y}, where Y is the other input table
6: vec = findvector (v,X)
7: keypos = the positions of “1” in vec
8: for i = 1 to keypos.size do
9: u1, · · · , ut = the values of non key attributes of X in row

keypos[i]
10: pos = keyelapsed{u1, · · · , ut}, set to 0 if not exists
11: for j = 1 to t do
12: if type = consecutive then
13: set occ′ bits of the vector of uj to be 1, from the

(rowelapsed+occ′∗pos)th bit to the (rowelapsed+
occ′ ∗ (pos+ 1) − 1)th bit

14: insert the corresponding entries into the corre-
sponding offset index

15: else
16: for k = 0 to occ′ − 1 do
17: set the (rowelapsed+ k ∗ occ+ pos)th bit of the

vector of uj to be 1
18: insert the corresponding entries into the corre-

sponding offset index
19: encode the new added bits in the vector of uj if nec-

essary using WAH encoding
20: keyelapsed{u1, · · · , ut} = pos + 1
21: rowelapsed += occ× occ′
22: insert an entry into for each vector of non-key attribute of

X into the corresponding hash table

appears twice in both S and T.
Based on this result, we can easily generate the bitmap of

Employee in R: Jones occurs 2 × 3 = 6 times and thus its
vector is 1111110000. Ellis occurs 2 × 2 = 4 times and thus
its vector is 0000001111. The hash table and offset index for
Employee are also constructed accordingly.

In the second pass, for each distinct join value, we find
the value of other attributes in S and T. For values of non-
key attributes in T (or S), we put them in a consecutive way
and thus can correspondingly compute the positions for each
value. For values of non-key attributes in S (or T), we put
them in a non-consecutive way but with the same distance
and thus we can also correctly compute the positions for
each value.

Example 4.4. In Figure 4, we first process the attributes
in table T. For employee Jones, we have three matching
addresses: 425 Grant Ave, 747 Industrial Way and 60 Aubin
St. Since the number of occurrences of Jones in S is 2, we
know that each of these addresses will appear twice in R. As
we organize the values in a consecutive way, the address 425

112

Grant Ave is put in the first two positions and thus has a
bitmap vector 1100000000 in R. Similarly, 747 Industrial
Way has vector 0011000000, and 60 Aubin St 0000110000.

We then process the attributes in S. For employee Jones,
we have two matching skills: Typing and Shorthand. Since
the number of occurrences of Jones in T is 3, we know that
each of these skills will appear three times in R. As we or-
ganize the values in a non-consecutive way, skill Typing is
put in the 1st, 3rd and 5th positions and thus has a bitmap
vector 1010100000 in R. Similarly, Shorthand has a vector
0101010000.

Addresses and skills of employee Ellis are processed in a
similar way. The offset index and hash table of each attribute
is constructed according to the bit vector.

Algorithm 5 shows the general two-pass merging algorith-
m. Lines 1-7 realize the first pass, and lines 8-9 the second
pass by calling function processTable twice to process table
T and S. We use T to illustrate the processTable procedure
below, and the process on S is similar. For each distinct join
attribute value v in T, we first get the occurrences of v in T

as occ (line 4) and its occurrences in S as occ′ (line 5). We
then find the positions of v in T, denoted as keypos (lines 6-
7). Function findvector has been discussed in Section 4.1.
Each of these positions corresponds to a list of attribute val-
ues in T, Am+1, · · · , An (line 9). For each attribute value
Ai(m+1 ≤ i ≤ n), we construct its corresponding vector in
R in either consecutive or non-consecutive way (lines 10-20).

5. EXPERIMENTS
In this section, we report the results of a set of experiments

designed to evaluate our proposed data-level data evolution
on column oriented databases. We test the efficiency and
scalability in terms of time consumed for data evolution, on
both real and synthetic data with large sizes.

5.1 Experimental Setup
Environment. The experiments were conducted on a

machine with an AMD Athlon 64 X2 Dual Core processor of
3.0GHz and 4.0GB main memory. In our implementation we
used the Windows file system, i.e., the tables in the column
store are simulated by a set of files storing the columns, and
did not take advantage of the buffer and disk management
which is usually used in DBMSs.

Comparison System. We tested two baseline approach-
es for query-level data evolution, one for row store and one
for column store. For decomposition, the baseline approach
for row stores scans the input table twice, as it is the min-
imal cost involved in the decomposition (one scan for each
query), and writes the output tables; the baseline approach
for column stores scans the affected columns and output the
corresponding columns in the output table. For merging,
both baseline approaches scan the input tables twice (as-
suming hash join is used), and writes the output table. The
baseline approaches for row stores and column stores are
denoted as “BR” and “BC” in the following figures, respec-
tively.

We also tested two RDMBSs: a commercial row-oriented
RDBMS (denoted as “C” in the figures), and an open source
column oriented RDBMS (LucidDB [1], denoted as “L”). We
disabled logging in C for fair comparison. We use“D”to refer
to our data-level approach.

Data Set. Both synthetic data and real data are test-
ed. We generated synthetic tables based on five parameter-
s: number of tuples, number of distinct values in a colum-
n, number of affected columns in a decomposition/merging,
number of unaffected columns in a decomposition/merging,
and the width of data values. The tuples in the synthetic
data are randomly generated. In each set of experiments,
we varied one parameter and fixed the others.

When testing decomposition and key-foreign key based
merging, we generated a table R with a functional depen-
dency, then we decomposed it into two tables S and T to
test the decomposition and merge S and T back to test the
merging. Unless otherwise stated, table R has three columns
(A1, A2, A3); A1 is the primary key and A3 functionally de-
pends on A2. R has 10 million tuples, A2 has 100 thousand
distinct values and A3 has 10 thousand distinct values. The
average width of the values in R is 5 bytes. When testing
general merging, we generated two joinable tables S and T.
Unless otherwise stated, S and T both have two columns
(A1, A2) and (A2, A3), and 1 million tuples. Merging S and
T can result in as many as 2 billion tuples in the output
table R. A2 has 40 thousand distinct values. The number
of distinct values of A1 and A3 are set to be half and one
third of the number of distinct values of A2, respectively.

For real data, we used a table in the patent database,
which can be purchased from the United States Patent and
Trademark Office. The table has 25 million tuples and nine
attributes: patent number (key), name, first name, last
name, address, country, state, city, zip. The total size of
this table is roughly 30GB. The compressed bitmaps of all
data sets in the experiment fit into main memory.

In the experiment we measure the time taken by each
approach for data evolution.

5.2 Performance of Decomposition on Synthet-
ic Data

In this set of experiments we test the efficiency of decom-
position for our approach, the two baseline approaches and
query-level data evolution on the two RDBMSs. The test
results are shown in Figure 5.3

Figure 5 shows the processing time of decomposition for
all approaches with respect to different parameters. The
horizontal axis in Figure 5(b) corresponds to the number of
distinct values of A2. The number of distinct value of A3 is
set to be 1/10 of that of A2.

As we can see, the processing time of decomposition of
each approach generally increases with the five parameter-
s, and our data-level approach significantly outperforms the
other approaches by up to several degrees of magnitude. Our
approach is much faster even compared with the baseline ap-
proaches, which only perform scans of the tables / columns,
and writes the output tables. The processing time of our
approach is mainly due to the process of building the new
bitmap of A3 according to the occurrences of distinct values
of A2 in R, which is proportional to the number of distinc-
t values of A2. Since the bitmap of each column is com-
pressed, the size of the bitmap increases much more slowly
than the number of tuples. On the other hand, table scans
and writing results onto disks can take much longer time, as
a column is usually much larger than its compressed bitmap.
Note that BC is generally faster than BR as it does not need

3Some data points are missing as the corresponding process-
ing time exceeds the scope of the vertical axes.

113

Figure 5: Processing Time of Decomposition

Figure 6: Processing Time of Merging, Varying
Number of Tuples

Figure 7: Processing Time of Merging, Varying
Number of Distinct Values

to scan or output the unaffected columns.
The processing time of decomposition of the two RDBMSs

involves a projection query and a distinction query. C takes
a relatively long time for the projection query, as the num-
ber of disk I/Os is large. Since L uses bitmap indexes, it
is efficient for distinction queries. However, L is generally
inefficient as it takes a long time to rebuild the bitmap index
after the new tables are generated.

Besides, Figure 5(d) and (e) suggest that our approach is
almost not affected by increasing the number of unaffected
columns, as they can be reused, and by increasing the tuple
width, as the majority of our operations are on bitmaps.

5.3 Performance of Merging on Synthetic Da-
ta

In this section we report the merging processing time (in-
cluding key-foreign key based merging and general merging)
for these approaches. Note that we use smaller input ta-
bles for general merging, but the size of the output table
of general merging is comparable with the output table of
key-foreign key based merging. Since L is extremely slow
for both key-foreign key based merging and general merging
(taking more than 12 hours for a single join query), we do

not include L in the corresponding merging test.
The processing time of key-foreign key based merging and

general merging of each approach with respect to different
parameters is shown in Figure 6 - Figure 8. As we can see,
our approach usually outperforms the baseline approaches
(which merely scans the tables and outputs the results, but
do not perform any join), and is slower but comparable with
the BC approach in a few cases. In fact, performing joins
take a long time, indicated by the fact that our approach is
far more efficient than C and L. For key-foreign key based
merging, our approach scans the key attributes of the input
table S once, which is the smaller of the two input tables.
There are some additional bitmap “OR” operations, which
are efficient for compressed bitmaps. For general merging,
the processing time of the baseline approaches is dominated
by the size of the output table, as it is much bigger than
both input tables. On the other hand, our approach do not
outputs this table, but its bitmaps, which is usually several
hundred times smaller.

Our approach is far more efficient and scalable than C
and L. As an example, when the number of tuples is 2.5
million, C takes almost an hour for general merging while
our approach consumes only 78 seconds; when the number
of affected columns is 6, C and L take 68 and 433 seconds
for key-foreign key based merging, while our approach takes
33 seconds.

Note that, as can be seen from Figure 7(b), the processing
time of general merging of all approaches decreases when
the number of distinct values increase, as the number of
tuples in the output table decreases with increasing number
of distinct values. Besides, similar as decomposition, the
processing time of our approach is almost not affected by
the number of unaffected columns.

5.4 Performance of Decomposition andMerg-
ing on Real Data

In the patent table, attributes“first name”and“last name”
functionally depend on “name”. Therefore we test a decom-
position which separates these three attributes into a new
table. A merging is also tested as the reverse of the decom-
position. LucidDB is not included in this test due to its
extremely slow speed for processing this large table.

The test shows that our approach is significantly faster
than the commercial database on this data set. We take 71
and 133 seconds to perform the decomposition and merging.
Contrarily, C takes 308 seconds to perform the decomposi-
tion. For the merging, C does not finish in one hour, largely
due to the poor scalability of C. Such a performance makes
data evolution prohibitive and prevents it from being used.

114

0
40
80
120
160

10 20 30 40 50
Tuple Width

D C L BR BC

0
20
40
60
80
100
120

2 3 4 5 6
of Unaffected Columns
D C L BR BC

0
30
60
90

120
150

2 3 4 5 6
of Affected Columns
D C L BR BC

0
30
60
90
120

100 1K 10K 100K 1M
of Distinct Values

D C L BR BC

0
20
40
60
80

2M 4M 6M 8M 10M

Ti
m

e
(s

)

of Tuples
D C L BR BC

(a) Key-Foreign Key (b) General (c) Key-Foreign Key (d) Key-Foreign Key (e) General

Figure 8: Processing Time of Merging, Varying Width of Values and Number of Columns

6. RELATED WORKS
Column Oriented Databases. Notable database man-

agement systems that store data via columns include Mon-
etDB [12], LucidDB [1] and C-Store [33]. They all support
relational databases and data warehouses, on which SQL
queries can be executed. C-Store additionally supports hy-
brid structures of both row oriented and column oriented
storages, as well as overlapping columns to speed up query
processing. A detailed investigation of compression schemes
on column oriented databases and guidance for choosing
these schemes are presented in [5]. [19] compares the per-
formance of column oriented databases and row oriented
databases with respect to various factors, such as the num-
ber of columns accessed by a query, L2 cache prefetching,
selectivity, tuple width, etc., and demonstrates that colum-
n oriented databases are in general more efficient than row
oriented databases for answering queries that do not access
many attributes. [3] studies how column stores handle wide
tables and sparse data. An optimization strategy that joins
columns into rows as late as possible when answering queries
is presented in [7]. [4] shows that column oriented databas-
es are well suitable for handling vertically partitioned RDF
data, which achieves an order of magnitude improvemen-
t in efficiency compared with row oriented databases. [6]
conducts a comprehensive study of the fundamental differ-
ences between row stores and column stores during query
processing, investigates whether the performance advantage
of column stores can be achieved by row stores using vertical
partitioning, as well as how much each optimization strate-
gy affects the performance of column stores. All these works
on column stores study the query processing efficiency, while
data evolution on column stores has not been addressed.

Database Evolution and Related Topics. A database
evolution generally involves updating the schema of the database,
and evolving the data to the new schema. Existing re-
search on database evolution studies procedures and effects
of database schema updates. Clio [26] is a system that en-
ables users to express schema mappings in terms of queries,
and then uses query-level data evolution to evolve the da-
ta between schemas on XML or relational databases. Oth-
er works include the impact-minimizing methodology [30],
propagations of the changes of applications to databases [20],
consistency preservation upon schema changes [14] and frame-
works of metadata model management [11, 34, 37]. Recent-
ly, [15] presents the requirements of an operational tool for
schema update, e.g., interface, monitoring of redundancy,
query rewriting, documentation, etc., but it lacks algorithm-
s that actually evolve the data from the original schema to
the new one.

Note that the data evolution problem studied in this paper

is quite different from the data migration techniques stud-
ied and applied in both industry and academia. Commercial
DBMSs, such as DB2, Oracle and SQL Server, provide sup-
port for data migration, which is the process of migrating a
database between different DBMSs. However, the database
schema generally does not change during this process. Data
migration is also regarded as a disk scheduling problem [22,
24, 23], which focuses on scheduling disk communication-
s such that a set of data items are transferred from the
source disks to the target disks in minimal time. Various
approximation algorithms are proposed to tackle this NP-
hard problem.

Other related features supported in commercial DBMS
products include the Oracle Change Management Pack [2],
which provides useful operations to manage change to databas-
es, e.g., it allows developers to track changes to objects as the
database schema changes, and to quickly assess the impact
of a database evolution and modify the relevant applications
accordingly. Besides, online data reorganization in commer-
cial DBMSs is a technique that enables the database to be
usable when it is being maintained.

7. CONCLUSIONS AND FUTUREWORK
In this paper we present a framework for efficient data-

level data evolution on column oriented databases, based
on the observation that column oriented databases have a
storage scheme better suitable for database evolution. Tra-
ditionally, data evolutions are conducted by executing SQL
queries, which we name as query level data evolution. Such
a time consuming process severely limits the usability and
convenience of the databases.

We exploit the characteristics of column stores and pro-
pose a data-level data evolution which, instead of joining
columns to form results of SQL queries and then separately
compressing and storing each column, evolves the data di-
rectly from compressed storage to compressed storage. Both
analysis and experiments verify the plausibleness of our ap-
proach and show that it consumes much less time and scales
better than query level data evolution. Our approach makes
databases more usable and flexible, relieves the burden of
users and system administrators, and encourages research
on further utilization of database evolution. This frame-
work also guides the choice between row oriented databases
and column oriented databases when schema changes are
potentially wanted. In the future, we would like to study
whether the algorithm of merging tables can be applied to
optimize join queries, and the applications with excessively
large tables such that the bitmap vector of a single attribute
does not fit in main memory, as well as the cases in which
columns are not compressed using bitmap.

115

8. ACKNOWLEDGEMENT
This material is based on work partially supported by NSF

CAREER Award IIS-0845647, IIS-0915438 and IBM Faculty
Award.

9. REFERENCES
[1] LucidDB. http://www.luciddb.org/.

[2] Oracle Enterprise Manager 10g Change Management
Pack, 2005. Oracle Data Sheet.

[3] D. J. Abadi. Column Stores for Wide and Sparse
Data. In CIDR, pages 292–297, 2007.

[4] D. J. Abadi, A. M. 0002, S. Madden, and K. J.
Hollenbach. Scalable Semantic Web Data Management
Using Vertical Partitioning. In VLDB, pages 411–422,
2007.

[5] D. J. Abadi, S. Madden, and M. Ferreira. Integrating
Compression and Execution in Column-Oriented
Database Systems. In SIGMOD Conference, pages
671–682, 2006.

[6] D. J. Abadi, S. Madden, and N. Hachem.
Column-Stores vs. Row-Stores: How Different Are
They Really? In SIGMOD Conference, pages 967–980,
2008.

[7] D. J. Abadi, D. S. Myers, D. J. DeWitt, and
S. Madden. Materialization Strategies in a
Column-Oriented DBMS. In ICDE, pages 466–475,
2007.

[8] R. B. Almeida, B. Mozafari, and J. Cho. On the
Evolution of Wikipedia. In ICWSM, 2007.

[9] G. Antoshenkov. Byte-Aligned Bitmap Compression.
In DCC, 1995.

[10] Z. Bellahsene. Schema Evolution in Data Warehouses.
Knowl. Inf. Syst., 4(3):283–304, 2002.

[11] P. A. Bernstein. Applying Model Management to
Classical Meta Data Problems. In CIDR, 2003.

[12] P. A. Boncz, M. Zukowski, and N. Nes.
MonetDB/X100: Hyper-Pipelining Query Execution.
In CIDR, pages 225–237, 2005.

[13] Y. Chen, W. S. Spangler, J. T. Kreulen, S. Boyer,
T. D. Griffin, A. Alba, A. Behal, B. He, L. Kato,
A. Lelescu, C. A. Kieliszewski, X. Wu, and L. Zhang.
SIMPLE: A Strategic Information Mining Platform
for Licensing and Execution. In ICDM Workshops,
pages 270–275, 2009.

[14] A. Cleve and J.-L. Hainaut. Co-transformations in
Database Applications Evolution. In GTTSE, pages
409–421, 2006.

[15] C. Curino, H. J. Moon, and C. Zaniolo. Graceful
Database Schema Evolution: the PRISM Workbench.
PVLDB, 1(1):761–772, 2008.

[16] C. Curino, H. J. Moon, and C. Zaniolo. Automating
Database Schema Evolution in Information System
Upgrades. In HotSWUp, 2009.

[17] F. Deliège and T. B. Pedersen. Position List Word
Aligned Hybrid: Optimizing Space and Performance
for Compressed Bitmaps. In EDBT, pages 228–239,
2010.

[18] H. Fan and A. Poulovassilis. Schema Evolution in
Data Warehousing Environments - A Schema
Transformation-Based Approach. In ER, pages
639–653, 2004.

[19] S. Harizopoulos, V. Liang, D. J. Abadi, and
S. Madden. Performance Tradeoffs in Read-Optimized
Databases. In VLDB, pages 487–498, 2006.

[20] J.-M. Hick and J.-L. Hainaut. Database Application
Evolution: A Transformational Approach. Data
Knowl. Eng., 59(3):534–558, 2006.

[21] H. V. Jagadish, A. Chapman, A. Elkiss,
M. Jayapandian, Y. Li, A. Nandi, and C. Yu. Making
database systems usable. In SIGMOD, 2007.

[22] S. Khuller, Y. A. Kim, and A. Malekian. Improved
Algorithms for Data Migration. In
APPROX-RANDOM, pages 164–175, 2006.

[23] S. Khuller, Y. A. Kim, and Y.-C. J. Wan. Algorithms
for Data Migration with Cloning. In PODS, pages
27–36, 2003.

[24] Y. A. Kim. Data Migration to Minimize the Total
Completion Time. J. Algorithms, 55(1):42–57, 2005.

[25] Z. Liu, S. Natarajan, B. He, H.-I. Hsiao, and Y. Chen.
CODS: Evolving Data Efficiently and Scalably in
Column Oriented Databases. PVLDB, 3(2):1521–1524,
2010.

[26] R. J. Miller, M. A. Hernández, L. M. Haas, L.-L. Yan,
C. T. H. Ho, R. Fagin, and L. Popa. The Clio Project:
Managing Heterogeneity. SIGMOD Record,
30(1):78–83, 2001.

[27] H. J. Moon, C. Curino, A. Deutsch, C.-Y. Hou, and
C. Zaniolo. Managing and Querying Transaction-time
Databases under Schema Evolution. PVLDB,
1(1):882–895, 2008.

[28] P. E. O’Neil and D. Quass. Improved Query
Performance with Variant Indexes. In SIGMOD
Conference, pages 38–49, 1997.

[29] G. Özsoyoglu and R. T. Snodgrass. Temporal and
Real-Time Databases: A Survey. IEEE Trans. Knowl.
Data Eng., 7(4):513–532, 1995.

[30] Y.-G. Ra. Relational Schema Evolution for Program
Independency. In CIT, pages 273–281, 2004.

[31] R. Ramakrishnan and J. Gehrke. Database
Management Systems, 3rd Edition. McGraw Hill
Higher Education, 2002.

[32] K. Stockinger, J. Cieslewicz, K. Wu, D. Rotem, and
A. Shoshani. Using Bitmap Index for Joint Queries on
Structured and Text Data, 2008.

[33] M. Stonebraker, D. J. Abadi, A. Batkin, X. Chen,
M. Cherniack, M. Ferreira, E. Lau, A. Lin, S. Madden,
E. J. O’Neil, P. E. O’Neil, A. Rasin, N. Tran, and
S. B. Zdonik. C-Store: A Column-oriented DBMS. In
VLDB, pages 553–564, 2005.

[34] Y. Velegrakis, R. J. Miller, and L. Popa. Mapping
Adaptation under Evolving Schemas. In VLDB, pages
584–595, 2003.

[35] K. Wu, E. J. Otoo, and A. Shoshani. On the
Performance of Bitmap Indices for High Cardinality
Attributes. In VLDB, pages 24–35, 2004.

[36] K. Wu, E. J. Otoo, and A. Shoshani. Optimizing
bitmap indices with efficient compression. TODS,
31(1), 2006.

[37] C. Yu and L. Popa. Semantic Adaptation of Schema
Mappings when Schemas Evolve. In VLDB, pages
1006–1017, 2005.

116

