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Abstract—Many scientific applications are producing a colossal
amount of data that must be processed and analyzed for scientific
exploration and knowledge discovery. The brain injury research
at the Center for Injury Biomechanics, Materials and Medicine
(CIBM3) at New Jersey Institute of Technology (NJIT) is one such
application. We propose to develop a workflow-based solution
that integrates various big data analytics approaches to support
the brain injury research. Within the workflow framework, the
data-intensive analytics modules are implemented and executed
on big data platforms such as Hadoop using cloud computing
resources in virtualized environments. The proposed workflow
system is generic and can be adapted to other scientific domains
with similar computing and networking needs.

Index Terms—Big Data Analytics; Brain Injury Research;
Scientific Workflow

I. INTRODUCTION

The rapid advance in computing technology is expediting

the transition in various basic and applied sciences from

traditional laboratory-controlled experimental methodologies

to modern computational paradigms involving complex nu-

merical model analyses and extreme-scale simulations of

physical phenomena, chemical reactions, climatic changes, and

biological processes. These computation-based analyses and

simulations have become an essential research and discovery

tool in next-generation scientific applications and are produc-

ing colossal amounts of data, now frequently termed as “Big

Data”, on the order of terabyte at present and petabyte or even

exabyte in the predictable future [6]. Other data of similar

scales generated in broad science, engineering, and busi-

ness domains include environmental observation data (satellite

data [1], multimodal sensor data, etc.), experimental mea-

surement data (Spallation Neutron Source [2], Large Hadron

Collider [3], etc.), astronomical imaging data (One Degree

Imager [11], Dark Energy Camera [10], Large Synoptic Sky

Survey [13], etc.), bioinformatics and medical data, financial

trading and transaction data, and Internet-based social network

data. No matter which type of data is considered, a high-

performance computing solution is required for geographically

distributed users to store, transfer, process, visualize, analyze,

and synthesize the data for collaborative research and discov-

ery.

At the core of these applications is the mission to achieve

“Big Impact Through Big Data”. However, their success

requires the use of a wide range of expensive and powerful re-

sources including supercomputers, PC clusters, high-end work-

stations, experimental facilities, large-screen display devices,

high-performance network infrastructures, and massive storage

systems [9]. Typically, these resources are deployed at various

research institutes and national laboratories, and are provided

to application users through wide-area network connections

that may span across the nation or even over several countries,

hence inevitably exhibiting an inherent dynamic nature in

their accessibility, availability, capacity, and reliability. As

new computing and networking technologies rapidly emerge,

enabling functionalities and services are progressing at an

ever-increasing pace, but unfortunately, so are the dynamics,

scale, heterogeneity, and complexity of the data analytics

problems and computing environments. Application users,

who are primarily domain experts, need to manually search

for the data of their interest and suitable toolkits for data

analytics, and then configure and run their computing tasks

over networks using software tools or systems they are familiar

with based on their own empirical studies, oftentimes resulting

in unsatisfactory performance in such diverse and dynamic

environments.

At the Center for Injury Biomechanics, Materials and

Medicine (CIBM3) at New Jersey Institute of Technology

(NJIT), a multidisciplinary faculty team from biology, en-

gineering, mathematics, neuroscience and clinical medicine

work together to address the holistic questions in brain injury,

from protection, diagnostics, therapeutics, to rehabilitation.

The researchers have developed unique experimental and

computational facilities that can simulate injury causing con-

ditions accurately and are used to test live tissues, small/large

animal models, human cadavers, and manikins under realistic

conditions. These experimental and computer models could

help the researchers understand how the injuries are caused

and then develop predictive models useful to engineers and

medical professionals. The research attempts to find both

biomechanical and biochemical pathways of how injury is

caused and how it is manifested as acute and chronic neurolog-

ical dysfunctions with poor medical outcomes. It is important

to not only understand these mechanisms in the animal model

but also translate these results to humans. Sometimes, it is

not always clear what are the biological, mechanical and



clinical parameters that need to be controlled or measured,

and significant challenges still remain in processing the large

amounts of data for knowledge discovery and model-based

prediction.

We propose a workflow-based solution that consists of

various computing modules of big data analytics techniques to

support brain injury research. Within the workflow framework,

the data-intensive analytics modules are implemented and

executed on big data platforms such as Hadoop system using

cloud computing resources in virtualized environments. We

would like to point out that the proposed workflow system is

generic and can be adapted to other scientific domains with

similar computing and networking needs.

The rest of the paper is organized as follows. In Section II,

we provide a brief introduction to brain injury research. In

Section III, we sketch a number of data analytics approaches

to address the big data challenges in this application domain.

In Section IV, we propose a workflow-based solution to big

data analytics in high-performance computing and networking

environments. In Section V, we describe some technical chal-

lenges in implementing and deploying the workflow system in

cloud environments.

II. BIG DATA CHALLENGES IN BRAIN INJURY RESEARCH

In brain injury research, both experimental and compu-

tational data have been generated. In each experiment, we

measure pressure, acceleration, strain, and images at multiple

locations and collect data at the rate of 1 MHz for 100 msec. A

dataset may consist of at least 15 to 20 of these measurements.

Currently, all the numerical data are stored in raw data form

in native and excel formats. Two or three camera shots of

the event are recorded at a resolution of 20000 frames per

second and are stored in video format. A single experiment

may produce data of about 3 GB.

Biological tissues of the animal post-injury are sliced (200

slices) and the histological information is stored at 100 MB per

sample. A similar size data is expected when we do protein,

antibody or other biomarker analyses. The computer models

for the shock-structure interaction involve about 5 million

finite elements with a simulation time of 5 msec (64 processors

run for 12 hour clock time) at the rate of 1 picosecond.

Typical raw data may be of 3 or 5 GB. We conduct about

300 experiments per year.

All the experimental data are not used in most of the

analysis. Currently, we only use a very small subset of data

consistent with the testing of our hypothesis. Since our test

specimen is a rat of very specific kind (Sprague-dawley male,

specific age), we are interested in knowing how to use that

data if we do some additional tests on other variations. Also,

we want to find out what other information is contained in

such big data that can be made useful by following proper

data analytics.

III. BIG DATA ANALYTICS IN BRAIN INJURY RESEARCH

To address the challenges and make sense of the data in

brain injury research, we propose to develop various data

analytics techniques, as outlined below.

Currently, all the numerical data are stored in plain text or

excel files. To link data of different types, such as experiment

setting, position of shock, type of shock, mechanical and

medical conditions, special programs have to be developed

for efficient data synthesis and analysis. Also, it is necessary

to link and correlate the information at different time points to

better understand the condition change of an individual animal.

To facilitate analysis and reduce development efforts, we will

employ database systems to abstract the common modules

of analysis needs, enable the expression of user analysis as

declarative queries built upon the common modules, and create

indices offline to speed up the data processing. In particular,

we will investigate traditional relational databases, column-

based databases, and NoSQL systems for storage backend

options based on the study of analysis needs. We will provide

a query processor with a user-friendly interface to allow users

to easily query the data. The user input will be converted to

a declarative query, which will be processed and visualized.

Some example queries may include: which experiment setting

leads to identified brain injury, what position is more likely to

result in injury, what is the difference in the injury caused by

the same shock wave to different subjects, and so on.

The grand challenge is to develop predictive models. Since it

is infeasible to conduct all types of experiments on all available

species (especially human subject), one solution is to predict

a possible impact on a certain subject based on the historical

experiments and observations of other subjects (e.g. animals)

of possibly different species. Human brain injury data can also

be accessed through our collaboration with the emergency

clinical medical database. These data provide actual injury

scenarios (e.g. falling from height, motor vehicle accidents,

blast injury, etc.), treatment regimens, initial prognostics and

progression of diseases. One main research goal is to integrate

animal and human data in a seamless manner using data

analytics. Towards this goal, we plan to study latent models

for prediction, e.g. Singular Value Decomposition (SVD)

and Factorization Machines (FM). The rationale behind these

models is that different combinations of individual animals

and experiment settings may lead to different impacts on

the brains. However, there are a large amount of features in

experiment settings, and even many more features in individual

observations, from biological tissue,to protein, antibody or

other biomarkers. Since it is challenging to select features,

latent models can learn these impact patterns hidden in the

data. For SVD, we plan to build an individual-experiment-

setting matrix, in which the value of each element is the level

of brain impact. The missing values, i.e. the brain impact of

experiments that are not conducted, will be predicted by SVD.

By adding more features that are known to have big impact

based on the suggestion of medical experts, we can build

an FM model, which not only computes the internal model

using factorized interactions between individual animals and

experiment settings, but also allows more real-value features,

like those in linear regressions. Given any combination of

individual animals and experiment settings, the trained FM

model may be able to predict the corresponding impact level.



Brain injury researchers are also interested in identifying

similar cases. For instance, a user may want to find similar

experiment settings, or similar statuses of biomarkers. How-

ever, this is very challenging due to the high dimensionality of

the data under consideration. Furthermore, since the biomarker

data are represented as sequences/time series, we will study

similarity measure for sequences and develop effective tech-

niques for similarity measurement.
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Fig. 1: A generic three-layer workflow architecture for ex-

ecuting and optimizing big data scientific applications in

distributed environments.

IV. A WORKFLOW-BASED SOLUTION TO BIG DATA

ANALYTICS

Many of the aforementioned techniques to be developed for

data processing and model-based prediction (including model

construction, training, and testing) in brain injury research

are computationally intensive and hence require the use of

high-performance computing resources. Considering the sheer

volume of data to be processed, we implement and execute

data-intensive analytics modules on big data platforms such as

Hadoop in virtualized environments. Also, since the execution

of one computing module might depend on the result of

another, we propose to develop a generic workflow-based

solution to support big data analytics in brain injury research.

As shown in Fig. 1, we consider a layered workflow

architecture that consists of three interrelated layers: (i) a

top layer – abstract scientific workflow, (ii) a middle layer –

virtual overlay network, and (iii) a bottom layer – physical

computing and networking infrastructure. The interactions

and transformations between these three layers produce an

integrated and intelligent workflow solution to optimize the

performance of scientific applications including brain injury

research in resource sharing environments.

The top layer defines abstract scientific workflows com-

prised of computational and computing modules with high-

level functional and I/O descriptions. This layer provides a uni-

fied web interface for users to compose, dispatch, and monitor

domain-specific workflows while the rest of the system is made

completely transparent to them. The simplest workflow may

include only two modules for a point-to-point data transfer

while a complex one may involve as many as thousands of

modules with intricate execution dependencies.

The bottom layer defines underlying physical system re-

sources including large data repositories storing (simulated,

observational, or experimental) high-resolution multimodal

scientific datasets, high-speed network infrastructures pro-

visioning high bandwidth for fast data transfer, and HPC

facilities generating countless CPU cycles for expeditious data

processing.

The top and bottom layers meet at the middle layer that

defines a virtual overlay network through the following two

operations, which are interleaved when dynamic workflow

reconfigurations are required:

i) Resource abstraction: Build a virtual overlay network

from a given scientific workflow and the underlying net-

worked computing resources via performance modeling and

prediction. Each overlay node with estimated processing power

corresponds to a physical machine/site or a virtual machine as

in clouds, and each overlay link with estimated bandwidth

corresponds to a network path consisting of a set of physical

links. In most scientific applications, inter-task data exchanges

are performed through overlay links at the IP or logical level.

ii) Workflow mapping and scheduling: Determine a work-

flow mapping scheme that assigns each module in the scientific

workflow to an overlay node in the overlay network, and

decide a task scheduling policy on each mapping node to

optimize end-to-end workflow performance such as latency,

throughput, or reliability. The resultant mapping scheme and

scheduling policy can be utilized by any existing workflow

engine to dispatch individual modules for distributed execu-

tion. We will leverage the functionalities of existing workflow

systems such as Condor/DAGMan [4], [5], SWAMP [15],

Pegasus [8], and Oozie/Hadoop to reduce our implementation

efforts so we can focus on the research aspects of the proposed

workflow solution.

The workflow engine converts abstract workflows to con-

crete workflows after resolving the location of data files and

executables and establishing network channels required by

component modules. The actual workflow execution occurs

in the resource layer where computing modules are executed

on computer nodes. Such a layered approach coupled with

modularized design makes the proposed workflow system

generic in handling the disparities in the file format, analysis

program, data transfer, and result display in different applica-

tion domains and network environments.



V. TARGETING CLOUD PLATFORMS

With the emergence of cloud computing, an increasing

number of scientific workflows have been moved or are in

active transition to clouds from traditional computing environ-

ments. This shift of computing paradigm has reaped the most

significant benefit of resource virtualization by untangling

application users from complex management and maintenance

of underlying resources, but meanwhile has also brought on

many new challenges for workflow execution and performance

optimization. We focus on the following aspects targeting

cloud platforms.
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Fig. 2: Modeling workflow execution in cloud environments.

Manageability: As cloud computing makes computing a

utility, both the cloud provider and the workflow owner face

the challenge to reduce cost in time, finance, and energy.

To support cost-effective execution of scientific workflows in

clouds, we adapt the general three-layer architecture in Fig. 1

from traditional networks to clouds by focusing on resource

virtualization. As shown in Fig. 2, the resource graph layer

represents a network of virtual machines (VMs) provisioned

from the cloud infrastructure layer. In the task graph layer, we

consider scientific workflows preprocessed by an appropriate

clustering technique based on the inter-module dependencies

and the volumes of inter-module data transfer [12], [14], [7],

where a group of modules in the original workflow are bundled

together as one aggregate module in the resulted task graph.

We will extend the performance models in traditional networks

to quantify the performance of big data scientific workflows

in Infrastructure as a Service (IaaS) cloud environments, and

generalize the workflow optimization problem to minimize

the workflow end-to-end delay under a user-specified cost

constraint. We will design efficient algorithms for this problem

by leveraging the mapping and scheduling algorithms initially

targeting traditional computing environments.

Scalability and Elasticity: Cloud computing enables ser-

vice providers and application users to scale up or down com-

puting resources as needed, which is an important feature espe-

cially when experiencing a sudden growth or drop in demand.

This scalability/elasticity can lead to significant economic

benefit, but may also affect workflow mapping/scheduling as

the resources needed by a particular computing module may

not be always available on a designated VM. Particularly,

for MapReduce-based computing modules, a cluster of VMs

need to be provisioned and configured to process big data

in a distributed manner. We will refine our workflow map-

ping/scheduling algorithms to provision a set of appropriate

VMs that are able to execute the workflow to its completion

with the minimum computing and networking resources. Also,

due to the correlation between the resource capacities of those

VMs provisioned on the same physical server, the mapping and

scheduling algorithms must be revised to explicitly account for

resource integration and job migration across VMs.

Reliability: As the scope and scale of the cloud infras-

tructure are rapidly expanding, node and link failures are

inevitable, causing a detrimental impact on the workflow per-

formance. We will formulate and investigate multi-objective

problems (MOPs) that take reliability into consideration in

addition to those traditional goals such as latency or through-

put. Another challenge in clouds arises from the network

requirement for big data transfer. Since cloud computing

utilizes massively distributed resources on the Internet, there

may exist large data movement between VMs during workflow

execution, for which, we need to either provision dedicated

bandwidth or choose less congested links to guarantee fast

and reliable access to remote data in the cloud. We will also

refine our workflow mapping algorithms to avoid unnecessary

data transfer by mapping workflow modules to the VM(s)

provisioned from the same or nearby physical servers.

Security and Privacy: Security and privacy are among the

most daunting challenges in clouds and must be carefully

addressed for workflow execution. For instance, cloud ven-

dors face major issues in data confidentiality, integrity, and

availability, and may employ various authentication and autho-

rization mechanisms to protect the client’s information by only

allowing access to those data and applications pertaining to the

submitted job. As a result, some workflow modules can only be

assigned to certain VMs, which must be explicitly considered

in the mapping process. The mapping problem becomes even

more complex if we have to coordinate the workflow execution

across multiple domains with different security and privacy

policies.

VI. CONCLUSION

We proposed a workflow-based solution to big data analytics

in brain injury research. The proposed workflow system is

generic and is applicable to other scientific domains with

similar computing and networking needs. We will implement

this workflow system in Hadoop environment using cloud

computing resources and integrate various MapReduce-based

data analytics programs to solve big data problems in different

application domains including brain injury research.
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