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ABSTRACT
Ticket resolution is a critical, yet challenging, aspect of the
delivery of IT services. A large service provider needs to
handle, on a daily basis, thousands of tickets that report var-
ious types of problems. Many of those tickets bounce among
multiple expert groups before being transferred to the group
with the right expertise to solve the problem. Finding a
methodology that reduces such bouncing and hence shortens
ticket resolution time is a long-standing challenge. In this
paper, we present a unified generative model, the Optimized
Network Model (ONM), that characterizes the lifecycle of a
ticket, using both the content and the routing sequence of
the ticket. ONM uses maximum likelihood estimation, to
represent how the information contained in a ticket is used
by human experts to make ticket routing decisions. Based
on ONM, we develop a probabilistic algorithm to generate
ticket routing recommendations for new tickets in a net-
work of expert groups. Our algorithm calculates all possible
routes to potential resolvers and makes globally optimal rec-
ommendations, in contrast to existing classification methods
that make static and locally optimal recommendations. Ex-
periments show that our method significantly outperforms
existing solutions.
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Algorithms
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1. INTRODUCTION
Problem ticket resolution is critical to the IT services busi-

ness. A service provider might need to handle, on a daily
basis, thousands of tickets that report various types of prob-
lems from its customers. The service provider’s ability to
resolve the tickets in a timely manner determines, to a large
extent, its competitive advantage. To manage ticket resolu-
tion effectively, human experts are often organized into ex-
pert groups, each of which has the expertise to solve certain
types of problems. As IT systems become more complex,
the types of reported problems become more diverse. Find-
ing an expert group to solve the problem specified in a ticket
is a long-standing challenge for IT service providers.

In practice, a typical ticket processing system works as
follows. A ticket is initiated by a customer or by internal
staff, and is subsequently routed through a network of expert
groups for resolution. The ticket is closed when it reaches
a resolver group that provides the solution to the problem
reported in the ticket. Figure 1 shows an interaction net-
work between groups with ticket routing examples. Ticket
t1 starts at group A and ends at group D, while ticket t2
starts at group G and ends at group C (note that we omit
the dispatching step in which a ticket is first assigned to
the initial group). The sequences A → B → C → D and
G → E → C are called ticket routing sequences.

In a large network of expert groups, being able to quickly
route a new ticket to its resolver is essential to reduce labor
cost and to improve customer satisfaction. Today, ticket
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Figure 1: Ticket Routing



routing decisions are often made manually and, thus, can
be quite subjective and error-prone. Misinterpretation of
the problem, inexperience of human individuals, and lack
of communication between groups can lead to routing in-
efficiency. These difficulties call for computational models
that can accurately represent the collaborative relationship
between groups in solving different kinds of problems. Such
models ought to provide fine-grain information not only to
help experts reduce ticket routing errors, but also to help
service enterprises better understand group interactions and
identify potential performance bottlenecks.

In [17], Shao et al. proposed a Markov model-based ap-
proach to predict the resolver of a ticket, based on the expert
groups that processed the ticket previously. In essence, their
approach is a rule-based method, i.e., if group A processed a
ticket and did not have a solution, it calculates the likelihood
that group B can resolve it. A drawback of that approach is
that it is locally optimized and, thus, might not be able to
find the best ticket routing sequences. Moreover, it does not
consider the contents of the tickets. That is, it uses a “black-
box” approach that can neither explain, nor fully leverage,
the information related to why group A transfers a ticket to
group B, when it cannot solve the problem itself.

In this work, we aim to address these issues by deriving a
more comprehensive model that incorporates ticket content.
Rather than simply calculating the transfer probability, i.e.,
P (B|A), between two groups A and B, we build a generative
model that captures why tickets are transferred between two
groups, i.e., P (w|A → B), where w is a word in the ticket.
In addition, we build a model that captures why a certain
ticket can be resolved by a group B, i.e., P (w|B). Finally,
we combine the local generative models into a global model,
the Optimized Network Model (ONM), which represents the
entire ticket resolution process in a network of expert groups.

The Optimized Network Model has three major applica-
tions. First, it can be trained using historical ticket data and
then used as a recommendation engine to guide the routing
of new tickets. Second, it provides a mechanism to analyze
the role of expert groups, to assess their expertise level, and
to study the expertise awareness among them. Third, it can
be used to simulate the ticket routing process, and help an-
alyze the performance of an expert network under various
ticket workloads. Due to space constraints, we focus on the
first application and demonstrate the superior performance
of ONM compared to previous models. We briefly discuss
the other two applications, but leave the detailed studies of
those applications for future work.

The technical contributions of this work are three-fold:
First, we propose a unified framework, the Optimized Net-

work Model (ONM), to model ticket transfer and resolution
in an expert network. We develop solutions to estimate the
parameters of ONM, using maximum likelihood estimation.
We use a gradient descent method to speed up the parameter
learning process.

Second, we develop a novel ticket routing algorithm that
analyzes all possible routes in the network, and determines
the optimal route for a ticket to its resolver. As our exper-
iments show, this algorithm significantly outperforms exist-
ing classification-based algorithms.

Third, we show that, unlike the sequence-only model [17],
ONM can explain why tickets are transferred between groups
and how intermediate transfer steps can be used in finding

the resolver. Hence, it can be used to evaluate the roles and
performance of expert groups in a collaborative network.

2. PRELIMINARIES
We use the following notation: G = {g1, g2, ..., gL} is

a set of expert groups in a collaborative network; T =
{t1, t2, ..., tm} is a set of tickets; and W = {w1, w2, ..., wn} is
a set of words that describe the problems in the tickets. A
ticket consists of three components: (1) a problem category
to which the ticket belongs, e.g., a WINDOWS problem or
a DB2 problem, that is identified when the ticket is gen-
erated, (2) the ticket content, i.e., a textual description of
the problem symptoms, and (3) a routing sequence from
the initial group to the final resolver group of the ticket.
Although some complex tickets can be associated with mul-
tiple problem categories or can involve multiple resolvers,
most tickets are associated with one problem category and
can be resolved by one expert group. Our model focuses on
ticket routing in these common cases.

In the first step of routing, each ticket t is assigned to an
initial expert group ginit(t). If the initial group cannot solve
the problem, it transfers the ticket to another group that it
considers the right candidate to solve the problem. After
one or more transfer steps, the ticket eventually reaches the
resolver group gres(t). The route that the ticket takes in
the expert network is denoted R(t). Table 1 shows a ticket
example, which is first assigned to group HDBTOIGA, and
is finally resolved by group NUS N DSCTS.

Table 1: A WINDOWS Ticket Example
ID Description Initial group
8805 User received an error R=12 when in-

stalling Hyperion. When tried to install
again, got success msg, but unable to
open the application in Excel

HDBTOIGA

ID Time Entry
8805 9/29/2006 ... (multi transfer steps) ...
8805 10/2/2006 Ticket 8805 transferred to Group

NUS N DSCTS
8805 10/2/2006 Resolution: enabled Essbase in Excel

To model the interactions between groups in an expert
network, we need to understand how and why the tickets are
transferred and resolved. Specifically, we aim to develop a
modeling framework that consists of (1) a Resolution Model
Mg(t) that captures the probability that group g resolves
ticket t, and (2) a Transfer Model Mgi→gj

(t) that captures
the probability that group gi transfers ticket t to group gj ,
if gi cannot resolve t. Our goal is to develop these two mod-
els, and then combine them into a unified network model,
that represents the ticket lifecycle in the expert network, as
shown in Figure 2.
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3. GENERATIVE MODELS
The ticket contents and routing sequences of the histor-

ical tickets provide clues as to how tickets are routed by
expert groups. In our expert network, each group has its
own special expertise. Thus, if an expert group is capable
of resolving one ticket, chances are it can also resolve other
tickets with similar problem descriptions. Likewise, similar
tickets typically have similar routing paths through the net-
work. In this section, we characterize these properties using
generative models.

3.1 Resolution Model (RM)
First, we build a generative model for each expert group

using the textual descriptions of the problems the group has
solved previously. Given a set Ti of tickets resolved by group
gi and W the set of words in the tickets in Ti we build a
resolver profile Pgi

defined as the following column vector:

Pgi
= [P (w1|gi), P (w2|gi), ..., P (wn|gi)]

T (1)

Equation (1) represents the word distribution among the
tickets resolved by gi. Here, P (wk|gi) is the probability of
choosing wk if we randomly draw a word from the descrip-
tions of all tickets resolved by gi. Thus,

∑n

k=1 P (wk|gi) = 1.
Assuming that different words appear independently in

the ticket content, the probability that gi can resolve a ticket
t ∈ Ti can be calculated from the resolver profile vector Pgi

as follows:

P (t|gi) ∝
∏

wk∈t

P (wk|gi)
f(wk,t) (2)

where wk is a word contained in the content of ticket t and
f(wk, t) is the frequency of wk in the content of t.

To find a set of most probable parameters P (wk|gi), we
use the maximum likelihood method. The likelihood that
group gi resolves all of the tickets in Ti is:

L(Ti, gi) =
∏

t∈Ti

P (t|gi) (3)

We maximize the log likelihood:

Pgi
= arg max

P (W|gi)
(log(L(Ti, gi)))

= arg max
P (W|gi)

(
∑

wk

n(wk, Ti) log(P (wk|gi)))

s.t.
∑

wk∈W

P (wk|gi) = 1

where n(wk, Ti) =
∑

t∈Ti
f(wk, t) is the total frequency of

the word wk in the ticket set Ti. Hence, the maximum like-
lihood solution for the resolver profile vector Pgi

is:

P (wk|gi) =
n(wk, Ti)

∑

wj∈W n(wj , Ti)
(4)

The Resolution Model is a standard multi-class text clas-
sifier, which considers only ticket content. In the following
discussion, we see that embedded in the ticket routing se-
quences are the transfer relations between groups, which can
be used to improve the accuracy of our model.

3.2 Transfer Model (TM)
As Shao et al. [17] pointed out, not only the resolver

group, but also the intermediate groups in the ticket rout-
ing sequences, contribute to the resolution of a ticket. The

reason is that, even if an expert group cannot solve a prob-
lem directly, it might have knowledge of which other group
is capable of solving it. To capture this effect, we use both
the ticket content and the routing sequence to model the
transfer behavior between expert groups.

Considering an edge eij = gi → gj in the expert network,
we let Tij denote the set of tickets that are transferred along
the edge eij and let W denote the set of words in the tickets
in Tij . Using the same technique as described in Section 3.1,
we build the transfer profile of an edge between two expert
groups as the column vector:

Peij
= [P (w1|eij), P (w2|eij), ..., P (wn|eij)]

T (5)

where Peij
characterizes the word distribution among the

tickets routed along edge eij and P (wk|eij) is the probability
of choosing word wk if we randomly draw a word from the
tickets transferred along edge eij . Similarly, we derive the
maximum likelihood solution for the transfer profile of eij

as follows:

P (wk|eij) =
n(wk, Tij)

∑

wℓ∈W n(wℓ, Tij)
(6)

The Transfer Model for the edges can be combined with
the Resolution Model for the nodes to form the network
model shown in Figure 2. However, the parameters of these
models are learned independently and, thus, might not achieve
the best modeling accuracy. To address this problem, we
study how to optimize the network model by learning these
parameters globally.

3.3 Optimized Network Model (ONM)
Both the Resolution Model and the Transfer Model are

local models. They are not optimized for end-to-end ticket
routing in the expert network. In this section, we present an
optimized model that accounts for the profiles of the nodes
and edges together in a global setting. Instead of consid-
ering only the tickets resolved by a certain expert group or
transferred along a certain edge, this model learns its pa-
rameters based on the entire set of tickets, using both their
contents and their routing sequences. As we will see, this
global model outperforms the local models.

3.3.1 Routing Likelihood
When a set Ti of tickets is routed to a group gi, some of

the tickets will be resolved if gi has the right expertise, while
the rest of the tickets will be transferred to other groups. If
gi resolves a ticket, we assume that gi transfers the ticket to
itself. We let Tij be the set of tickets that are transferred

from group gi to group gj . Thus, Ti =
⋃L

j=1 Tij , where Tii

is the set of tickets resolved by group gi itself, and L is the
number of expert groups.

Given a ticket t and the expert group gi that currently
holds the ticket t, the probability that t is transferred from
group gi to group gj is:

P (gj|t, gi) =
P (t|eij)P (gj|gi)

Z(t, gi)

=
(
∏

wk∈t P (wk|eij)
f(wk,t))P (gj |gi)

Z(t, gi)
(7)

where Z(t, gi) =
∑

gj∈G P (t|eij)P (gj|gi) and P (gj |gi) is the

prior probability that gi transfers a ticket to gj . P (gj|gi)
can be estimated by |Tij |/|Ti|. To simplify the notation, we



let P (gi|t, gi) represent the probability that group gi is able
to resolve ticket t if t is routed to gi. Hence, P (w|eii) is the
resolution model of gi. Because a ticket description is often
succinct with few redundant words, we assume f(wk, t) = 1
if wk occurs in t and f(wk, t) = 0 otherwise. This assump-
tion significantly simplifies the derivation of the model.

Each historical ticket t has a routing sequence R(t). For
example, R(t) = g1 → g2 → g3, with initial group ginit(t) =
g1 and resolver group gres(t) = g3. We assume that an
initial group g1 is given for each ticket t, i.e., P (g1|t) =
1 and that each expert group makes its transfer decisions
independently. In this case, the probability that the routing
sequence g1 → g2 → g3 occurs is:

P (R(t)|t) = P (g1|t)P (g2|t, g1)P (g3|t, g2)P (g3|t, g3)

= P (g2|g1)P (g3|g2)P (g3|g3)

×
P (t|e1,2)P (t|e2,3)P (t|e3,3)

Z(t, g1)Z(t, g2)Z(t, g3)

We assume further that the tickets are independent of
each other. Thus, the likelihood of observing the routing
sequences in a ticket set T is:

L =
∏

t∈T

P (R(t)|t) (8)

3.3.2 Parameter Optimization
To find a set of globally optimal parameters P (wk|eij),

we use maximum likelihood estimation to maximize the log
likelihood:

logL =
∑

t∈T

log P (R(t)|t) (9)

=
∑

t∈T

∑

eij∈R(t)

log
P (t|eij) × P (gj |gi)

Z(t, gi)

=
∑

eij∈E

∑

t∈Tij

(log(P (t|eij)) + log(P (gj|gi)))

−
∑

gi∈G

∑

t′∈Ti

log(Z(t′, gi))

where E = {eij |1 ≤ i, j ≤ L} and P (t|eij) =
∏

wk∈t
P (wk|eij).

The optimal transfer profile is given by the following con-
strained optimization problem:

P (W|E)∗ = arg max
P (W|E)

(logL) (10)

s.t.
∑

wk∈W

P (wk|eij) = 1;

P (wk|eij) ≥ 0

where W is the set of words and E is the set of edges.
This optimization problem is not convex, and it involves

many free dimensions (the degree of freedom is (|W| − 1) ×
|G|2). It cannot be solved efficiently with existing tools.

Thus, we seek solutions that are near-optimal but eas-
ier to calculate. Our approach is to update the parameters
P (wk|eij) iteratively to improve the likelihood. Specifically,
we use the steepest descent method to maximize the lower
bound of the log likelihood. By Jensen’s inequality, we have

Z(t, gi) ≤
∏

wk∈t

∑

gℓ∈G

P (gℓ|gi)P (wk|eiℓ) (11)

Combining Equation (9) and Equation (11), we have:

logL ≥ ⌊logL⌋ =
∑

eij

∑

t∈Tij

(log(P (t|eij)) + log(P (gj |gi)))

−
∑

gi∈G

∑

t′∈Ti

∑

wk∈t′

log(
∑

gℓ∈G

(P (gℓ|gi) × P (wk|eiℓ)))

The gradient is given by:

∇⌊log(L)⌋ =
∂⌊logL⌋

∂P (wk|eij)

=

∑

t∈Tij
n(wk, t)

P (wk|eij)

−
P (gj |gi) ×

∑

t′∈Ti
n(wk, t′)

∑

gℓ∈G P (gℓ|gi) × P (wk|eiℓ)

Using the values of P (wk|eij) calculated in Equation (6)
as the starting point, we iteratively improve the solution
along the gradient. To satisfy the constraints, we calculate
the projection of the gradient in the hyperplane defined by
∑

wk∈W P (wk|eij) = 1 to ensure that the solution stays in
the feasible region. The profiles of the edges in the network
are updated one at a time, until they converge. Although
the gradient-based method might produce a local optimum
solution, it estimates the model parameters all together from
a global perspective and provides a better estimation than
the TM locally-optimized solution.

4. TICKET ROUTING
We now study the application of the generative models

introduced in Section 3 to ticket routing.
Given a new ticket t and its initial group ginit(t), a rout-

ing algorithm uses a model M to predict the resolver group
gres(t). If the predicted group is not the right resolver, the
algorithm keeps on predicting, until the resolver group is
found. The performance of a routing algorithm can be eval-
uated in terms of the number of expert groups it tried un-
til reaching the resolver. Specifically, we let the predicted
routing sequence for ticket ti be R(ti) and let |R(ti)| be the
number of groups tried for ticket ti. For a set of testing
tickets T = {t1, t2, . . . , tm}, we evaluate the performance of
a routing algorithm using the Mean Number of Steps To
Resolve (MSTR) [17] given by:

S =

∑m

i=1 |R(ti)|

m
(12)

The ticket routing problem is related to the multi-class
classification problem in that we are seeking a resolver (class
label) for each ticket. Different from a classification problem,
our goal here is not to maximize the classification precision,
but to minimize the expected number of steps before the
algorithm reaches the right resolver.

Nevertheless, we can adapt a multi-class classifier to fit
our problem. We assume that a classifier C predicts group
g as the resolver of ticket t, with probability P (g|t). A simple
approach is to rank the potential resolver groups in descend-
ing order of P (g|t) and then transfer the ticket t to them one
by one, until the right resolver is found. In this approach,
the ranking of groups does not change, even if the current
prediction is incorrect. We take the Resolution Model as an
example, and as the baseline method, for building a classi-
fier. Then, we develop two dynamic ranking methods, using



the Transfer Model and the Optimized Network Model, to
achieve better performance.

4.1 Ranked Resolver
The Ranked Resolver algorithm is designed exclusively for

the Resolution Model (RM). Expert groups are ranked based
on the probability that they can resolve the ticket according
to the ticket content.

Given a new ticket t, the probability that expert group gi

can resolve the ticket is:

P (gi|t) =
P (gi)P (t|gi)

P (t)
(13)

∝ P (gi)
∏

wk∈t

P (wk|gi)
f(wk,t)

Here, P (gi) is the prior probability of group gi being a re-
solver group, which is estimated by |Ti|/|T |, where Ti is the
set of tickets resolved by gi and T is the ticket training set.

A routing algorithm for this model is to try different can-
didate resolver groups in descending order of P (gi|t). The
algorithm works fine unless the new ticket t contains a word
that has not appeared in the training ticket set T . In that
case, P (gi|t) is zero for all i. To avoid this problem, we in-
troduce a smoothing factor λ to calculate the probability,
i.e.,

P (w|gi)
∗ = λ × P (w|gi) + (1 − λ)/|W| (14)

Using the smoothed value P (w|gi)
∗ guarantees a positive

value of P (gi|t) for all i.

4.2 Greedy Transfer
The Greedy Transfer algorithm makes one step transfer

predictions and selects the most probable resolver as the
next step.

When a new ticket t first enters the expert network, it
is assigned to an initial group ginit. Instead of calculating
which group is likely to solve the problem, we determine
the group to which the ticket should be transferred, because
tickets should be transferred to the group that can solve the
problem or the group that knows which group can solve the
problem. The probability that a ticket t is routed through
the edge einit,j = ginit → gj , where gj ∈ G \ {ginit}, is:

P (gj |t, ginit) =
P (gj |ginit)P (t|einit,j)

∑

gl∈G P (gl|ginit)P (t|einit,l)
(15)

=
P (gj |ginit)

∏

wk∈t
P (wk|einit,j)

f(wk,t)

∑

gl∈G P (gl|ginit)
∏

wk∈t
P (wk|einit,l)f(wk,t)

Note that smoothing is applied as described in Equation (14).

The expert group g∗ = arg maxgj∈G P (gj |t, ginit) is se-
lected to be the next expert group to handle ticket t. If g∗

is the resolver, the algorithm terminates. If not, the algo-
rithm gathers the information of all previously visited expert
groups to make the next step routing decision. If a ticket
t has gone through the expert groups in R(t) and has not
yet been solved, the rank of the remaining expert groups in
G \ R(t) is:

Rank(gj) ∝ max
gi∈R(t)

P (gj |t, gi) (16)

and the ticket is routed to the group with the highest rank.
The rank of gj is determined by the maximum probability

of P (gj |t, gi) for all the groups gi that have been tried in the
route. The ranked order of the candidate resolvers might
change during routing.

4.3 Holistic Routing
Th Holistic Routing algorithm recognizes the most prob-

able resolver that can be reached within K transfer steps,
and selects the next group from a global perspective. In
the experiments, we set K equal to 3. Instead of predicting
only one step as do the Ranked Resolver and Greedy Trans-
fer algorithms, the Holistic Routing algorithm calculates the
probability that a candidate group can be reached and can
solve the ticket in multiple steps.

For a new ticket t, the one step transition probability
P (gj |t, gi) between two expert groups gi and gj is calcu-
lated using Equation (15). Thus, we perform a breadth-first
search to calculate the probability that a ticket t is trans-
ferred by gi to gj in exactly K steps. This probability can
be estimated iteratively, using the following equations:

P (gj , 1|t, gi) =

{

P (gj |t, gi) if i 6= j

0 otherwise

P (gj , K|t, gi) =
∑

gk∈G;k 6=j

P (gk, K − 1|t, gi)P (gj|t, gk)

if K > 1.

If gl = ginit the initial group for ticket t, the above equa-
tion can be written as:

P (gj , K|t, gl) = vMK (17)

where v is the unit vector whose lth component is 1 and
other components are 0. The one step transfer probability
matrix M is a |G| × |G| matrix, where an entry of M is the
one step transition probability between the expert groups gi

and gj given by:

M(i, j) =

{

P (gj|t, gi) if i 6= j

0 otherwise

The probability that gj can resolve the ticket t in K or
fewer steps starting from the initial group ginit (which is
used to rank the candidate resolver groups) is:

Rank(gj |ginit) ≡

K
∑

k=1

P (gj , k|t, ginit) × P (gj |t, gj) (18)

where P (gj |t, gj) is the probability that gj resolves t if t
reaches gj (see Equation (7)). Starting with ginit, we route
t to the group g∗ = arg maxgj∈G;j 6=init Rank(gj|ginit).

Theoretically, we can derive the rank in closed form for an
infinite number of transfer steps. In practice, MK decays
quickly as K increases, due to the probability of solving the
ticket at each step. A small value of K suffices to rank the
expert groups.

Given the predicted expert group gk, if ticket t remains
unresolved and needs to be transferred, the posterior prob-
ability of gk being the resolver for t is zero and the one step
transfer matrix M needs to be updated accordingly. Thus,
if gk is not the resolver, the elements in the kth row of M
are updated by:

M(k, j) =
P (gj |t, gk)

∑

i,i6=k
P (gi|t, gk)

for j 6= k



Once M is updated, the algorithm reranks the groups ac-
cording to Equation (18) for each visited group in R(t). That
is, Rank(gj) ∝ maxgi∈R(t)Rank(gj |gi). The group with the
highest rank is selected as the next possible resolver.

For a given new ticket, the Holistic Routing algorithm
is equivalent to enumerating all of the possible routes from
the initial group to any candidate group. For each route r =
{g1, g2, . . . , gm} for a ticket t, we calculate the probability
of the route as:

P (r|t) = P (gm|t, gm)
∏

1≤j≤m−1

P (gj+1|t, gj)

The probability that group gj resolves ticket t is:

Rank(gj) ≡
∑

r

P (r|t) for all r ending at gj

Figure 3 shows an example where a ticket t enters the ex-
pert network at group A. We enumerate all of the routes
that start at A and end at D to calculate how likely D re-
solves the ticket. Note that loops in the routes are allowed
in the calculation in Equation (17). It is also possible to cal-
culate the resolution probability without loops. However,
because the intermediate groups for each route must be re-
membered, the calculation might take a long time.
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B

E
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F

H

r1

r2

r3

Figure 3: Holistic Routing

5. EXPERIMENTAL RESULTS
To validate the effectiveness of our models and the corre-

sponding routing algorithms,1 we use real-world ticket data.
The evaluation is based on problem tickets collected from
IBM’s problem ticketing system throughout 2006. When a
ticket enters the system, the help desk assigns a category
indicating a problem category for the ticket. For each prob-
lem category, a number of expert groups (ranging from 50
to 1,000) are involved in resolving the tickets.

For each problem category, we partition the data set into
the training data set and the testing data set. Using the
training data set, first we build the generative models intro-
duced in Section 3. Then, we evaluate the effectiveness of
the routing algorithms by calculating the number of rout-
ing steps (i.e., MSTR) for the testing tickets. In particular,
we compare our generative models with the Variable-Order
Markov Model (VMS) proposed in [17]. Our experiments
demonstrate:

• Model Effectiveness: The Optimized Network Model

significantly outperforms the other models.

1The source code is available at http://www.uweb.ucsb.edu/
∼miao/resources.html.

• Routing Effectiveness: Among the Ranked Resolver,
Greedy Transfer and Holistic Routing algorithms, Holis-
tic Routing achieves the best performance.

• Robustness: With respect to the size of the training
data set, the time variability of the tickets, and the dif-
ferent problem categories, our solution that combines
ONM and Holistic Routing consistently achieves good
performance.

We obtained our experimental results using an Intel Core2
Duo 2.4GHz CPU with 4GB memory.

5.1 Data Sets
We present the results obtained from tickets in three ma-

jor problem categories: AIX (operating system), WINDOWS
(operating system), and ADSM (storage management), as
shown in Table 2. Tickets in these three categories have
quite different characteristics. The problem descriptions for
WINDOWS and ADSM tickets tend to be more diverse and,
hence, more challenging for our models.

Table 2: Ticket Resolution Data Sets

Category # of tickets # of words # of groups
AIX 18,426 16,065 847

WINDOWS 16,441 8,521 638
ADSM 3,563 1,815 301

These three data sets involve approximately 300 to 850
expert groups. For a new ticket, finding a resolver group
among so many candidates can be challenging.

Table 3: Resolution Steps Distribution

Steps Percentage
2 68%
3 25%
4 6%

>=5 1%

Table 3 shows the distribution of resolution steps for tick-
ets in the WINDOWS category. We are more interested in
solving tickets with long resolution sequences, because these
tickets received most of the complaints.

5.2 Model Effectiveness
First, we compare the effectiveness of the three genera-

tive models, Resolution Model (RM), Transfer Model (TM),
and Optimized Network Model (ONM) developed in Section
3, against the Variable-Order Markov Model (VMS) intro-
duced in [17]. VMS considers only ticket routing sequences
in the training data.

Each of the above models has its corresponding routing
algorithm. VMS uses the conditional transfer probability
learned from routing sequences to predict the resolver group.
For RM, we use the Ranked Resolver algorithm. For TM and
ONM, we can use either the Greedy Transfer algorithm or
the Holistic Routing algorithm. In these experiments, we
use the Holistic Routing algorithm to evaluate both models.
For comparison, we also include the result of ONM using the
Greedy Transfer algorithm. More details for the compari-
son between the Greedy Transfer algorithm and the Holistic
Routing algorithm are shown in Section 5.3.
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Figure 4: Prediction Accuracy of Different Models

Because a routing algorithm might generate an extremely
long routing sequence to resolve one ticket (considering that
we have more than 300 expert groups in each problem cate-
gory), we apply a cut-off value of 10. That is, if an algorithm
cannot resolve a ticket within 10 transfer steps, it is regarded
as unresolvable. Using this cut-off value, we define the reso-

lution rate of a ticket routing algorithm to be the proportion
of tickets that are resolvable within 10 steps.

We randomly divide the tickets in each problem category
into two subsets: the training data set and the testing data
set, where the former contains 75% of the tickets, and the
latter contains 25% of the tickets. The four models are
trained based on the training set, and the performance of
the algorithms is compared.

Figure 4 compares the prediction accuracy of the four
models. The x-axis represents the number of expert groups
involved in the testing data set, where the routing decisions
are made by a human. The y-axis represents the resulting
MSTR when the testing tickets are routed automatically us-
ing a model. Obviously, smaller MSTR means better predic-
tion accuracy. As shown in the figure, TM and ONM (which
combine the ticket contents and the routing sequences) re-
sult in better prediction accuracy than either the sequence-
only VMS model or the content-only RM. Moreover, ONM
achieves better performance than TM, which indicates that
the globally optimized model is more accurate in predicting
a ticket resolver than the locally optimized model.

Figure 5: Resolution Rate

Combining together the ticket contents and the routing
sequences not only boosts prediction accuracy, but also in-
creases the resolution rate of the routing algorithm. Figure 5
shows that TM and ONM can resolve more tickets than ei-
ther VMS or RM.

For RM and TM, the training time is mainly spent on
counting word frequencies on transfer edges and at resolvers.
For all three data sets, the time is less than 5 minutes. For

ONM, the transfer profiles are updated one at a time and
the optimization process repeats for multiple rounds until
the transfer profiles converge. The training process takes
less than 3 hours for all three data sets.

5.3 Routing Effectiveness
Using the same experimental setup as in Section 5.2, we

compare the effectiveness of the Greedy Transfer and Holis-
tic Routing algorithms.

Both of these algorithms can be executed on the TM
and ONM generative models. We consider all four com-
binations: TM+Greedy, TM+Holistic, ONM+Greedy, and
ONM+Holistic.

Figure 6 shows that, for each generative model, the Holis-
tic Routing algorithm consistently outperforms the Greedy
Transfer algorithm. These results validate our hypothesis
that, even if an expert group is not the resolver for a problem
ticket, it might have appropriate knowledge of which group
can resolve the ticket. Therefore, besides the information
about which groups resolve which tickets, the intermediate
transfer groups can be instrumental in routing tickets to the
right resolver, which is why the Holistic Routing algorithm
has better performance.

The computational time for both routing algorithms to
make a routing decision is less than 1 second, which is neg-
ligible compared to the time spent by the selected expert
group to read and handle the ticket.

5.4 Robustness
For our generative models and routing algorithms to be

useful in practice, they must apply to different problem cate-
gories and training samples. To confirm this, we divided the
data in different ways with respect to the size of the training
data set, the time variability of the tickets, and the differ-
ent problem categories, as presented in Table 4. For each
training set, we rebuilt the models and applied the routing
algorithms to measure the resulting MSTR for the corre-
sponding testing set. Given the previous analysis, we focus
on ONM and Holistic Routing.

Table 4: Data Sets for Robustness

Training Set Testing Set

Jan 1 - Mar 31, 2006 Apr 1 - Apr 30, 2006
Jan 1 - Apr 30, 2006 May 1 - May 31, 2006
Jan 1 - May 31, 2006 Jun 1 - Jun 30, 2006

As shown in Figure 7, with larger training data sets, the
resulting MSTR tends to become smaller. Despite the vari-
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Figure 6: Routing Efficiency: Greedy Transfer vs. Holistic Routing
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Figure 7: Robustness of ONM and Holistic Routing with Variable Training Data

ations in the size of the training set, our approach yields
consistent performance. The problem descriptions in these
ticket data sets are typically short and sparse. The results
demonstrate that generative modeling is particularly effec-
tive for this type of data.

6. DISCUSSION
We have focused on using the proposed model to make

effective ticket routing decisions. However, the model has
other significant applications, namely, expertise assessment
in an expert network and ticket routing simulation for per-
formance analysis and workforce/resource optimization. We
briefly discuss these applications below.

6.1 Expertise Assessment
In essence, our model represents the interactions between

experts in an enterprise collaborative network. By analyz-
ing ticket transfer activities at the edges of the network, we
can identify different roles of individual expert groups, i.e.,
whether a group is more effective as a ticket resolver or a
ticket transferrer. We can also analyze the expertise aware-
ness between groups.

For instance, Figure 8 shows the most prominent words
derived from ONM in the context of tickets transferred from
group A to group B (List 1), as well as those resolved by
group B itself (List 2). List 1 is related to system boot
failures (bluescreen, freeze), while List 2 is related to data
loading issues in hard drives. The mismatch between the
two lists, indicates that either A is not well aware of B’s
expertise, or A thinks that B can better identify the resolvers
for tickets described by words in List 1. Further analysis is
needed to understand these interactions and implications.
Our model can facilitate such analysis.

Figure 8: Expertise Awareness Example

6.2 Ticket Routing Simulation
Our model can be used to simulate the routing of a given

set of tickets. The simulation can help an enterprise analyze
its existing ticket routing process to identify performance
bottlenecks and optimize workforce/resources. Moreover,
the simulation can be used to assess the“criticality”of expert
groups, e.g., whether the routing performance is improved
or degraded, if a group is removed from the network. Such
a knockout experiment is infeasible in practice, but can be
conducted by simulation.

7. RELATED WORK
Ticket routing can be considered an extension of the text

classification problem, which has been extensively studied in
the literature [4, 5, 9, 11, 15, 19, 20, 24]. For instance, Yang
and Liu [19] studied the robustness of different text catego-
rization methods. Calado et al. [5], Lu and Getoor [11], and
Sen et al. [15] proposed methods to combine content and
link information for document classification.

Ticket routing is also related to the multi-class classifica-
tion problem [14]. Compared to multi-class classification,
ticket routing has distinct properties. First, ticket routing
involves multiple predictions if the current prediction is not



correct, which leads to different evaluation criteria. Second,
ticket routing takes place in a network, which is also different
from the traditional classification problem. Third, instead
of relying on a single classifier, ticket routing requires lever-
aging the interactions between multiple local classifiers to
find a globally optimized solution.

Belkin et al. [4] and Zhou et al. [24] introduced text
classification using graph-based methods. Collective classi-
fication, such as loopy belief propagation [22], mean field
relaxation labeling [21], interactive classification [12] and
stacked models [10], are popular techniques for classifying
nodes in a partially labeled graph. The problems studied in
these methods are quite different from our problem, as we
assume one resolver in the network for a given ticket, and
the classification needs to be repeatedly applied until the
resolver is found.

Generative models and maximum likelihood estimation
are standard approaches. Generative models seek the joint
probability distribution over the observed data. Classifica-
tion decisions are typically made based on conditional prob-
abilities formed using Bayesian rules. One example is the
Naive Bayes classifier [8, 23], which assumes conditional
independence between variables. Another example is the
Gaussian Mixture Model [13], which estimates the prob-
ability distribution using a convex combination of several
Gaussian distributions. These models are good for analyz-
ing sparse data. We chose the generative model because the
transition probabilities in the ticket resolution sequences can
be seamlessly embedded in the probabilistic framework. Our
contribution is the combination of multiple local generative
models to yield a globally optimized solution.

Besides the generative models, discriminative models, such
as the Support Vector Machine (SVM), have been shown
to be effective for text classification [9]. One can poten-
tially build a support vector classifier for each resolver and
each transfer relationship. However, they are locally op-
timized for individual resolvers and transfer relationships;
once trained, the SVM classifiers remain stationary. In our
approach, the resolver predictions can be dynamically ad-
justed if previous predictions are incorrect.

The ticket routing problem is also related to the expert
finding problem, i.e., given a keyword query, find the most
knowledgeable persons regarding that query. The expert
finding algorithms proposed by Balog et al. [3] and Fang and
Zhai [7] use a language model to calculate the probability of
an expert candidate to generate the query terms. Serdyukov
et al. [16] enhanced those models by allowing the candidates’
expertise to be propagated within networks, e.g., via email.
Deng et al. [6] explored the links in documents such as those
listed in DBLP [1]. Expert recommendation systems also use
text categorization techniques to characterize bugs [2] and
documents [18]. Because most expert finding algorithms are
content-based, they share the same weakness of the Resolver
Model (RM) given in Section 3.1.

Our study has demonstrated that better routing perfor-
mance can be achieved by combining ticket contents and
routing sequences together. Nevertheless, considering exist-
ing sophisticated text classification methods and language
models, it is an open research problem to investigate how
to embed these models in a collaborative network and learn
their parameters in a holistic way for ticket processing, a
challenging issue in the IT service industry.

8. CONCLUSIONS
We have presented generative models that characterize

ticket routing in a network of expert groups, using both
ticket content and routing sequences. These models cap-
ture the capability of expert groups either in resolving the
tickets or in transferring the tickets along a path to a re-
solver. The Resolution Model considers only ticket resolvers
and builds a resolution profile for each expert group. The
Transfer Model considers ticket routing sequences and es-
tablishes a locally optimized profile for each edge that rep-
resents possible ticket transfers between two groups. The
Optimized Network Model (ONM) considers the end-to-end
ticket routing sequence and provides a globally optimized
solution in the collaborative network. For ONM, we present
a numerical method to approximate the optimal solution
which, in general, is difficult to compute.

Our generative models can be used to make routing pre-
dictions for a new ticket and minimize the number of transfer
steps before it reaches a resolver. For the generative models,
we presented three routing algorithms to predict the next
expert group to which to route a ticket, given its content
and routing history. Experimental results show that the
proposed algorithms can achieve better performance than
existing ticket resolution methods.
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