
Searching Workflows with Hierarchical Views ∗

Ziyang Liu Qihong Shao Yi Chen
Arizona State University

{ziyang.liu,qihong.shao,yi}@asu.edu

ABSTRACT
Workflows are prevalent in diverse applications, which can be sci-
entific experiments, business processes, web services, or recipes.
With the dramatically growing number of workflows, there is an
increasing need for people to search a workflow repository using
keywords and to retrieve the relevant ones. A workflow hierarchy
is a three dimensional object containing multiple abstraction views
of different granularity on the same workflow. This unique struc-
ture poses a new set of challenges compared to keyword search on
tree or graph structures typically found in relational or XML data.

In this paper, we define an informative, self-contained and con-
cise search result on workflows to be a projection of a workflow
hierarchy on a two dimensional viewing plane inferred from user
queries. We then design and develop an efficient keyword search
engine for workflows. Experimental evaluation demonstrates the
effectiveness of our approach.

1. INTRODUCTION
Workflows with hierarchical multi-resolution views (referred to

as workflow hierarchies) are widely used in scientific [10, 21, 34,
38, 14, 37] and business [12, 38] domains, which ease the analysis,
maintenance and reusability of workflows. As an example, a work-
flow hierarchy describing the recipe of curry chicken is shown in
Fig. 1.1 A node represents a task, which can be a step in a recipe, a
web service invocation, a database query, a program run, or an ex-
periment step, etc. A directed solid edge between nodes represents
their dependency, dataflows, or control flows (AND/OR/XOR), re-
ferred as dataflow edge. For instance, in the bottom box in Fig-
ure 1, after tasks add tenderizer (0.1.0.0), we need to wait 10 min
(0.1.0.3), and then have the data fed into the next task put into skil-
let (0.1.1.0).

In order to reduce the analysis complexity, enable modularity
and re-use [9, 33], simplify provenance analysis [10, 13, 17], and
achieve security [15], composite task is often defined to abstract a
∗This material is based on work partially supported by NSF CA-
REER award IIS-0845647, IIS-0740129, IIS-0915438.
1Every node in the figure is associated with an identifier, whose
construction will be presented in Section 4.1.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee. Articles from this volume were presented at The
36th International Conference on Very Large Data Bases, September 1317,
2010, Singapore.
Proceedings of the VLDB Endowment, Vol. 3, No. 1
Copyright 2010 VLDB Endowment 21508097/10/09... $ 10.00.

group of tasks into a single task, as supported in many workflow
management systems, such as Kepler [2] and myExperiment [4].
For example, composite task tenderize chicken breast (0.1.0) is an
abstraction of a group of tasks consisting of add tenderizer, sprinkle
curry powder, add garlic and wait 10 min. Dotted lines connecting
group of tasks to its abstraction composite task are referred to as
abstraction edges. Composite tasks can be recursively defined to
form a workflow hierarchy, such as the one in Figure 1. On the
other hand, the most detailed tasks (those shown in italic in bottom
box Figure 1) are called atomic tasks.

It is highly desirable if a user can search relevant workflow hi-
erarchies in a repository using keywords, and then re-use or revise
them as needed when designing new workflows, so that the design
phase will be easier and be shortened compared with designing new
ones from scratch.Suppose that a user would like to make a dish us-
ing chicken breast and coconut milk by sauting, but doesn’t have a
recipe in mind. She would issue a keyword query “chicken breast,
coconut milk, saute” (Q1 in Figure 2(a)) on a repository of recipes
to find useful ones.

We can easily find the workflow hierarchies in the repository that
contain matches to query keywords. Suppose Fig. 1 is one of such
workflows in the repository, where keyword matches are in bold
font. Obviously, returning the whole workflow hierarchy as a query
result is not concise, as an overwhelming volume of information is
delivered to the user (e.g., many workflow hierarchies in the repos-
itory [2, 7, 6, 4] contain hundreds of nodes).

The immediate challenge is how to define query results for key-
word search on workflows. Given much research done on keyword
search on graph-structured data (e.g., relational) and tree-structured
data (e.g.,XML), a natural question is whether we can adopt their
approaches: defining a query result on workflow hierarchies as a
smallest tree in the data that contains the query keywords. A re-
sult for query Q1 “chicken breast, coconut milk, saute” using these
approaches is shown in Fig. 2(d).

However, such query results are not desirable for two reasons.
First, the results do not necessarily capture the dataflows among
keyword matches, and thus fail to be informative on node relation-
ships. For example, the relationship of tasks containing chicken
(0.1.0) and saute (0.1.1.2) is expressed as a path of both dataflow
edges and cross-layer expansion edges, while their dataflow is not
captured, which should be: tenderize chicken breast (0.1.0) → put
into skillet (0.1.1.0) → add green pepper & union (0.1.1.1) → saute
until tender (0.1.1.2).

Besides, returning smallest subtrees does not necessarily pro-
duce self-contained query results. Consider another query Q2 “brown
rice, bake” in Figure 2(a). The smallest subtree is the path from
cook brown rice (0.3.2) to bake (0.3.4). However, such a path itself
does not have a semantic meaning. A clear meaning can only be

put chicken

in pot

0.0.0

cook in

medium heat

0.0.1

discard

Solid

0.0.2

sprinkle curry

powder

0.1.0.1

stir in

flour

0.2.0

add chicken

broth

0.2.1

add green

pepper & onion

0.1.1.1

saute until

tender

0.1.1.2

prepare

pepper,

onion

0.3.0

fry pepper,

onion

0.3.1
cook brown

rice

0.3.2

combine

ingredients

0.3.3

bake

0.3.4

add coconut

milk

0.2.2

add garlic

0.1.0.2

add

tenderizer

0.1.0.0

wait 10 min

0.1.0.3 cook and

stir until

solid

0.2.3put into

skillet

0.1.1.0

slice

0.1.2

serve

0.4

tenderize

chicken

breast

0.1.0

concoct

0.1.1

preprocess

chicken

0.1

make chicken

broth

0.0

make rice pilaf

0.3

curry chicken

0

slice

0.1.2

cook chicken

0.2

serve

0.4

make chicken

broth

0.0

make rice pilaf

0.3

cook chicken

0.2

serve

0.4

Figure 1: A Workflow Hierarchy Describing a Recipe

prepare

pepper,

onion

0.3.0

fry pepper,

onion

0.3.1
cook

brown rice

0.3.2

combine

ingredients

0.3.3

bake

0.3.4

Q1 chicken breast, coconut milk, saute

Q2 brown rice, bake

tenderize

chicken

breast

0.1.0

add green

pepper & onion

0.1.1.1

saute until

tender

0.1.1.2

stir in

flour

0.2.0

add chicken

broth

0.2.1

add coconut

milk

0.2.2

cook &

stir until

solid

0.2.3

serve

0.4

make rice pilaf

0.3

(a) Sample Keyword Search

(b) Result of Q2

(c) Result of Q1

make chicken

broth

0.0

put into

skillet

0.1.1.0

tenderize

chicken

breast

0.1.0

concoct

0.1.1

saute until tender

0.1.1.2

preprocess

chicken

0.1

cook chicken

0.2

add coconut

milk

0.2.2

(d) Undesirable Result of Q1

slice

0.1.2

Figure 2: Sample Queries and Results

obtained if we consider the nodes in this path together with nodes
(0.3.0, 0.3.1) (shown Figure 2(b)), which correspond to a compos-
ite task make rice pilaf (0.3), meaning that these nodes as a whole
is a workflow about making rice pilaf.

According to our user studies (Section 5.2), when a user issues
a keyword query on a repository of workflow hierarchies, each of
which has abstractions with different granularities of atomic tasks,
it is likely that s/he is interested in retrieving workflow views that

contain these keywords and show their relationships. In our ex-
ample, it is desirable to present Figure 2(c) as a query result of
Q1. This result explicitly captures the dataflow among keyword
matches (shown in bold). For example, after saute (the chicken)
until tender (0.1.1.2), we slice (it) (0.1.2), stir (it) in flour (0.2.0)
and then add coconut milk (0.2.2). Note that the dataflows among
nodes in different composite tasks (i.e., different dashed line boxes)
are not explicitly shown in the workflow hierarchy, but are dynam-
ically synthesized from the workflow hierarchy. Such a query re-
sult is also self-contained, corresponding to a composite task curry
chicken.

In this paper, we present WISE, a Workflow Information key-
word Search Engine, which, to the best of our knowledge, is the
first work that returns query results capturing query keywords and
their dataflows. WISE has been demonstrated at ICDE ’09 [36].
The contributions of this paper include:

First, we address an open problem of defining query results for
keyword search on hierarchical workflows. As we have discussed,
a good query result should be informative (i.e., capturing the key-
word matches and their dataflows), self-contained (i.e., having a
name/goal), and concise (i.e., the minimal graph that is informative
and self-contained). To achieve this, we start with formally defin-
ing the concept of a view of workflows, which is a graph defined
in the same spirit as defining tree using Tree-Adjoining Grammar
(TAG) [22] and defining strings using context-free grammar. Then
we define a workflow search result as a minimal view of a workflow
that contains query keywords.

Second, we develop efficient algorithms for query result gen-
eration. Unlike generating search results on graphs/trees, where

only extractions of source data are needed, WISE dynamically con-
structs query results by synthesizing the dataflows among keyword
matches. Given the workflow hierarchies containing all keywords
in the query, the algorithm for generating results has optimal time
complexity.

Experiments show the effectiveness and efficiency of WISE, com-
pared with existing workflow search engines [2, 7, 6, 4] and a
search engine on graph data [20].

Although the running example in this paper is a simple recipe
workflow hierarchy, the techniques that we propose is applicable
for all workflow hierarchies. Such a multi-resolution data structure
is a generalization of graphs and trees, and is widely used in many
domains, such as scientific experiments, web services, spatial and
temporal data, hierarchical plans, etc. For instance, in spatial data,
there are edges among the data points in a graph, and a graph can
be abstracted to a data point in a recursive way.

The paper proceeds as follows. We describe our data models in
Section 2, then define results of keyword search on workflow hi-
erarchies in Section 3. Efficient query generation algorithms are
presented in Section 4, followed by experimental evaluations in
Section 5. Section 6 concludes the paper.

2. KEYWORD QUERY AND DATA MODEL
In this section, we formally define the data model.

Definition 2.1: [workflow] A workflow W = (V,E) is a directed
graph where each node represents a task and each edge indicates
the dataflow, dependency or control flow between two tasks.

The bottom box in Figure 1 shows a workflow of curry chicken
recipe.

Definition 2.2: [composite task] A composite task c is an abstrac-
tion of a group of tasks S, denoted as c = abs(S).

If c = abs(S), c is called the parent of the nodes in S, and
nodes in S are called the children of c. Ancestors and descendants
are recursively defined.

In Figure 1, each group of tasks within a dotted border is ab-
stracted into a composite task, pointed to from the group of tasks
by a dotted edge. Composite tasks can be recursively defined.

Definition 2.3: [workflow hierarchy] A workflow hierarchy H =
(W, root) consists of a workflow W (V,E) and a set of composite
task specifications. Nodes in V are called atomic tasks or leaf tasks.
root ∈ V is the root of the hierarchy, whose name represents the
name/goal of the workflow hierarchy. The edge set E = {Ea, Ed}
consists of both abstraction edges (Ea) and dataflow edges (Ed).
An abstraction edge (S, abs(S)) ∈ Ea connects a set of nodes
to their corresponding composite task. A dataflow edge (u, v, d)
represents that an output of task u is an input of task v, where u, v ∈
V , and d denotes the data item sent from u to v.2 A subworkflow
hierarchy of H is a workflow hierarchy whose root is a node in V .

Note that two composite tasks do not overlap, i.e., ∀c = abs(S)
and c′ = abs(S′), c ̸= c′, S ∩ S′ = ∅. If c = abs(S) and u ∈ S,
we say S is the cluster of u.

Each node in a workflow hierarchy can have annotations, which
record its name, conditions of the task execution, or possibly a
deadline, indicating that the task must be finished no later than
the deadline during the execution of the workflow (referred to as
“Event-based workflow”), etc. The data items transferred between

2For edges that are from or to an external node of the workflow
hierarchy, its corresponding u or v nodes are captured by dummy
nodes added to the workflow.

tasks can be of different types, such as materials in the recipe, data
files in the experiment, gene sequences, etc. Note that there can be
multiple dataflow edges between two nodes if multiple data items
are transferred. There can also be annotations on edges, which
specify the control flow (AND/OR/XOR) between two tasks.

Figure 1 shows a workflow hierarchy. The bottom box is a work-
flow, and each dotted edge represents a composite task specifica-
tion. Note that the edges that involve composite tasks (e.g., the
edge from 0.1.2 to 0.2) are not part of the workflow hierarchy, but
their relationship can be derived from the edges between atomic
tasks, which is illustrated in Definition 3.2.

Although a workflow hierarchy bears some similarity with a tree
model, they have some key differences. First, the relationships
among “sibling nodes" are different. Siblings in a tree structure are
modeled as either a linearly ordered list or a set; whereas the sib-
lings in a workflow hierarchy represent a (possibly cyclic) graph,
where the dataflow edges explicitly capture their relationships. Sec-
ond, the semantics of parent-child relationship are different. A
parent-child relationship in a tree generally specifies the relation-
ship between two distinct objects. In a workflow hierarchy, the task
represented by a child is part of the detailed procedure of perform-
ing the task represented by the parent. As we explained in Sec-
tion 1, these differences invalidate techniques for keyword search
on trees/graphs, pose unique challenges to query processing and
demand novel approaches.

3. SEARCH RESULTS OF WISE
Now we discuss how to define query results for keyword search

on workflow hierarchies. Each result should satisfy three proper-
ties: (1) informative: the result should contain all dataflows be-
tween any two tasks matching keywords, so that the user gets the
relationships of the query keywords; (2) self-contained: the result
should contain all the tasks for achieving a goal; (3) concise: re-
moving any edges from the result will make it violate informative-
ness or self-containedness.

To achieve these goals, we first identify the minimal workflow
hierarchies that contain all query keywords in Section 3.1, then de-
fine its minimal views as query results in Section 3.2.

3.1 Identifying Minimal Workflow Hierarchies
To be informative and concise, we first identify the smallest work-

flow hierarchies in the repository that contain at least one match to
each query keyword.

Definition 3.1: [Minimal Workflow Hierarchy] A minimal work-
flow hierarchy H = (V,E, root) of a keyword search Q on a
repository of workflows R is a workflow hierarchy, such that

1. Every keyword in Q has at least one match in H;

2. There does not exist a subworkflow hierarchy of H that sat-

isfies condition 1.

Note that there are typically multiple minimal workflow hierar-
chies when processing a keyword query on a repository of work-
flows. Each minimal workflow hierarchy will derive a query result,
as to be discussed in Section 3.2, all of which compose the set of
results for the query.

For example, consider Q2 “brown rice, bake” in Fig. 2(a). There
are two workflow hierarchies in Figure 1 containing keyword matches
brown rice and bake: the one rooted at curry chicken (0) and the one
rooted at make rice pilaf (0.3). The one rooted at curry chicken (0)
is not considered as a minimal workflow hierarchy as it does not
satisfy condition 2 in Definition 3.1: it has a subworkflow rooted at
make rice pilaf (0.3) containing all query keywords.

Note that we do not “compose” a new workflow hierarchy from
several unconnected sub-workflow hierarchies in the repository, in
order to guarantee that each query result has a clear semantic mean-
ing.

3.2 Defining Query Results as Minimal Views

3.2.1 Minimal Views
Unfortunately, returning the whole minimal workflow hierarchy

itself to users is neither informative nor concise. Consider Q1 as an
example, where a minimal workflow hierarchy is Fig. 1. Returning
the entire curry chicken hierarchy makes it difficult for users to
find the dataflows among keyword matches, as they have to go up
and down the layers and manually construct the dataflows. These
manual operations are tedious and time-consuming for the users
especially when the workflow hierarchy is large and complex.

Under this observation, we define the notion of view of a work-
flow hierarchy. Views can be considered as a projection of the 3D
workflow hierarchy on to a 2D plane which hides less important
information and simplifies analysis.

Definition 3.2: [View] A view V iew = (V,E) of a workflow
hierarchy H = (V ′, E′, root) is a directed graph with labels on
edges. The node set V , V ⊆ V ′ satisfies:

1. ̸ ∃u, v ∈ V , u is an ancestor of v in H .
2. ∀u ∈ V ′ and u is a leaf node, ∃v ∈ V such that v is an

ancestor-or-self of u.
3. For any u, v ∈ V , (u, v, d) ∈ Ed if and only if ∃u′, v′ ∈

V ′, u′ and v′ are descendant-or-self of u and v, respectively, and
(u′, v′, d) ∈ E′

d.

Condition 1 indicates that a view is a two dimensional projec-
tion of the three dimensional workflow hierarchy, flattening out the
nested hierarchy for the ease of user comprehension. Nodes in a
view can have dataflow relationships, but not abstraction relation-
ships. Condition 2 ensures that the node set V of a view covers
all leaf nodes (atomic tasks) in the workflow hierarchy H: every
leaf node in V ′ must have one corresponding zoomed-out node in
V . Since views may contain composite nodes whose edges are not
explicitly present in the workflow hierarchy, their edges need to be
induced, as specified in Condition 3. For example, since there is a
dataflow between wait 10 min (0.1.0.3) and put into skillet (0.1.1.0),
there should also be a dataflow between their parents, tenderize
chicken breast (0.1.0) and concoct (0.1.1). Condition 3 guaran-
tees that the dataflow edge set Ed in a view is faithful with respect
to edge set E′

d according to H: the view preserves the dataflow
among nodes in the view. Note that a view may hide the dataflows
of two nodes in the workflow that are abstracted into a single node
in the view, e.g., the edge between nodes 0.1.0.0 and 0.1.0.3 in Fig-
ure 2(a). Conditions 2 and 3 together ensure that a view is “seman-
tically complete” with respect to the name/goal of H , and hence a
self-contained information unit whose name/goal is the same as H .

Note that Definition 3.2 bears some similarity with the TAG [22]
and context-free grammars. Context-free grammars have rules for
rewriting symbols as strings of other symbols, tree-adjoining gram-
mars have rules for rewriting the nodes of trees as other trees, and
the proposed workflow views allow rewriting the nodes of a work-
flow as other graphs. That is, a view is a graph defined on a nested
graph hierarchy, analogous to the frontier defined on a tree in TAG,
and to a string defined in a context-free grammar.

As we can see, a view is a projection of a three dimensional
workflow hierarchy to a two dimensional plane that preserves the
dataflows among the tasks in the view. Obviously a workflow hi-
erarchy can have many views, as there are many projections of a

three dimensional object, depending on the viewing plane. For ex-
ample, the tasks in each solid rectangle in Figure 1 compose a view
of the curry chicken workflow hierarchy. Fig. 2(c) is another view
of curry chicken.

We now define a keyword search result on workflow hierarchies
as a minimal view of a minimal workflow hierarchy that preserves
all keyword matches in the workflow hierarchy (which is also a phi-
losophy of keyword search on relational databases or XML, where
a result is a minimal tree that contains at least one match to each
keyword).

Definition 3.3: [Minimal View] For a keyword search Q on a
repository of workflows R, the minimal view V iew(H,Q) = (V,E)
of a minimal workflow hierarchy H (Definition 3.1) is the view
with the smallest number of tasks over all the views of H that con-
tain all the keyword matches of Q in H .3

Definition 3.4: [Query Result] For a keyword search Q on a reposi-
tory of workflows R, the set of query results consists of the minimal
view of each minimal workflow hierarchies in the repository.

Note that such a result definition is general for all types of work-
flow hierarchies where the nodes and edges may have annotations
as discussed in Section 2. Given a minimal workflow hierarchy
and a query, the minimal view is unique, which can be considered
as a projection of a three dimensional workflow hierarchy on a two
dimensional viewing plane defined by the query. The result is in-
formative since it captures all keyword matches and their dataflows.
The result is self-contained since the view serves an integrated goal
and has a unique name, which is the same as the corresponding
minimal workflow hierarchy. Furthermore, the result is concise, as
we opt to use the minimal view among all views of each minimal
workflow hierarchy.

Besides being informative, self-contained and concise, the query
results generated by WISE satisfy another three desirable proper-
ties proposed in the literature: soundness [37], monotonicity and
consistency [27], as shown in the technical report of this paper [29].

4. ALGORITHMS
After defining query results for keyword search on workflow

hierarchies, we present the algorithms of the WISE system that
achieve the semantics efficiently.

4.1 Data Processing
We design labeling schemes and indexes for workflow hierar-

chies to efficiently find minimal workflow hierarchies and their
minimal views.
Labeling of nodes and edges. Each node n in the workflow hierar-
chy is assigned a unique label NID(n). Since we need to explore
the ancestor-descendant relationships of nodes to generate results,
we use the Dewey labeling scheme, as shown underneath each node
in Fig. 1. The label of the root is 0, and the label of a node n is com-
posed by the concatenation of the label of its parent and a unique
integer ID within the cluster that n is in. The unique in-cluster ID
of a node can be arbitrarily set, i.e., the nodes in a cluster can have
an arbitrary order, independent of the dataflows (thus nodes can be
ordered even in a cyclic graph). NIDs of nodes are ordered alpha-
betically. The node labels don’t record dataflow information, but
parent-child information. They enable efficient retrieval of lowest
common ancestor (LCA) of two nodes u and v, whose node label
3Note that since the nodes in a view can not have ancestor-
descendant relationships, only keyword matches that do not have
descendant keyword matches are selected as nodes in a view, which
are annotated with their ancestor keyword matches (if any).

is the longest common prefix of NID(u) and NID(v). Each edge
is also assigned a unique integer ID.
Leaf adjacency lists of nodes. To efficiently find dataflows among
keyword matches that may not be explicitly present in the data, we
build a leaf adjacency list for each node n in the workflow hier-
archy, denoted as LAL(n). LAL(n) consists of IDs of the edges
between leaf nodes u and v, such that u is a descendant of n and
v is not a descendant of n. For each edge in LAL(n), we also
record its direction, as well as the data items transferred. For ex-
ample, suppose the ID of the edge from node 0.1.0.3 to node 0.1.1.0
in Figure 1 is e1 and it transfers data item chicken breast, then
e1 (outgoing, chicken breast) ∈ LAL(0.1.0.3) and LAL(0.1.0),
where “outgoing” means that it is an outgoing edge from 0.1.0.3
to 0.1.0. Similarly, e1 (incoming, chicken breast) ∈ LAL(0.1.1.0)
and LAL(0.1.1). Leaf adjacency lists are used to efficiently derive
dataflow edges in a query result, as will be discussed in Section 4.2.
Intuitively, according to Definition 3.2 there is a dataflow edge be-
tween two composite nodes u and v if and only if there is an edge
e between their leaf descendants, and such an edge e is recorded
in LAL(u) and LAL(v). By leveraging leaf adjacency lists and a
hash table, an edge can be derived in O(1) time.
Indexes. To speed up query processing, an inverted index is built
which maps a keyword to the list of nodes in the workflow reposi-
tory whose names/descriptions contain the keyword, sorted by their
NID. We also build a B+ tree index on NIDs that retrieves the
subworkflow rooted at node NID, referred to as Dewey index.

The leaf adjacency list and indexes are built offline. They both
take an affordable amount of space: in the worst case, each dataflow
edge is recorded in every ancestor of each endpoint of the edge.
Thus the leaf adjacency list takes O(|Ed|h) space where |Ed| is
the number of dataflow edges in the workflow hierarchy, and h is
the height of the workflow hierarchy. If each node contains at most
p keywords, then the inverted index takes O(|V |p) space where
|V | is the number of nodes in the workflow hierarchy. The Dewey
index takes O(|V |) space.

4.2 Query Processing
WISE uses Algorithm 1 (the pseudo code is presented in the Ap-

pendix) to retrieve relevant query results for keyword searches on
workflow hierarchies. It consists of two steps: identifying minimal
workflow hierarchies, and constructing the minimal view for each
minimal workflow hierarchy. We use Q1: “chicken breast, coconut
milk, saute” as a running example.
Retrieving minimal workflow hierarchies. We begin by obtain-
ing the list of match nodes for each keyword using the inverted
index. In our running example (Q1), we obtain the matches to
chicken breast: 0.1.0, coconut milk: 0.2.2 and saute: 0.1.1.2.

Note that sometimes a user may issue a query whose keywords
do not exactly match the words in the data, but are semantically
related. This can be addressed by looking each keyword up in a
dictionary of synonyms. For instance, if the user query contains
keyword “saute”, we look it up in the dictionary and find its syn-
onyms, e.g., “fry” and “panfry”. Then we search the inverted index
for the matches to “saute”, “fry” and “panfry”, and take the union
of their matches as the matches to keyword “saute”. In the ex-
periments we have tested the efficiency of WISE when synonyms
are considered in query processing. Alternatively, we can also use
an ontology, which not only records the similarity among keywords
but also the containment relationships (e.g. “saute” is a special type
of “cook”). Furthermore, the similarity measurement can be used
as part of the ranking scheme.

Then procedure findMWHs identifies the minimal workflow
hierarchies using the Indexed Lookup Eager Algorithm [40], con-

sidering only expansion edges without dataflow edges. In our run-
ning example, there is only one minimal workflow hierarchy, which
is the entire curry chicken hierarchy, as none of the descendants of
curry chicken (0) contains all three query keywords. As discussed,
returning the entire minimal workflow hierarchy is not informative
or concise, thus we propose novel algorithms for computing mini-
mal views of each minimal workflow hierarchy.

Identifying minimal views of minimal workflow hierarchies. Af-
ter identifying minimal workflow hierarchies, procedure grouping
groups the keyword matches according to the minimal workflow
hierarchies that they belong to. This is done by first merging the
lists of keyword matches into a single list mergedList, and then
grouping the matches using a single traversal of mergedList and
the list of the roots of minimal workflow hierarchies.

Finally, we need to identify minimal views of minimal workflow
hierarchies. For each task in the minimal workflow hierarchy, we
need to determine whether to include it in the view or not, and
extract or synthesize the dataflow among the nodes in the view.
genMV performs a single depth-first traversal of each minimal
workflow hierarchy in the order of NID, and a traversal on the list
of keyword matches sorted by NID. Let cn be the node in the
workflow hierarchy currently being visited and currMatch be the
current keyword match being visited in mergedList. During the
traversal:

(1) If cn has descendant matches (which is true if cn is an ances-
tor of currMatch, or cn = currMatch and is an ancestor node
of the next node in mergedList), we do not output cn, but update
cn to be the first child of the current cn, i.e., continue to traverse
its subworkflow hierarchy. If cn matches a keyword, currMatch
is updated to be the next keyword match.

(2) If cn is not a keyword match and has no descendant match
(which is true if cn is not an ancestor-or-self of currMatch), then
we output cn, skip its subworkflow hierarchy and move to the next
node in the workflow hierarchy which is not a descendant of cn.

(3) If cn is a keyword match and does not have descendant matches
(which is true if cn = currMatch, and is not an ancestor of the
next match node), then cn is directly interested by the user, and is
output as part of the query result. The properties of match nodes
can be displayed upon click. Since we do not output the expansion
of cn, we move to the next node in the workflow hierarchy which
is not a descendant of cn. We also move currMatch to point to
the next keyword match in mergedList.

In our running example, we have found the minimal workflow
hierarchy, rooted at curry chicken (0). The keyword matches in
the order of their NID are: chicken breast (0.1.0), saute (0.1.1.2),
coconut milk (0.2.2). We traverse the minimal workflow hierar-
chy and the keyword match list in parallel. Initially, cn = curry
chicken (0) and currMatch = 0.1.0. Since cn is an ancestor of
currMatch, we do not output curry chicken, but expand it and
traverse its children. Later on when we come to cn = 0.1.0, since
cn = currMatch, we output cn as a clickable node, then move
cn to 0.1.1 and currMatch to saute (0.1.1.2). The procedure con-
tinues until all nodes in the results are identified.

Next we discuss how to generate edges in the result. When out-
putting a node cn, we need to find the edges corresponding to cn.
A naive approach would search each leaf descendant of every node
u that has been output as well as each leaf descendant of cn, and
check whether there is an edge between them. If so, it means an
edge should exist between u and cn in the view (as discussed be-
fore, a view should preserve the edges between two nodes in the
workflow hierarchy that are descendants of different nodes in the
view). This approach is very inefficient, as u and cn may both have
a large number of descendants, and they may be accessed multiple

times.
We propose a much more efficient approach using LAL and a

hash table, which will be shown to find each edge in O(1). When
outputting a node cn we traverse LAL(cn); for each edge with ID
ei in LAL(cn), we check it in a hash table, which maps an edge
ID to an endpoint of the edge that has been output. The hash table
is initially empty. If ei is not in the hash table, it means the other
endpoint of ei has not been output, and we put an entry (ei, cn) into
the hash table. If ei is in the hash table with entry (ei, u), then u has
been output, and there should be a dataflow edge between u and cn,
whose direction and data item depends on the corresponding entry
in LAL(cn).

For example, when we output tendrize chicken breast (0.1.0), we
check its LAL. Suppose there is an edge from 0.1.0.3 to 0.1.1.0
with ID e1 and data item chicken breast, then LAL(0.1.0) = {e1
(outgoing, chicken breast)}. Since node 0.1.1.0 has not been output
yet, e1 is not in the hash table, and we insert entry (e1, 0.1.0) into
the hash table. When we output put into skillet (0.1.1.0), since
LAL(0.1.1.0) = {e1 (incoming, chicken breast)}, we check e1 in
the hash table, and get the entry (e1, 0.1.0). Therefore, we output
an edge from 0.1.0 to 0.1.1.0 with data item “chicken breast”.

Theorem 4.1: The results generated by Algorithm 1 for a keyword
search Q on a repository of workflows R are the minimal views of
all minimal workflow hierarchies H(R,Q) in the repository (Defi-
nition 3.4).

PROOF. The proof can be found in the Appendix.

Theorem 4.2: The time complexity of procedure genMV is O(N+
E), where N,E are the number of nodes and edges in the out-
put (minimal view), i.e., the optimal time complexity for finding
minimal views. The overall time complexity of Algorithm 1 is
O(MminkdlogMmax + M + N + E), where Mmin and Mmax

are the minimum and maximum number of matches to a keyword,
respectively, M is the total number of keyword matches, d is the
depth of the workflow hierarchy.

PROOF. The proof can be found in the Appendix.

5. EXPERIMENTS
To evaluate the effectiveness and efficiency of WISE, we com-

pare its performance with three methods in the literature. Node
Return outputs individual tasks that contain query keywords with-
out dataflow information, as supported by the search modules in
Kepler [2], Triana [7] and Taverna [6]. Structure Return outputs
a whole workflow hierarchy if it contains all the query keywords,
which is used in myExperiment [4]. The third approach, BLINKS
[20], is a state-of-the-art keyword search engine on graphs, which
output minimal subtrees in the data graph whose leaf nodes contain
matches to query keywords. We implemented Structure Return and
Node Return approaches with best-effort, each of which only re-
turns information of the minimal workflow hierarchies for better
precision. The implementation of BLINKS is obtained from the
authors.

We have tested two aspects: the quality of search results mea-
sured by the amount of information returned, as well as user per-
ceived precision, recall and F-measure; the efficiency of the search
algorithms measured by processing time and scalability over data
size.

In the efficiency test, we additionally test the efficiency of WISE
in handling synonyms of keywords. Specifically, we use Word-
Net [8] to find a set of synonyms for each keyword, then take the
union of the matches to all synonyms as the matches to this key-
word.

0

20

40

60

80

100

120

140

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8 QB9 QB10

of

 n
od

es

The number shown on top of each bar is the number of
dataflows among keyword matches captured in the
corresponding query result.

0 1 1 3 1 2 1 1 3 3

of dataflows
among
keyword
matches
(ground truth)

0

0

00

1

1

0 0

1

1
0

1

1 3
01

1

1

0 1

0

2

0 0
01

0

0

0

1

0
0

0

3

0

1

1

3

0 1

Structure Return WISE BLINKSNode Return

Figure 3: Number of Nodes vs. Number of Dataflows among
Keyword Matches in the Query Results

5.1 Experimental Setup
The experiments were performed on a 3.6GHz Pentium 4 ma-

chine. The systems were implemented in Java using a commercial
database as the backend. All experiments were repeated 5 times in-
dependently with cold cache, and we report the average processing
time discarding the maximum and minimum values.

Data Set. The data are obtained from the Kepler system[2] in
MoML (Modeling Markup Language) format [3], which is the stan-
dard file format for specifying workflow hierarchies, widely used in
many workflow systems such as Kepler [2], SEEK [5], GEON [1],
etc.

Query Set. We have tested thirty queries for workflows in three
sample application domains: Biology (QB1 − QB10), Geology
(QG1 − QG10), and Ecology (QE1 − QE10). Queries QB1 to
QB10 are set by a biologist from the Biology department in Ari-
zona State University. For example, QB1 intends to find out the
usage of GenBank, and QB2 intends to find out how to filter se-
quences. The queries include single keyword queries, queries whose
keywords appear in the same cluster, same layer, or different layers.
All queries can be found in the Appendix. .

5.2 Search Quality
Analysis of Information in Query Results. Fig. 3 shows the total
number of nodes in the query result, the ground truth of the number
of dataflows between keyword matches in the data, and the number
of dataflow paths that are captured in the result, of each approach on
queries QB1 to QB10. We can see that these approaches in the de-
creasing order of the amount of nodes output are: Structure Return,
WISE, BLINKS, and Node Return. Each result of each approach
contains all keywords of the corresponding query. However, the
numbers of dataflow paths among keywords captured by these ap-
proaches are quite different, as shown above the bars in Fig. 3. The
total numbers of dataflows between all pairs of distinct keywords in
the data are considered as the ground truth, which are listed below
the x-axis. Node Return has zero dataflows returned as no pair of
the nodes in a query result are connected. BLINKS is unaware of
the difference of dataflow edges and expansion edges and thus of-
ten fails to capture the dataflow paths between keywords. Structure
Return outputs the entire minimal workflow hierarchies as query re-
sults, which only explicitly capture the dataflow paths among key-
word matches that are leaf nodes. Even though it outputs much
more data nodes than WISE, the amount of relevant information is

0

0.2

0.4

0.6

0.8

1

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8 QB9 QB10

Structure Return WISE Node Return BLINKS

0

0.2

0.4

0.6

0.8

1

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8 QB9 QB10

Structure Return WISE Node Return BLINKS

0

0.2

0.4

0.6

0.8

1

alpha = 0.5 alpha = 1 alpha = 2

Structure Return WISE Node Return BLINKS

Precision Recall F-Measure

Figure 4: Search Quality

0

0.02

0.04

0.06

0.08

0.1

QB1 QB2 QB3 QB4 QB5 QB6 QB7 QB8 QB9 QB10

T
im
e
(s
)

0

0.2

0.4

0.6

0.8

1

QE1 QE2 QE3 QE4 QE5 QE6 QE7 QE8 QE9 QE10

WISE WISE* Structure Return Node Return BLINKS

0

0.05

0.1

0.15

0.2

0.25

QG1 QG2 QG3 QG4 QG5 QG6 QG7 QG8 QG9 QG10

Figure 5: Query Processing Time

limited. On the other hand, WISE can capture all the dataflows by
explicitly displaying the dataflow paths connecting keywords in the
query results, and thus return informative results.

We also evaluate the number of self-contained results generated
from all four methods for QB1 - QB10. All results generated by
WISE and Structure Return are self-contained, as they generated
minimal views / minimal workflow hierarchies as results. Node
Return does not generate any self-contained results. BLINKS gen-
erates self-contained results only when it happens to return exactly
the nodes and edges in a cluster as a result. For QB1 - QB10,
BLINKS does not generate self-contained results.

User Evaluation. To further verify the rationale of WISE’s seman-
tics and the acceptance of WISE’s query results by users, we also
performed a user study on QB1 to QB10 to measure the precision,
recall, and F-measure of these four approaches.

Ten students who are not aware of this project were invited for
the survey. For each query, we provided the users with the search
results generated by each of the four systems, as well as an option
for them to specify their own query results if none of them are sat-
isfactory, by circling all the nodes they wish to be returned (Recall
that dataflow information is analyzed in Fig. 6). The ground truth is
set based on the majority of agreements by the users. We then cal-
culate the precisions and recalls of each approach on the ten queries
based on the ground truth, which are shown in Fig. 4.

As we can see, Structure Return usually has a perfect recall as the
entire minimal workflow hierarchies are returned for each query.
However, it suffers a low precision as not all the nodes returned are
relevant. Take QB2 as an example, the users are only interested
in the information about Get Sequence and Filter, which comprises
only a small portion of the minimal workflow hierarchy. On the
other hand, Node Return has a perfect precision on all queries, but
suffers a very low recall. Consider QB4, no information about
how to use Align, Blast and Get Promoters together is returned.
Similarly, BLINKS has a perfect precision, but low recall, since the
results that are returned are generally not self-contained workflows.

WISE has both high precision and recall in general. There are
a few queries on which WISE’s search quality can be further im-
proved. For query QB1, WISE has a low recall because WISE out-
puts the cluster containing GenBank, and task GenBank is click-
able but not expanded. However, the users prefer having the de-
tailed information of GenBank directly. The reason WISE has a
low precision for QB8 is that the occurrences of the keywords Ar-
ray Merge and Align in the data are far away from the start tasks
of the minimal workflow hierarchy. In this case, the users prefer
omitting some portion of the data from the start tasks to the key-
word matches in the result for conciseness reason. QB7 has the
similar reason as QB8.

We compute the F-measure of each approach according to the
average precision and recall across all the test queries, with param-
eter α= 0.5, 1 and 2, as presented in Fig. 4. WISE significantly
outperforms Structure Return, Node Return and BLINKS.

5.3 Efficiency
Processing Time. The processing times of WISE, Structure Re-
turn, Node Return and BLINKS on the test data and query sets
are shown in Fig. 5. WISE* denotes the approach that incorpo-
rates WordNet for finding synonyms of keywords. All approaches
are efficient. Node Return is the fastest, followed by BLINKS and
WISE, and Structure Return is the slowest. WISE* takes additional
processing time for finding the synonyms of each keyword, as well
as finding the matches to them. It can be seen that the additional
time WISE* takes to handle synonyms is fractional.

Fig. 6(a) shows the breakdown of the average processing time
of each approach over all 30 queries. Structure Return, Node Re-
turn and WISE start with finding the minimal workflow hierarchies;
WISE further finds the minimal views; BLINKS has specific result
generation algorithms; and all consume time for outputting results.

As we can see, the output time is dominant in the overall cost,
which is determined by the amount of information output. Fig. 3
shows the number of nodes that are output by each approach for

0

0.05

0.1

0.15

0.2

0.25

Structure Return WISE Node Return BLINKS

T
im

e(
s)

Output

(BLINKS) Result Generation

(WISE) Compute Minimal View

Find Minimal Workflow Hierarchy

 �

�

�

�

�

�

�

�

�

�

�

�

�

�

�

0

0.5

1

1.5

2

2.5

3

3.5

112 224 336 448 560 672 784 896 1008

T
im

e
(s

)

workflow repository size(MB)

Node Return WISE Structure Return BLINKS

(a) Processing Time
Breakdown

(b) Scalability

Figure 6: Processing Time Breakdown, Scalability and Number
of Dataflows Captured

queries on Biology workflow repository. Structure Return, which
outputs the whole minimal workflow hierarchies, has the largest
output sizes and thus is the slowest. Its output size is followed by
that of WISE, and then BLINKS. On the other hand, Node Return,
which only outputs individual match nodes, has the smallest num-
ber of nodes returned and therefore is fastest.

We also observe that the algorithm of WISE for generating min-
imal view is very efficient, consuming a very small portion of its
processing time. The result generation time of WISE is similar to
those of BLINKS and Node Return. The processing overhead of
WISE is mainly due to the additional information output, which
captures more dataflows between keyword matches (shown in Fig.
3) and results in best search quality among all (shown in Fig. 4).
Scalability. We test the scalability of all four approaches over
increasing data sizes by replicating the workflows in the reposi-
tory multiple times. The processing times of QB1 are shown in
Fig. 6(b). All four approaches increase linearly when the data size
increases. They scale similarly on other queries and the figures are
omitted.

In summary, WISE achieves significantly better search quality
compared with Structure Return, Node Return and BLINKS and
returns self-contained, informative yet concise query results. It is
efficient and scales well.

6. CONCLUSIONS
We present WISE, a keyword search engine for workflow hierar-

chies, which are modeled as hierarchies of multiple layers. We
identify the minimal views of minimal workflow hierarchies as
query results, which are self-contained, informative and concise.
Experimental evaluations have shown the effectiveness and effi-
ciency of WISE.

In the future, we will study effective ranking schemes and top-k
algorithms such that search results will be output in the order of
their relevances. We will also study the generation of query results
that are meaningful with respect to the execution of a workflow,
e.g., a workflow in which two query keywords only have OR or
XOR relationships should not be retrieved as a result for the query,
as they can not both be executed during an execution. Another in-
teresting topic to explore is to re-use parts of a workflow hierarchy
when constructing a new workflow hierarchy, exploring the trade-
off between the efficiency of construction, storage and retrieval, as
well as the re-use of node/edge labels and indexes.

7. REFERENCES
[1] GEON. http://www.geongrid.org.
[2] Kepler. http://kepler-project.org/.
[3] MOML. http://ptolemy.eecs.berkeley.edu/papers/05/ptIIdesign1-

intro/ptIIdesign1-intro.pdf.
[4] myExperiment. http://www.myexperiment.org/.

[5] Seek. http://seek.ecoinformatics.org.
[6] Taverna Project. http://taverna.sourceforge.net/.
[7] Triana. http://www.trianacode.org/collaborations/index.html.
[8] WordNet: A Lexical Database for English. http://wordnet.princeton.edu/.
[9] I. Altintas, C. Berkley, E. Jaeger, M. Jones, B. Ludäscher, and S. Mock. Kepler:

An Extensible System for Design and Execution of Scientific Workflows. In
SSDBM, 2004.

[10] Z. Bao, S. C. Boulakia, S. B. Davidson, A. Eyal, and S. Khanna. Differencing
Provenance in Scientific Workflows. In ICDE, 2009.

[11] Z. Bao, T. W. Ling, B. Chen, and J. Lu. Effective XML Keyword Search with
Relevance Oriented Ranking. In ICDE, 2009.

[12] C. Beeri, A. Eyal, S. Kamenkovich, and T. Milo. Querying Business Processes.
In VLDB, 2006.

[13] O. Biton, S. C. Boulakia, S. B. Davidson, and C. S. Hara. Querying and
Managing Provenance through User Views in Scientific Workflows. In ICDE,
2008.

[14] O. Biton, S. Cohen-Boulakia, and S. B. Davidson. Zoom*UserViews: Querying
Relevant Provenance in Workflow Systems. In VLDB, 2007.

[15] A. Chebotko, S. Chang, S. Lu, F. Fotouhi, and P. Yang. Scientific Workflow
Provenance Querying with Security Views. In WAIM, 2008.

[16] I.-M. A. Chen and V. M. Markowitz. Modeling Scientific Experiments with an
Object Data Model. In ICDE, 1995.

[17] S. Cohen, S. C. Boulakia, and S. B. Davidson. Towards a Model of Provenance
and User Views in Scientific Workflows. In DILS, 2006.

[18] E. Deelman, S. Callaghan, E. Field, H. Francoeur, R. Graves, N. Gupta,
V. Gupta, T. H. Jordan, C. Kesselman, P. Maechling, J. Mehringer, G. Mehta,
D. Okaya, K. Vahi, and L. Zhao. Managing Large-Scale Workflow Execution
from Resource Provisioning to Provenance tracking: The CyberShake Example.
In e-Science, 2006.

[19] K. Golenberg, B. Kimelfeld, and Y. Sagiv. Keyword Proximity Search in
Complex Data Graphs. In SIGMOD, 2008.

[20] H. He, H. Wang, J. Yang, and P. Yu. BLINKS: Ranked Keyword Searches on
Graphs. In SIGMOD, 2007.

[21] T. Heinis and G. Alonso. Efficient Lineage Tracking for Scientific Workflows.
In SIGMOD, 2008.

[22] A. K. Joshi and Y. Schabes. Tree-Adjoining Grammars and Lexicalized
Grammars. In Tree Automata and Languages, pages 409–432. 1992.

[23] K. Lee, N. W. Paton, R. Sakellariou, and A. A. A. Fernandes. Utility Driven
Adaptive Workflow Execution. In CCGRID, 2009.

[24] G. Li, V. Muthusamy, H.-A. Jacobsen, and S. Mankovski. Decentralized
Execution of Event-Driven ScientificWorkflows. In SCW, 2006.

[25] D. T. Liu and M. J. Franklin. The Design of GridDB: A Data-Centric Overlay
for the Scientific Grid. In VLDB, 2004.

[26] Z. Liu and Y. Chen. Identifying Meaningful Return Information for XML
Keyword Search. In SIGMOD, 2007.

[27] Z. Liu and Y. Chen. Reasoning and Identifying Relevant Matches for XML
Keyword Search. In VLDB, 2008.

[28] Z. Liu and Y. Chen. Return Specification Inference and Result Clustering for
Keyword Search on XML. ACM Trans. Database Syst., 35(2), 2010.

[29] Z. Liu, Q. Shao, and Y. Chen. WISE: Searching Workflow Hierarchies.
Technical report, Arizona State University, 2010.

[30] Y. Luo, X. Lin, W. Wang, and X. Zhou. SPARK: Top-k Keyword Query in
Relational Databases. In SIGMOD, 2007.

[31] C. B. Medeiros, J. de Jesús Pérez Alcázar, L. A. Digiampietri, G. Z. P. Jr.,
A. Santanchè, R. da Silva Torres, E. R. M. Madeira, and E. Bacarin. WOODSS
and the Web: Annotating and Reusing Scientific Workflows. SIGMOD Record,
34(3):18–23, 2005.

[32] M. A. Nieto-Santisteban, J. Gray, A. S. Szalay, J. Annis, A. R. Thakar, and
W. O’Mullane. When Database Systems Meet the Grid. In CIDR, 2005.

[33] T. M. Oinn, M. Addis, J. Ferris, D. Marvin, M. Senger, R. M. Greenwood,
T. Carver, K. Glover, M. R. Pocock, A. Wipat, and P. Li. Taverna: A Tool for
the Composition and Enactment of Bioinformatics Workflows. Bioinformatics,
20(17):3045–3054, 2004.

[34] C. E. Scheidegger, H. T. Vo, D. Koop, J. Freire, and C. T. Silva. Querying and
Re-Using Workflows with VisTrails. In SIGMOD, 2008.

[35] S. Shankar, A. Kini, D. J. DeWitt, and J. F. Naughton. Integrating Databases
and Workflow Systems. SIGMOD Record, 34(3):5–11, 2005.

[36] Q. Shao, P. Sun, and Y. Chen. WISE: A Workflow Information Search Engine.
In ICDE, 2009.

[37] P. Sun, Z. Liu, S. B. Davidson, and Y. Chen. Detecting and Resolving Unsound
Workflow Views for Correct Provenance Analysis. In SIGMOD, 2009.

[38] M. Vrhovnik, H. Schwarz, S. Radeschütz, and B. Mitschang. An Overview of
SQL Support in Workflow Products. In ICDE, 2008.

[39] D. L. Wang, C. S. Zender, and S. F. Jenks. Clustered Workflow Execution of
Retargeted Data Analysis Scripts. In CCGRID, 2008.

[40] Y. Xu and Y. Papakonstantinou. Efficient Keyword Search for Smallest LCAs in
XML Databases. In SIGMOD, 2005.

APPENDIX

A. Pseudo Code of WISE

Algorithm 1 Keyword Search on Workflow Hierarchies
keywordSearch (keyword[n], indexes)
1: for i = 1 to n do
2: matches[i] = word2NID(keyword[i])
3: roots[r] = findMWHs(matches) [40]
4: matchGroup[r] = grouping(matches, roots)
5: for i = 1 to r do
6: result[i] = genMV (roots[i],matchgroup[i], indexes)

grouping (matches[n][p], roots[r])
1: mergedList[m] = merge-sort matches[n][p] into a sorted list
2: i = j = 1
3: matchgroup[i] = ∅ for all 1 ≤ i ≤ r
4: while i ≤ r and j ≤ m do
5: if ancestor − or − self(roots[i],mergedList[j]) then
6: matchgroup[i] = matchgroup[i] ∪mergedlist[j]
7: j ++
8: else if matchgroup[i]! = ∅ then
9: i++

10: else
11: j ++

genMV (root,matchgroup[g], indexes)
1: cn = root; cm = 1; mv = ∅
2: EdgeHash = a hash table initialized as empty
3: while cn ̸= null and matchgroup[cm] ̸= null do
4: if cn = matchgroup[cm] then
5: if ancestor(cn,matchgroup[cm+ 1]) then
6: {cn is a match node and has descendant matches}
7: cm++
8: continue
9: else

10: {cn is a match node and has no descendant match}
11: outputnode(mv, cn,EdgeHash)
12: cn = cn’s next node in NID order, which is not a descen-

dant of cn
13: else if ancestor(cn,matchgroup[cm]) then
14: {cn is not a keyword match and has descendant matches}
15: cn = cn’s first child
16: else
17: {cn is not a keyword match and has no descendant match}
18: outputnode(mv, cn,EdgeHash)
19: cn = cn’s next node in NID order, which is not a descendant

of cn
20: return mv

outputnode (mv, cn,EdgeHash)
1: add cn into mv
2: for each edge entry eid(incoming/outgoing, d) ∈ LAL(cn) do
3: if there is an entry (eid, u) in the EdgeHash then
4: {u is the other endpoint of eid that has been output}
5: add an edge from u to cn (or from cn to u′) into mv with data

item d
6: else
7: insert an entry (eid, cn) into EdgeHash

B. Proof of Theorem 4.1
We adopt the Indexed Lookup Eager Algorithm [40] to compute
minimal workflow hierarchies. In the following, we prove that a
query result QR = (V,E) generated by Algorithm 1 is the min-
imal view of a minimal workflow hierarchy that contains all key-
word matches which do not have descendant matches.

First, we prove that QR is a view of H(R,Q), i.e., it satisfies
the three conditions of view in Section 2.

1. ∀u ∈ H , if u ∈ QR, then none of u’s children is output in

QR according to Algorithm 1 (recall that after we output a
node cn, we move to the next node that is not a descendant-
or-self of cn). Therefore, QR satisfies condition 1 in Defini-
tion 3.2.

2. ∀u, u is a leaf of H and u /∈ QR, according to Algorithm 1,
during the depth-first traversal of H , u must have an ancestor
u′ which is visited and output in QR (recall that we do not
output a node if and only if it is expanded, or an ancestor node
is output). In other word, u′ is a node and has no descendant
matching keywords. Therefore, QR satisfies condition 2 in
Definition 3.2.

3. ∀u, v ∈ V , according to Algorithm 1, there is an edge from
u to v, (u, v, d), if and only if the ID of the edge (e.g., ei) is
recorded in both LAL(u) and LAL(v). According to the de-
sign of leaf adjacency list, this happens if and only if there is
an edge (u′, v′, d) between a descendant u′ of u and a descen-
dant v′ of v labeled ei. Therefore, an edge (u, v, d) between
u and v is output in the view if and only if there exists an edge
(u′, v′, d) between u′ and v′. Thus QR satisfies condition 3
in Definition 3.2.

Next we prove that QR contains all keyword matches in the min-
imal workflow hierarchy that have no descendant keyword match.
For any keyword match node m, each of m’s ancestors will be vis-
ited and expanded during the traversal of the minimal workflow hi-
erarchy, as it has a descendant match. Therefore, m will be visited
and output, as all children of an expanded node will be visited.

At last we prove that QR generated by Algorithm 1 is minimal,
i.e., it has the smallest number of nodes among all views of H
that contain all keyword matches. Suppose there is another view
of H , QR′ = (V ′, E′) which has a smaller number of nodes than
QR and contains all keywords. Since both views are from the same
workflow hierarchy, there must be at least one composite node u′ in
H which is expanded in QR but not in QR′, i.e., ∃u ∈ V and u′ ∈
V ′, such that u is a descendant of u′. According to Algorithm 1, u′

is expanded in QR only if it has descendant keyword matches. But
since u′ is output but not expanded in QR′, none of its descendants
can be output, thus QR′ can not contain all the keyword matches
of H , which is a contradiction. Therefore, QR is the minimal view
of H , and is a qualified query result.

A minimal workflow hierarchy has exactly one minimal view for
a query. Thus Algorithm 1 finds exactly the set of query results.

C. Proof of Theorem 4.2
In Algorithm 1, finding the matches using the inverted index takes
O(M) time, where M is the number of keyword matches. Proce-
dure findMWHs adopts the Indexed Lookup Eager Algorithm,
which takes O(MminkdlogMmax) time [40]. The grouping pro-
cedure traverses the roots of the minimal workflow hierarchies and
the keyword match list, whose complexity is bounded by O(M).

genMV scans each minimal workflow hierarchy, but only visits
the ancestor-or-self of the nodes in the minimal views. Since each
non-leaf node in the minimal workflow hierarchy has at least 2 chil-
dren, the total number of nodes visited is no more than 2N . For
each edge in the minimal view, genMV has two operations: insert
it into a hash table when the first endpoint is output, and retrieve it
from the hash table when the second endpoint is output. Thus each
edge takes O(1) time to process. Therefore, the time complexity
of genMV is O(N + E), which is the best possible complexity
as it is equal to the output size. The overall time complexity of the
algorithm is O(MminkdlogMmax +M +N + E).

D. Queries for Evaluation
Biology
QB1 GenBank
QB2 Get Sequence, Filter
QB3 Get Promoters, Align
QB4 Align, Blast, Get Promoters
QB5 Filter, Synchronizer
QB6 Record Updater, Filter
QB7 Blast, Get Sequence, Merge
QB8 Array Merge, Align
QB9 Record Updater, Record Disassembler
QB10 Align, Filter, Synchronizer
Geography
QG1 SVG Concatenate
QG2 ExtractURL, ExtractShpURL
QG3 WebService, RecoradDisassembler
QG4 ClassifySample, extractAge
QG5 ClassifySample, AssertPoint
QG6 ClassifyBody, SVG To Polygon Converter
QG7 Composite Actor, SVG Concatenate
QG8 Add Point To SVG, QueryBodyAge
QG9 Get 2D Point, Record Disassembler, Render Mapler
QG10 Record Disassembler, SVG To Polygon Converter
Ecology
QE1 Add Grids
QE2 GarpPrediction, GarpAlgorithm
QE3 Future-Climate-Model, IJMacro
QE4 LocationFile, I - DataPoints
QE5 Create ASC Maps , Garp Prediction
QE6 Calculate Best Rulesets , CV Hull to RasterMask
QE7 IJMacro, II - EnvLayerSet
QE8 Add Grids , GarpAlgorithm
QE9 Future-Climate-Model,ConvexHull, GarpPrediction
QE10 Create ASC Maps, Add Grids, I - DataPoints

E. Related Work
Keyword Search on Graphs/Trees. Keyword search on relational
data/graph models [20, 19, 30] and on XML data/tree models [11,
26, 28] has been well studied. However, as explained in Section 1,
these techniques are not applicable for searching scientific work-
flows for several reasons. First, a workflow hierarchy is a three
dimensional structure consisting of nested graphs, and thus is more
expressive than graphs/trees. Second, there are two types of edges
in a workflow hierarchy, dataflow edges and expansion edges, where
the latter carry different semantics as the edges in graphs/trees.
Third, while the keyword search results on graphs/trees are sub-
structures extracted from the original data, search results on work-
flow hierarchies often should contain synthesized dataflow edges
that are not explicitly present in the original data, in order to explic-
itly capture the dataflows among nodes matching keywords in the
view. Furthermore, query results of workflow hierarchies should
be self-contained with respect to its composite tasks and expan-
sion edges, which is a unique requirement compared with keyword
search on graphs/trees. We propose novel techniques and algo-
rithms in WISE to address the unique challenges of the problem
of keyword search on workflow hierarchies.

Workflow Models. WOODSS [31] models scientific workflow de-
signs with multiple abstraction layers in order to facilitate work-
flow composition and reuse. [17] proposes a formal and general
model of data provenance for scientific workflows having multiple
abstraction layers. [13] provides a method for automatically con-
structing views from the bottom layer of a scientific workflow ac-
cording to user specified important tasks. All of them focus on how
to model and construct the hierarchial structures of workflows. On
the other hand, the focus of this paper is effectively retrieving in-
formation from hierarchical workflows and presenting it to the user
according to specified keywords. There is also research on how to
effectively execute a specific type of workflow in various circum-
stances [39, 24, 18, 23]. These are orthogonal problems of defin-
ing query results on workflow hierarchies, as individual execution
methods of a workflow hierarchy do not affect the specification of
views on the workflow hierarchy, hence do not affect the definition
of query results and the algorithms to generate query results.
Querying Workflows. Studies have been performed on query-
ing scientific workflows. One option is to map workflows into
relational/object-oriented databases, or XML, and express the search
using standard database query languages [16]. Recent efforts pro-
pose an integration of scientific workflows and relational databases
[32, 25, 35], which associate each task in a workflow with a rela-
tional table recording the input and output data. However, it can
be difficult for scientific users to search workflows using database
query languages since they need to learn the query languages, com-
plex data schemas as well as complicated mappings between schemas
and workflows. A recent work [12] proposes BPEL, a visualized
query language for business processes, whose interface is similar
to the one for workflow construction.

Kepler [2], Triana [7] and Taverna [6] allow users to search work-
flow tasks using keywords or regular expressions. Individual tasks
that match the input keywords/expressions will be returned, with-
out the dataflow information among the tasks. On the other hand,
myExperiment [4] returns the entire workflow hierarchies contain-
ing the keywords, delivers an overwhelming volume of informa-
tion.

WISE is the first keyword search engine on workflows hierar-
chies, which is desirable for users not familiar with database query
languages, such as scientific users. WISE returns minimal views
(concise) of workflow hierarchies that have unique goals/names
(self-contained) and preserves/synthesizes the dataflows among nodes
matching keywords (informative), so that users can easily under-
stand the relationships of the query keywords in the results. Fur-
thermore, the results generated by WISE satisfy desirable proper-
ties proposed in the literature, including soundness, monotonicity
and consistency.

