
Efficient Ticket Routing by Resolution Sequence Mining

Qihong Shao, Yi Chen∗
Computer Science and Engineering Department

Arizona State University
{qihong.shao, yi}@asu.edu

Shu Tao, Xifeng Yan, Nikos Anerousis
IBM T. J. Watson Research Center

{shutao, xifengyan, nikos}@us.ibm.com

ABSTRACT
IT problem management calls for quick identification of re-
solvers to reported problems. The efficiency of this pro-
cess highly depends on ticket routing—transferring problem
ticket among various expert groups in search of the right re-
solver to the ticket. To achieve efficient ticket routing, wise
decision needs to be made at each step of ticket transfer to
determine which expert group is likely to be, or to lead to
the resolver.

In this paper, we address the possibility of improving
ticket routing efficiency by mining ticket resolution sequences
alone, without accessing ticket content. To demonstrate this
possibility, a Markov model is developed to statistically cap-
ture the right decisions that have been made toward problem
resolution, where the order of the Markov model is care-
fully chosen according to the conditional entropy obtained
from ticket data. We also design a search algorithm, called
Variable-order Multiple active State search (VMS), that gen-
erates ticket transfer recommendations based on our model.
The proposed framework is evaluated on a large set of real-
world problem tickets. The results demonstrate that VMS
significantly improves human decisions: Problem resolvers
can often be identified with fewer ticket transfers.

Categories and Subject Descriptors
H 2.8 [Database Applications]: data mining

General Terms
Algorithm, Design

Keywords
Markov model, Sequence mining, Workflow mining and op-
timization

∗This material is based on work partially supported by NSF
grant IIS-0740129 and IIS-0612273.

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
KDD’08, August 24–27, 2008, Las Vegas, Nevada, USA.
Copyright 2008 ACM 978-1-60558-193-4/08/08 ...$5.00.

ID Time Entry

28120 2007-05-14 New Ticket: DB2 login failure
28120 2007-05-14 Transferred to Group SMRDX
28120 2007-05-14 Contacted Mary for recycling WAS
28120 2007-05-14 Transferred to Group SSDSISAP
28120 2007-05-14 Status updated ...
28120 2007-05-15 Transferred to Group ASWWCUST
28120 2007-05-15 Web service checking
28120 2007-05-18 Could not solve the problem.
...
28120 2007-05-18 Transferred to Group SSSAPHWOA
28120 2007-05-22 Resolved

Table 1: A sample ticket workflow

1. INTRODUCTION
Problem management is a key task in managing today’s

enterprise computing environment, a multi-billion-dollar busi-
ness. Its goal is to quickly resolve the reported problems,
e.g., hardware failures, software bugs, application errors,
etc., hence minimize the disruptions caused to business oper-
ations. Problem management is typically conducted by the
helpdesk and IT support staff members of an enterprise. The
process of problem management is reflected by the workflows
of problem tickets. A ticket is opened as soon as a problem
is reported. Then, it is routed among various expert groups
until the root cause of the problem is identified by a resolver
group. Finally, the resolver group solves the problem and
closes the ticket. Table 1 shows a sample ticket workflow, in
which the ticket was routed among multiple groups before
it was solved. The efficiency of identifying the problem re-
solver depends on ticket routing, which decides, if the group
currently holding the ticket cannot solve the problem, which
group the ticket should be transferred to next.

Today, ticket routing is usually driven by expert decisions.
It is not uncommon that due to human error or inexperience
a ticket is mistakenly transferred to a group that cannot
solve the problem, which might lead to a long and ineffi-
cient routing sequence. In such cases, not only resources are
wasted, but also it would take longer time to close tickets,
causing customer dissatisfaction.

In this paper, we propose a mechanism that can improve
the overall efficiency of ticket routing, measured by the Mean
number of Steps To Resolve (MSTR) the tickets. The first
question is what information in ticket data can be used to
improve MSTR. Typically, a problem ticket contains two
types of information: (1) ticket content that includes prob-
lem description and diagnostic data, (2) resolution sequence
that shows how it was routed before it reached the resolver

group. In the sample ticket shown in Table 1, the entries
compose the ticket content, while the extracted group names
〈SMRDX, SSDSISAP, ASWWCUST, SSSAPHWOA〉 form its resolution
sequence. Our study in this paper focuses on the resolu-
tion sequences only. As shown later, mining the resolution
sequences alone can significantly improve the efficiency of
ticket routing and identify resolver groups more quickly – a
surprisingly encouraging discovery.

Our strategy is to mine resolution sequences of solved tick-
ets, which could guide the routing decisions for new tickets.
With in-depth analysis, we find that in many cases, long res-
olution sequences were results of a few local mis-routing deci-
sions, while the majority of the local ticket transfer decisions
were logically correct. Intuitively, for a specific type of prob-
lems, these local ticket transfer decisions reflect the func-
tional relationships between expert groups. For instance, if
group A often transfers AIX tickets to group B, this implies
if A cannot resolve an AIX problem, B is very likely to be
able to solve it. Based on this intuition, we build a model
to capture these relationships by mining transfer decisions
recorded in the solved tickets. The model is then applied to
guide future ticket transfer toward correct decisions.

Our method is based on Markov models (or Markov chains).
Let each Markov state represents a group, the transition
probabilities between these states capture the local deci-
sions, i.e. the likelihood of a group to be a transfer target,
given the previous groups that have processed the ticket.
There are several challenges in applying Markov model in
this problem. For instances, what kind of group transitions
should be used to build the model? Shall we use the tran-
sitions from the previous groups to the resolver group, or
use all intermediate group transitions? What should be the
optimal order of the derived Markov model? How should
the model be used to guide ticket transfer? In our study, we
investigate these issues and design a search algorithm that
generates good ticket routing recommendations based on the
learned models.

In summary, our contributions in this paper include:

• We successfully exploit the potential of mining resolu-
tion sequences to improve ticket routing. To our best
knowledge, this is the first study on this problem from
a data mining perspective.

• We develop a Markov model with variable-order to sta-
tistically capture the ticket transfer decisions that have
been made toward problem resolution, where the order
of the Markov model is set according to the conditional
entropy estimated from the ticket data to boost accu-
racy. We then design an algorithm, called Variable-
order Multiple active State search (VMS), which lever-
ages the developed model to best predict the prob-
lem resolver. The developed system is demonstrated
in [18].

• We conduct extensive experiments to verify our ap-
proach and demonstrate that VMS can effectively shorten
ticket resolution sequences. Thus, it can be adopted
as a recommendation tool for ticket routing.

The remainder of this paper is organized as follows. We
first formulate the problem in Section 2. Then we present
the proposed Markov model that captures the ticket trans-
fer decisions in Section 3, and algorithms that search for

resolver groups based on the derived model in Section 4. In
Section 5, we evaluate the effectiveness and robustness of the
proposed approach. The related works are reviewed in Sec-
tion 6. Finally, Section 7 concludes the paper and discusses
future directions of this study.

2. PROBLEM FORMULATION
A problem ticket can be represented by a tuple with two

components, (τ, G(k)), where τ is the ticket content and
G(k) is the routing sequence. A ticket is routed to find
the group that can potentially solve the problem. Let G =
{g1, g2, . . . , gn} be the set of all expert groups. The routing
sequence of a ticket can be written as G(k) = 〈g(1), g(2), . . . , g(k)〉
(g(i) ∈ G), in which a ticket is first issued to g(1), then trans-
ferred in the order of g(2), g(3), . . . , g(k). A step in G(k) is a
ticket transfer from one group to another. A ticket (τ, G(k))
is open if none of the groups in G(k) can resolve it. Corre-
spondingly, a ticket is closed if the last group in G(k), i.e.,
g(k), solved the problem, and in this case, the routing se-
quence is called a resolution sequence.

Given m ticket resolution sequences {Gi}i=1,...,m, we mea-
sure the efficiency of a ticket routing system using the Mean
number of Steps To Resolve (MSTR):

T =

∑m
i=1 |Gi|
m

. (1)

Since the more steps involved in ticket resolution, the longer
delay it will cause for the ticket to be closed, our goal is to
minimize Eq. (1).

We approach this problem by mining the ticket resolution
sequences G(k) and address the following question:

Is it possible to reduce MSTR by mining ticket resolution
sequence G(k) alone without accessing ticket content τ?

As we show later in the paper, although seemingly counter-
intuitive, the answer is positive. Why? Because if two tick-
ets share the similar resolution processes in the past, likely
they are related to similar problems. As a result, they might
share the similar resolution routes toward the end!

Formally, given a ticket resolution history database, DS =
{G1, G2, . . . , Gn}, we develop a framework to mine the res-
olution sequences in DS and make routing recommendation
on open tickets in a testing ticket dataset TS in order to
minimize their MSTRs. For tickets in TS , our system is
only provided with initial routing information, i.e., the first
group that the ticket was assigned to by the helpdesk.

3. RESOLUTION SEQUENCE MINING
In this section, we introduce the Markov model that we

use to capture the ticket transfer decisions embedded in
ticket resolution sequences.

3.1 Modeling Ticket Transfer Decisions
Markov models are widely used to capture the temporal

dependencies between the states of a system. A process is
considered Markovian if at any time point, the probability
of the process in the current state is solely dependent on
its previous states. Given such property, Markov model fits
naturally with our problem here. In our problem setting,
each group can be modeled as a state. Assume there are
N expert groups, G = {gi}, i ∈ {1, 2, . . . , N}, to which a
ticket can be transferred. A kth-order Markov model gives

the probability of the ticket being transferred to group gi at
the next step, P (g = gi|G(k)), gi ∈ G.

In ticket routing, decisions are often based on past group
transfers irrespective of the order of transfer. In other words,
the decision maker typically looks at all history updates
generated by the past groups, rather than in which order
these updates were generated. This observation indicates
that, if we use S(k) to denote the set of groups in G(k)

(i.e., S(k) = {g(1), g(2), ..., g(k)}), we only need to model
P (g = gi|S(k)), gi ∈ G. Therefore, unless otherwise stated,
we will refer to this generalized model as our Markov model
(in some literatures, this is called quasi-Markov model [13]).

Using historical ticket resolution sequences, we can find
the number of instances with a set of group transfers, S(k),
denoted as N(S(k)), as well as the number of instances that
a ticket is transferred to group gi after being processed by
S(k), denoted as N(gi, S(k)). We can estimate P (gi|S(k)) by

P (gi|S(k)) =

{
N(gi, S(k))/N(S(k)) if N(S(k)) > 0,
0 otherwise.

(2)
(S(k), gi) is called a recognizable group transfer pattern,

which is related to sequential patterns [2] except that it does
not have minimum frequency requirement. Note that if the
same group transfer pattern occurred multiple times in a sin-
gle ticket, we only count it once in N(S(k)) and N(gi, S(k)).
This is to avoid the bias caused by repeated group transfers
in a single ticket.

3.2 Do Intermediate Transfer Steps Matter?
An open problem is whether we should build the model

using (1) only the transfer patterns ending with the resolver
group, or (2) all transfer patterns including the intermediate
transfer steps. For example, for a resolution sequence 〈A, B,
C〉, approach (1) only considers the transfer patterns ending
with the resolver group C when building the model, i.e. 〈A,
C〉, 〈B, C〉, and 〈A, B, C〉; while approach (2) considers all
transfer patterns, which additionally include 〈A, B〉.

In approach (1), we define I(τ, gi) = 1 if group gi can solve
problem τ , and 0 otherwise. Let P (I(τ, gi)|〈g(1), g(2), . . . g(k)〉)
be the probability that problem τ cannot be solved by groups
g(1), g(2), . . . g(k), but can be solved by gi. In this case,
Eq. (2) is evaluated as

P (gi|S(k)) = P (I(τ, gi)|S(k)). (3)

In approach (2), we use all intermediate transfer steps in
ticket resolution sequences to build the model. We define
J(τ, gi) = 1 if the problem τ should go through group gi

(i.e., the problem can be either solved or correctly routed by
gi), and 0 otherwise. Then, Eq. (2) is evaluated as

P (gi|S(k)) = P (J(τ, gi)|S(k)). (4)

The intuition of Eq. (4) is that although unwise decisions
do exist in the training data, most of the ticket transfer de-
cisions were helpful in identifying the right resolver groups.
If our model accurately captures these decisions, when a
new ticket emerges, our model will statistically point out
the right direction of ticket routing.

As verified in the experimental study presented in Sec-
tion 5, approach (2) has two advantages compared with ap-
proach (1). First, in some cases, it is necessary to transfer
tickets to certain non-resolver or intermediate groups. These
groups are typically the “distributor” of the tickets who have

ticket sets k = 1 k = 2 k = 3 k = 4 kopt

1 0.172 0.162 0.150 0.149 1
2 0.105 0.104 0.103 0.102 1
3 0.115 0.109 0.109 0.108 1
4 0.062 0.046 0.045 0.043 2
5 0.501 0.454 0.435 0.425 3
6 0.309 0.283 0.280 0.278 2

Table 2: Conditional entropies w.r.t order k

a good knowledge of how to match tickets with the exper-
tise of a subset of groups. If group gi is a distributor group,
the approach (2) will be able to capture it, as P (gi|S(k))
would tend to be greater than the transition probabilities to
other groups. Second, in cases where no enough ticket data
is available to build robust probabilities from Eq. (3), using
Eq. (4) instead can result in more training instances, hence
can potentially avoid overfitting. In the following discus-
sion, unless otherwise stated, we will use Eq. (4) to derive
our model.

3.3 Optimizing Markov Order
The order of a Markov model determines how many past

states are considered to predict the future state of the pro-
cess. To determine the “optimal” order of a Markov model,
we consider the conditional entropy of the training data.

In information theory, conditional entropy quantifies the
remaining uncertainty of a random variable given the value
of a second random variable [4, 8]. In our problem setting,
we evaluate the entropy of the next group g conditioned on a
given set of past groups S(k), which is denoted as H(g|S(k)):

H(g|S(k)) = −
∑

S(k)∈Gk

P (S(k))
∑
g∈G

P (g|S(k)) log P (g|S(k))

(5)
Here, we define log 0 = 0, as P (g|S(k)) could be 0. Gk stands
for all k-group combinations selected from the set of all the
groups G.

The conditional entropy H(g|S(k)) is 0 if the next group
can be fully predicted by the past k groups S(k), and equals
H(g) if the next group g is independent of the past group
transfers. Obviously, H(g|S(k)) is a function of the Markov
order k. By evaluating the value of H(g|S(k)), we can de-
termine the “optimal” value of k for our Markov model.

Table 2 shows the conditional entropy as the Markov order
k varies from 1 to 4, for the Markov models learned from 6
different ticket datasets. As one can see, the conditional
entropy can be improved by increasing the Markov order.
This suggests that in practice, it is better to make ticket
transfer decision based on a longer history.

Although increasing Markov order generally leads to bet-
ter predictability, it also increases the complexity of our
model, especially when we apply it to online ticket trans-
fer recommendations (to be discussed in the next Section).
Therefore, we need to find a right tradeoff for k. We ob-
serve in Table 2 that when k is increased beyond a certain
threshold, the improvement of predictability becomes small.
In our study, we empirically set a threshold θ = 0.015 to de-
termine the optimal value of k, denoted as kopt. Specifically,
we consider kopt = k if k is the smallest value that satisfies

H(g|S(k))−H(g|S(k+1)) < θ. (6)

Note that in practice, the optimal order may not be usable

0

20

40

60

80

100

120

140

1st order 2nd order 3rd order 4th order

o

f
av

ai
ab

le
 t

ra
n

sf
er

 p
at

te
rn

s

Figure 1: Number of recognizable group transfer
patterns vs. Markov order for AIX problems

due to the limited size of the training dataset. To demon-
strate this, we plot in Fig. 1 the number of recognizable
group transfer patterns with respect to varied Markov orders
for tickets collected from the AIX problem category during
3 months(Jan.2006 - Mar.2006). It is clear that with the
increase of Markov order, fewer transfer patterns become
available, which may decrease the applicability of the model.

To tackle this, in a kopt-th order Markov model, to mea-
sure the probability of selecting group g we consider the
past kopt groups. If the past kopt group pattern occurs too
infrequently in the training dataset (thus the probability be-
comes statistically unreliable), we will decrease k to kopt−1,
kopt − 2, and so on until the occurrences of the recognizable
k-group patterns become sufficient. In our experiment, we
empirically set 20 as the threshold of infrequent patterns.

4. TICKET ROUTING ALGORITHMS
As shown in Section 3, our Markov model captures the

likelihood that a ticket would be transferred to a group,
given the past group transfer information. The next issue is
how to use it to make effective ticket routing recommenda-
tions, so that a new ticket can be transferred to its resolver
group as quickly as possible. Note that the right resolver
group for a ticket is unknown at the beginning of ticket
routing. What we know is the initial group that a problem
ticket was assigned to.

Based on the initial assignment information, we study
three algorithms that guide ticket routing by searching for
the potential resolver group using the constructed Markov
model. These three algorithms fall into two categories: the
first two use 1st-order Markov models, while the third one
exploits higher, variable-order models.

4.1 First-order Search Algorithms
The first algorithm, called First-order Memoryless search

(FM), searches for resolver groups based on a first-order
Markov model, i.e., k = 1 in Eq. (2). In this algorithm,
ticket transfer decision is solely based on the current group.
That is, given the current group g(l), the algorithm selects
the next group g∗, where

g∗ = argmaxg P (g|g(l)), ∀g ∈ G. (7)

Consider the first-order Markov model as a graph, where
each node represents a group, and an edge between nodes
represents possible ticket transfer. For a new problem ticket,
starting from the node representing the initial group, the al-
gorithm traverses the graph and searches for the resolver
group in a way similar to depth-first search. At each step,

it chooses the next node with the highest transition prob-
ability. The search progresses until it finds the resolver,
or reaches a node without any unvisited neighbor nodes. In
the latter case, FM returns to the most recently visited node
whose neighbor nodes have not been fully explored. Here,
we assume a ticket should not visit the same group twice.

Example 1: Fig. 2(a) shows a sample 1st-order Markov
model, where the value on each edge is the transfer proba-
bility between groups, estimated by Eq. (2).

Suppose an incoming ticket is initially assigned to group
A and the expected solver group is F . We perform an FM
search in Fig. 2(a). Starting from group A, there are four
possible next groups {C, D, E, G} with transfer probabili-
ties 0.5, 0.45, 0.03, and 0.02, respectively. Since group A
cannot solve the problem, the algorithm selects the group
with the highest transition probability 0.5 as the next group,
i.e., group C. Following similar steps, the ticket is then
transferred to groups B, H, I, J , until it reaches the re-
solver group F . The search path of this algorithm is marked
by thick lines in the figure. The groups that are involved
in ticket transfer are shadowed, with a number in paren-
theses denoting the transfer order in the process. With
FM’s recommendation, 7 groups are involved in this case:
A → C → B → H → I → J → F .

A potential drawback of the FM algorithm is that it only
relies on the current state to make group transfer decisions.
In some cases, such decisions may not lead to the best ticket
transfer direction toward the resolver group. In Example 1,
after C fails to resolve the ticket the search should explore
group D rather than B for better efficiency.

To overcome the disadvantage of the FM algorithm, we
should choose the next group based on the transition prob-
abilities from one of the past states. The intuition is that
ticket transfer decision should be made based on not only
the knowledge of the current group, but also the problem
analysis of the past groups. Therefore, if a group transfer
decision is based upon one of the past states instead of the
current state, it potentially avoids the incorrect “local” de-
cisions made by the FM algorithm. Note that the model
built here is still first-order, but based on one of the past
states. We name this algorithm First-order Multiple active
State search (FMS).

To implement this algorithm, we keep track of a visited
group set Lv, which includes the groups visited so far, and
a candidate group set, Lc, which consists of the unvisited
neighbors of all groups in Lv. At each step, the algorithm
checks all visited groups g(l) ∈ Lv and candidate groups
g ∈ Lc, and selects the next group that maximizes the first-
order transition probability, i.e.,

g∗ = argmaxg P (g|g(l)), ∀g(l) ∈ Lv, g ∈ Lc. (8)

If g∗ is not the resolver group, the algorithm will update
Lv and Lc accordingly. It iterates until the resolver group
is found.

Example 2: Let us revisit Example 1 using the FMS al-
gorithm. The ticket transfer steps suggested by FMS are
illustrated in Fig. 2(b). Initially, Lv = {A} and Lc =
{C, D, E, G}. The algorithm first selects group C. Now, the
Lv becomes {A, C} and Lc becomes {B, D, E, G}. Next,
the algorithm selects D based on past group A, because the
transition probability, P (D|A), is the largest given both past
groups in Lv and all candidate groups in Lc. The iteration

E

D

C

0.03

0.45

0.5

0.35
0.3

B

H

I

0.6

0.3

0.1

0.7

0.3

1

0.65

F

0.1

G

0.02

(1)

0.25

0.35

0.750.45

0.55

1

J

A

0.9 0.1

(2)

(3)

0.25

(4)
(5)

(6)

(7)

(a) FM (b) FMS (c) VMS
Figure 2: Examples that compare three ticket routing algorithms

S(2) next group gi P{gi|S(2)}
{A, C} E 0.6
{A, C} D 0.2
{A, C} B 0.1
{A, C} G 0.1
{E, C} F 0.6
{E, C} G 0.4
· · · · · · · · ·

Table 3: 2nd-order transition probabilities for
Fig. 2(c)

continues until group F is selected after the algorithm vis-
ited group E. Therefore, the route suggested by FMS is
A → C → D → E → F , which is shorter than the one sug-
gested by FM in Example 1.

Intuitively, FMS should outperform FM, as it can avoid
tracing along a wrong direction when navigating the first-
order Markov model for group transfer. In the above exam-
ple, it is obviously beneficial to try another direction that is
more likely to be correct, i.e., group D, after C fails.

4.2 Variable-order Search Algorithm
Both algorithms introduced so far make ticket transfer

recommendations based on 1st-order Markov model. It is
possible to improve prediction accuracy further by using a
higher order Markov model. Therefore, we introduce the
third algorithm, called Variable-order Multiple active State
search (VMS).

Similar to FMS, VMS also maintains a visited set, Lv,
and a candidate set, Lc. It selects a group from Lc in each
iteration and expands Lv, until the resolver group is found.
Different from FMS, VMS first checks all available transfer
probabilities P (g|S(k)), S(k) ⊆ Lv, for all of the groups that
have been visited in the past. Then, it selects the next group
g∗ that maximizes the transfer probability from S(k),

g∗ = argmaxg P (g|S(k)), ∀g ∈ Lc, S(k) ⊆ Lv. (9)

Example 3: Let us apply the VMS algorithm to Example 1.
Suppose we can use either 1st- or 2nd-order Markov model,
with the 2nd-order transition probabilities listed in Table
3. The VMS algorithm works as follows. Starting from the
initial Lv = {A}, since only the 1st-order model is available
at this time, the algorithm transfers the ticket to group C
and updates Lv to {A, C}.

Now the algorithm has the choices of using either 1st- or
2nd-order Markov model. We find that the highest condi-

tional probability in the 2nd-order model, P (E|A, C) = 0.6,
is greater than that in the 1st-order model, P (D|A) = 0.45.
So the algorithm chooses E as the next group, since the 2nd-
order model predicts with higher confidence. In Fig. 2(c),
we use dashed thick line to represent this transfer. From
group E, P (F |E) = 0.75 is the highest conditional prob-
ability among all candidate groups in Lc, even compared
to 2nd-order probabilities, hence F is selected next. Thus,
the VMS algorithm finally reaches the resolver group F in
4 steps: A → C → E → F .

Algorithm 1 VMS(gs)

initial group: gs

1: initialize Lv = {gs}; Lc = NeighborNodes{gs}; {Lv and
Lc are the visited list and candidate set, respectively. }

2: while Lc is not empty do
3: remove g∗ from Lc which satisfies Eq. (9);
4: add g∗ to Lv;
5: if g∗ is the resolver group then
6: success, return g∗;
7: end if
8: add NeighborNodes(g∗) - Lv to Lc;
9: end while

A formal description of VMS is given in Algorithm 1. By
considering more than one group visited in the past, the
VMS algorithm compares all historical group transfer pat-
terns, and finds the one with the highest confidence.

It is worth noting that VMS may not always use a higher-
order model for two reasons. First, for a new ticket, a full-
fledged higher-order Markov model may not be available due
to the limited size of training dataset. That is, not all trans-
fer patterns S(k) were observed in the training dataset. In
these cases, we reduce the order until a recognizable group
transfer pattern is found. Second, in some cases a lower or-
der conditional probability can be a stronger indicator than
a higher-order one and therefore is more favorable to be
used. For instance, in Fig. 2(c), if the current group is I,
the 1st-order model indicates that the next group must be
J (with probability 1), despite what past groups have been
visited. That is why we propose VMS that considers vari-
able orders in determining ticket transfer. Compared with
FM and FMS, VMS achieves higher prediction accuracy, as
verified by experiments. The VMS algorithm is the one we
recommend to use in practice.

5. EXPERIMENTS

In this section, we report our experiments on evaluating
the effectiveness and robustness of the proposed framework.
The evaluation is based on 1.4 million problem tickets col-
lected from IBM’s problem management system over a 1-
year period from Jan 1, 2006 to Dec 31, 2006. These tickets
were classified into 553 problem categories 1, e.g., AIX, DB2,
Windows, etc. On average, 50 − 900 groups (both resolvers
and non-resolvers) were involved in solving the tickets of
each problem category.

In our study, we partition the dataset into training and
testing sets for each problem category. Using the training
set, we first build the Markov models presented in Section 3.
Then for each ticket in the testing set, given the initial group
assignment, we apply the search algorithms introduced in
Section 4. To evaluate the effectiveness of our system, we
compare the resolution sequences of the testing tickets with
the ones recommended by our system. Our experiments will
demonstrate:

1. Effectiveness: We show that all three search algorithms,
FM, FMS, and VMS, can significantly improve ticket
routing. Specifically, VMS outperforms the other two
algorithms and is able to reduce the MSTR from 3.94
(based on human decisions) to 2.58 on average. We also
validate our assumption that using intermediate transfer
steps in model training is beneficial.

2. Robustness: We test the sensitivity of our approach, with
respect to the size of training set, the time-variability
of tickets, and the variety of problem categories. The
results show that our solution consistently achieves good
performance.

3. Case Study: We use a real ticket example to illustrate the
details of how a ticket routing system can benefit from
our solution.

5.1 Effectiveness

0

2

4

6

8

10

12

14

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

of steps in log

o

f
st

ep
s

FM FMS

VMS(J) VMS(I)

Figure 3: Effectiveness of FM, FMS, and VMS

We first describe the performance of our algorithms on
a randomly chosen problem category, AIX. We derive the
Markov models as discussed using the resolution sequences
extracted from 6, 695 tickets, and then apply the FM, FMS,
and VMS algorithms to the rest of 2, 634 tickets.

Fig. 3 shows the MSTR comparison between the orig-
inal ticket routing and the routing recommended by our
algorithms. The x-axis is the original number of transfer

1When a ticket is first opened, the helpdesk assigns a pa-
rameter that indicates which problem domain it falls into.

steps recorded in the testing dataset, while the y-axis shows
the MSTR resulted from FM, FMS, and VMS, respectively.
Note that all three algorithms can be applied based on either
Eq. (3) or Eq. (4). Due to space limitation, we only provide
the results of VMS using Eq. (3) (denoted as VMS(I)) and
VMS using Eq. (4) (denoted as VMS(J)). As shown in the
figure, among all three algorithms, VMS performs the best.
Furthermore, VMS(J) outperforms VMS(I), which is well
explained in Section 3.

 1 2 3 4 5 6 7 8 9 10 1
 2
 3
 4
 5
 6
 7

 0

 50

 100

 150

 200

 250

 300

of instances

of steps in original log

of steps in VMS

of instances

Figure 4: # of routing steps: Original vs. VMS

Fig. 4 shows the detailed distribution (plotted in 3D) of
the improvement achieved by VMS in the same experimen-
tal setting as Fig. 3. The x-axis is the number of transfer
steps based on human decisions, the y-axis is the number of
transfer steps from VMS, and z-axis is the number of tick-
ets in different x-y combinations. As shown in the figure,
VMS improves the most in those cases where human deci-
sions led to excessively long resolution sequences (> 3). We
also note that by following the recommendations from VMS,
most of the tickets that originally took 2-3 steps to resolve
stay the way they were, only a small portion of them fol-
low a longer resolution sequence. In practice, these tickets
are the ones that are relatively straightforward to resolve.
We argue that the recommendations from VMS are unlikely
to mislead human decisions in these cases. Those originally
long resolution sequences represent tickets that were diffi-
cult for human experts to make correct routing decisions.
It is these tickets that cause most customer dissatisfaction.
The fact that VMS can significantly improve the routing ef-
ficiency in these cases makes it a good solution to routing
recommendation.

Category Original VMS MSTR (% off)
ADSM 5.37 3.23 37.99%
AIX 4.89 2.78 43.15%
BIOS 4.49 2.94 34.52%
DB2 4.78 2.57 46.23%
WINDOWS 3.93 2.86 27.23%

All Categories 3.94 2.58 34.52%

Table 4: MSTR for different problem categories

Table 4 shows the average MSTR for testing tickets from
five categories and the average MSTR for all 553 problem
categories. The fourth column is the improvement gained
by VMS. It clearly indicates on average, VMS improves the
transfer efficiency.

0

0.5

1

1.5

2

2.5

3

3.5

2 3 4 5 6 7 8 9 10

of steps in log

o

f
st

ep
s

in
 V

M
S

T1 T2 T3 T4

Figure 5: Consistency of the performance of VMS
with different types of training sequences

In Fig. 3, the fact that VMS(J) outperforms VMS(I) in-
dicates that our assumption that intermediate transfer steps
are useful in model training is valid. We further validate this
assumption as follows. We build our model using training
sets that contain resolution sequences with different lengths.
If our assumption is incorrect, the result based on shorter
resolution sequences should be better than that based on
longer ones, because shorter resolution sequences contain
less intermediate transfer steps.

Specifically, we build 4 models, T1 through T4, using 10
months of AIX tickets. We use resolution sequences of length
2 as the training set for T1, sequences of length 3 for T2,
sequences of length 4 to 9 for T3, and sequences of length 10
or more for T4. The number of sequences in each training
set is around 1,500. Then we use tickets closed in the next
2 months as the testing set. The effectiveness of each model
is plotted in Fig. 5. It is clear that the MSTRs of these
models are similar, despite the fact that they were trained
by resolution sequences of different lengths. This confirms
that our assumption is indeed valid.

As for runtime, for each problem category, resolution se-
quence mining can be done in less than 1 second, and the
throughput of ticket routing is less than 1 ms per ticket,
demonstrating that our solution is computationally efficient.

5.2 Robustness
Our next experiment aims at demonstrating the robust-

ness of the VMS algorithm. Specifically, we test its sensi-
tivity to a variety of factors including (1) the size of the
training set, (2) time-variability of ticket data, and (3) the
variety of problem categories.

Variable Sizes of Training Set
Training Set Testing Set

From To Ticket From To Tickets
Jan 01 Mar 31 301,861 Apr 01 Apr 30 101,935
Jan 01 Apr 30 403,796 May 01 May 31 117,615
Jan 01 May 31 521,411 Jun 01 Jun 30 124,827
Jan 01 Jun 30 646,238 Jul 01 Jul 31 125,225

Sliding Window of Training Set
Training Set Testing Set

From To Ticket From To Tickets
Jan,01 Jun,30 626,238 Jul,01 Jul, 31 125,225
Feb,01 Jul,31 671,156 Aug,01 Aug, 31 132,266
Mar,01 Aug,31 602,921 Sep,01 Sep, 30 122,399

Table 5: Training and testing datasets

We first study the robustness of our approach against the
size of training set. Specifically, we use 3, 4, 5, or 6-month
training sets, as described in Table 5, to build the Markov
models for VMS.

A comparison of MSTRs is conducted for each training
set configuration. As shown in Fig. 6(a), the performance
improvement resulted from VMS is consistent across all 4
training sets, while the result slightly improves as the size of
the training set increases. This indicates that our algorithm
is robust as long as a reasonably large training set is used.
When the training set expands, our model is able to recog-
nize more group transfer patterns. As a result, higher-order
models will be available and subsequently leveraged by the
VMS algorithm to improve the accuracy of predicting trans-
fer target.

Next, we evaluate the effectiveness of our approach over
time. In this evaluation, a sliding time window is applied
to train the model (see Table 5), i.e., the data collected in
the most recent 6 months is used as the training set and
the resulting model is applied to the tickets reported in the
following month. Fig. 6(b) shows that the effectiveness of
our approach is also consistent over time.

The last experiment is to study the effectiveness of our
approach across different problem categories. We again con-
struct Markov models using a 6-month training set and ap-
ply it to the tickets reported in the following month. We
repeated this test for 10 problem categories. Fig. 6(c) plots
the detailed comparison results for 3 different problem cat-
egories: AIX, DB2, and BIOS. We observe that, as partially
shown in Figure 6(c), the reduction in ticket transfer steps
is consistent across all problem categories.

5.3 A Case Study
To better illustrate why our approach improves ticket rout-

ing, we present a case study based on a real ticket resolu-
tion sequence. The sample problem ticket is described in
Table 6, which shows that 12 routing steps by 10 different
expert groups were involved in resolving this ticket.

Fig. 7 depicts a fragment of the Markov model obtained
from the related tickets in the training set (all in the DB2

problem category), with each node representing an expert
group and the edge thickness representing the likelihood of
transferring tickets between two groups. With VMS, only 3
groups is contacted to resolve the ticket: 〈SMRDX, SSDSISAP,
SSSAPHWOA〉 (marked black in Fig. 7).

In the log, the ticket actually took 12 transfers to iden-
tify the resolver group SSSAPHWOA because two local deci-
sions were made incorrectly, which transfer the ticket from
SSDSISAP to DRINAIXSP (the 2nd transfer in Table 6) and
from SSMRDX to ASWWCUST (the 7th transfer in Table 6). As
a consequence, these wrong decisions lead to other wrong
transfers (shadowed nodes in Fig. 7). Our model shows that
statistically, a ticket transferred to DRINAIXSP will be fur-
ther transferred to SSOSOGSAP if DRINAIXSP cannot resolve
it. It seems that once transferred in a wrong direction, the
ticket would not be easily routed back to the correct path.

By examining the problem status descriptions in Table 6,
we find that in the process of resolving this ticket, different
groups were trying to test different modules of a DB2 sys-
tem, and finally came to a conclusion that DB2B needs to
be recycled. What VMS recommended was that if SMRDX

and SSDSISAP have tried but could not solve the problem,
the most efficient solution is to have SSSAPHWOA with higher

0

1

2

3

4

5

6

7

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o

f
st

ep
s

in
 V

M
S

of steps in log

3 months 4 months
5 months 6 months

0
0.5

1
1.5

2
2.5

3
3.5

4
4.5

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

o

f
st

ep
s

in
 V

M
S

of steps in Log

Jan - Jun Feb - Jul Mar - Aug

0

1

2

3

4

5

6

2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

#o
f

st
ep

s
in

 V
M

S

#of steps in Log

AIX DB2 BIOS

(a) Training set size (b) Sliding time window (c) Different problem categories
Figure 6: Robustness of the VMS algorithm

probabilities than others to work on it and in this case, to
recycle DB2B directly. This intuitively explains why our
solution leads to more efficient ticket routing.

ASDG

ASSAPMMLC

WWRDX

ASEPIMIS

SSDSISAP

SSAPHWOA

SMRDX

ASWWCUST

ASPCBPSH

ASPWCSPC

NIEGSCUG

DRINAIXSP

DRTSDBASE

SMGNAGWA

SSOSGSAP

DRAIX

Figure 7: Markov Model (partial) in Case Study

6. RELATED WORK
Process and workflow mining have been extensively stud-

ied in computer science and business research. For instance,
Agrawal et al. [1] introduced an algorithm that extracts pro-
cess models from event logs. Aalst et al. [21] studied the
same problem in terms of Petri net. Rozinat and Aalst [17]
also studied the event dependencies and applied decision
trees for analyzing decision choices in business processes.

The problem of sequential pattern mining in transactions
was first illustrated by Agrawal and Srikant [2]. Various
combinatorial algorithms such as SPADE [22], PREFIX [16],
and SPAM [3] were developed for efficient mining in large
sequence databases. In addition to combinatorial solutions,
probabilistic sequence mining was also proposed [6, 7, 9, 10,
11, 19]. For instance, Cook et al. [6] tried to use neural
network and Markovian approaches for mining software en-
gineering processes. Similarly, Mannila et al. [14, 13] also
used a Markovian approach to extract patterns in sequen-
tial events. A more comprehensive probabilistic model was
proposed in [19]. Note that although our Markov model is
conceptually similar to those of [17, 14, 13], we made signifi-
cant extensions to capture the data statistics. Furthermore,
most of the previous studies were focused on discovering
statistical patterns/models from event logs, while this work

proposed a novel approach to apply the discovered models
to effectively support decision making.

In web usage mining, association rules and sequential pat-
terns are utilized to ease users’ access and improve the web-
site design [5, 15, 20]. Kohavi et al. [12] discussed lessons
and challenges from mining click stream data. In these ap-
plications, since it is difficult to tell the target web page
that a user was looking for from a sequence of click-through
activities, the developed model is hard to evaluate. In con-
trast, ticket resolution sequences do not have this issue; each
sequence has a well-defined resolver group. Therefore, the
model we built can be evaluated accurately. We believe res-
olution sequence data provides us a good platform to exper-
iment and demonstrate the usage and the effectiveness of
sequence mining.

7. CONCLUSIONS
In this paper, we explore the potential of mining reso-

lution sequences to improve the efficiency of ticket rout-
ing. We develop a Markov model to statistically capture
the ticket transfer decisions embedded in ticket resolution
sequences. Using the developed model, we then design an
algorithm to generate effective ticket routing recommenda-
tions. Through extensive experiments, we demonstrate that
our approach can greatly improve the efficiency of ticket
routing, especially in those cases where human experts tend
to make wrong decisions and result in long resolution se-
quences. We also show that our model is robust to the size,
time-variability and the problem categories of the training
data sets.

The approach studied in this paper is solely based on min-
ing ticket resolution sequences. Continuing this study, we
plan to extend the current model with text mining tech-
niques, and develop a system being able to take advantage
of both resolution sequences and ticket content for better
routing performance.

8. REFERENCES
[1] R. Agrawal, D. Gunopulos, and F. Leymann. Mining

process models from workflow logs. In Proc. 6th Int’l
Conf. Extending Database Technology, 1998.

[2] R. Agrawal and R. Srikant. Mining sequential
patterns. In Proc. ICDE, 1995.

[3] J. Ayres, J. Gehrke, T. Yiu, and J. Flannick.
Sequential pattern mining using a bitmap
representation. In Proc. 2002 ACM Int. Conf.
Knowledge Discovery in Databases, 2002.

[4] C. Chatfield. Statistical inference regarding Markov
chain models. Appl. Statist., 22:7–20, 1973.

Entry Description

New Ticket 29581926 GUI is failing with "Unable to Logon: RT11844: Security exception:
[IBM][CLI Driver] SQL30081N A communication error has been detected.
Communication protocol being used: "TCP/IP".Communication API being
used: "SOCKETS". Location where the error was detected

Transferred to Group SMRDX Contacted Mary from OSG for recycling WAS, Thanks.

Transferred to Group SSDSISAP stopped transition on g2 and g4 and recycled WAS on e8/e9/ec/ed, then
restarted transition. But still does not work.

Status updated ... Problem Severity has been updated: Old Problem Severity: ’2.’ New
Problem Severity:’1’ The possible reason: RDC Database is unavailable
to the RDC applications.

Transferred to Group DRISAIXSP There seems to be some authorization issue, contacting Dove from SSOS-
GSAP for the support and further investigation

Transferred to Group SSOSGSAP It probably database security problem, pass the ticket to SMGNAGWA

Transferred to Group SMGNAGWA Check the DDF, which needs DRAIX support

Transferred to Group DRAIX DDF on DB2B stopped with a mode force then restarted. Passing back to
check application.

Transferred to Group SMRDX Initial update is sent. Suggest: Ticket 29581926 transferred to Group
ASWWCUST for web service checking

Transferred to Group ASWWCUST Confirmed GUI to be up and the web services are working however, could
not confirm the transition, it was not picking up so decided on to hold
the transition, requested to stop the transition except WAS on KP1E8 or
KP1ED.

Transferred to Group ASPCBPSH After recycling WAS, made DDF and the DB straight which made the transi-
tion go up, Hence closing the Alert and sending MN for inputs regarding
the DDF and the preventive measures for future reference

Transferred to Group ASPWCSPC The STOP DDF was put in for change 849826, unfortunately I assumed that
the 2 threads would eventually complete there by allowing DDF to stop.
I should have included in the change that all remote access must have
been stopped before the stop ddf command. Could not solve the problem.

Transferred to Group SMRDX I suspect that the 2 threads that I canceled are stuck in DB2 and not
rolling back so they will continue to hold the locks they have. Trans-
fer to SSSAPHWOA for further solution

Transferred to Group SSSAPHWOA Resolution: DB2B was recycled under 5 minutes. The problem has been
solved, ticket is closed.

Table 6: Sample ticket entries

[5] M. Chen, J. Park, and P. Yu. Data mining for path
traversal patterns in a web environment. In Proc. 16th
Int. Conf. on Distributed Computing Systems, 1996.

[6] J. Cook and A. Wolf. Discovering models of software
processes from event-based data. ACM Trans.
Software Eng. and Methodology, 7(3):215–249, 1998.

[7] J. Cook and A. Wolf. Event-based detection of
concurrency. In Proc. 6th Int’l Symp. the Funcations
of Software Eng., pages 35–45, 1998.

[8] L. Finesso, C.-C. Liu, and P. Narayan. The optimal
error exponent for Markov order estimation. IEEE
Trans. on Information Theory, 42(5):1488–1497, 1996.

[9] W. Gaaloul, S. Alaoui, K. Bäına, and C. Godart.
Mining workflow patterns through event-data analysis.
In Proc. SAINT Workshops, pages 226–229, 2005.

[10] W. Gaaloul, S. Bhiri, and C. Godart. Discovering
workflow transactional behavior from event-based log.
In Proc 12th Int’l Conf. CoopIS, pages 3–18, 2004.

[11] W. Gaaloul and C. Godart. Mining workflow recovery
from event based logs. In Proc. 3rd Int’l Conf.
Business Process Management, pages 169–185, 2005.

[12] R. Kohavi, L. Mason, and Z. Zheng. Lessons and
challenges from mining retail e-commerce data.
Machine Learning, 57:83–113, 2004.

[13] H. Mannila and D. Rusakov. Decomposition of event
sequences into independent components. In Proc. 1st
SIAM Conf. Data Mining, pages 1–17, 2001.

[14] H. Mannila, H. Toivonen, and A. Verkamo. Discovery

of frequent episodes in event sequences. Data Mining
and Knowledge Discovery, 1(3):259–289, 1997.

[15] B. Mobasher, N. Jain, E. Han, and J. Srivastava. Web
mining: Pattern discovery from world wide web
transactions. In TR 96-050, Univ. of Minnesota, Dept.
of Computer Science, 1996.

[16] J. Pei, J. Han, B. Mortazavi-Asl, H. Pinto, Q. Chen,
U. Dayal, and M.-C. Hsu. PrefixSpan: Mining
sequential patterns efficiently by prefix-projected
pattern growth. In Int. Conf. Data Engineering, 2001.

[17] A. Rozinat and W. van der Aalst. Decision mining in
ProM. In LNCS, pages 420–425, 2006.

[18] Qihong Shao, Yi Chen, Shu Tao, Xifeng Yan, and
Nikos Anerousis. Easyticket: A ticket routing
recommendation engine for enterprise problem
resolution. 34th Int’l Conf. VLDB, 2008.

[19] R. Silva, J. Zhang, and J. G. Shanahan. Probablistic
workflow mining. In Proc. 1998 Int’l Conf Knowledge
Discovery and Data Mining, pages 469–483, 1998.

[20] J. Srivastava, R. Cooley, M. Deshpande, and P. Tan.
Web usage mining: Discovery and applications of
usage patterns from web data. SIGKDD Explorations,
1(3):12–23, 2001.

[21] W. van der Aalst, T. Weijters, and L. Maruster.
Workflow mining: Discovering process models from
event logs. IEEE Trans. Knowl. Data Eng., 2004.

[22] M. Zaki. SPADE: An efficient algorithm for mining
frequent sequences. Machine Learning, 40:31–60, 2001.

