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ABSTRACT
Workflow views abstract groups of tasks in a workflow into high
level composite tasks, in order to reuse sub-workflows and to facil-
itate provenance analysis. However, unless a view is carefully de-
signed it may not preserve the dataflow between tasks in the work-
flow, i.e. it may not be sound. Unsound views can be misleading
and cause incorrect provenance analysis.

This paper studies the problem of efficiently identifying and cor-
recting unsound workflow views with minimal changes. In particu-
lar, given a workflow view, we wish to split each unsound compos-
ite task into the minimal number of groups, such that the resulting
view is sound. We prove that this problem is NP-hard by reduction
from independent set. We then propose two local optimality con-
ditions (weak and strong), and design polynomial time algorithms
for correcting unsound views subject to these conditions. Experi-
ments show that our proposed algorithms are effective and efficient,
and that the strong local optimality algorithm produces better solu-
tions than the weak local optimality algorithm with little processing
overhead.

1. INTRODUCTION
Technological advances have enabled the capture of massive amounts

of data in many different domains, taking us a step closer to solv-
ing complex problems such as global climate change and uncover-
ing the secrets hidden in genes. Workflow management systems
are therefore increasingly used for managing and analyzing this
data, allowing users to specify complex, multi-step, “in-silico” ex-
periments or analyses. To ensure reproducibility and verifiability
of results, many workflow systems are now providing support for
provenance [1, 2, 3, 4, 5].

The provenance of a data item is the sequence of steps used to
produce the data, together with the intermediate data and parame-
ters used as input to those steps. In general, it can be thought of
as a graph which captures the causal dependencies between en-
tities such as data and processes (a provenance graph [6]), and
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queries of provenance as calculating transitive closures of depen-
dencies [7]. As workflows become large and complex, the size of
the provenance graph as well as the cost of answering transitive
closure queries becomes problematic, and a number of techniques
have recently been proposed for reducing the size of the provenance
graph and complexity of calculating provenance information [8, 7,
9].

In this paper, we explore the use of views for efficient prove-
nance analysis. By abstracting groups of tasks in a workflow into
high level composite tasks, a view can hide irrelevant details and
be much smaller than the original workflow. Thus analyzing prove-
nance queries that involve transitive closures at the view level can
be more efficient than that at the workflow level.

As an example, consider the workflow in Figure 1 (a) which de-
scribes a common analysis in molecular biology: Phylogenomic in-
ference of protein biological function. Tasks are modeled as nodes
in a directed graph, where edges represent data dependencies be-
tween the tasks. First, users select a set of entries from a database,
such as GenBank (1), and split the entries (2) to extract a set of
sequences (6), and a set of annotations (3). The retrieved annota-
tions are then curated (4) and formatted (5) to be served as input to
building the Phylogenomic tree (11). For the extracted sequences,
an alignment is created (7) and then formatted (8). Other annota-
tions for the sequences (9) may also be considered and processed
(10) to serve as input to (11). A Phylogenomic tree will then be
built and displayed (12). Note that the graph itself is the prove-
nance graph for the final output – the Phylogenomic tree – and that
the data items flowing between tasks has been omitted for simplic-
ity.

By grouping the tasks in each dotted box into a composite task,
the provenance graph can be viewed at a higher level as shown in
Figure 1(b). For instance, the composite task Build Phylo Tree (19)
consists of four atomic tasks, and simplifies the provenance graph
for users who are not interested in details of checking additional
annotations.

Views are frequently used for purposes of modularization, ab-
straction and reuse when specifying workflows; examples of views
can be found in workflow repositories such as MyExperiment [10].
Existing workflow management systems typically provide a graph-
ical interface that allows users to specify composite tasks, which
are the components of a view [11, 12]. The problem of automat-
ically generating views for focussing user attention on “relevant”
information was introduced in [9].

However, unless a view is carefully designed, it may not pre-
serve the dataflow between tasks in the workflow, and thus can be
misleading and cause incorrect provenance analysis. For example,
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Figure 1: Sample Workflow Specification and View of Building
Phylogenomic Tree

consider the view in Figure 1(b), and suppose a user would like
to determine the provenance of the output of task (18). Based on
the abstracted provenance graph, she would believe that tasks (13),
(14), (15) and (16) are all involved since there are paths from each
of them to task (18). However, there is no corresponding path be-
tween (14) and (18) in the workflow in Figure 1(a). Similarly, the
view in (b) shows a path between (15) and (17), which does not
have corresponding path in (a).

Ideally, a view should preserve all the data dependencies be-
tween tasks in the workflow, without adding or removing paths.
We call such a view sound with respect to provenance. Although it
would seem natural to design views which are sound, our survey
of workflow designs in a well-curated workflow repository [11]
revealed several unsound views. Furthermore, the views that are
automatically generated in [9] are not necessarily sound for com-
posite steps that do not contain a (user-defined) relevant tasks.

Our focus in this paper is therefore on diagnosing and correct-
ing unsound views. First, we formally define what it means for a
view to be sound. However, detecting an unsound view accord-
ing to its definition is exponential. We thus define an equivalent
problem, identifying unsound composite tasks in a view, which can
efficiently computed.

Then we design algorithms to correct unsound composite tasks.
Two alternatives can be pursued for correcting an unsound task:
Splitting it into multiple smaller tasks, or merging it with other
tasks. Note that splitting composite tasks refines the initial view to
a lower level and provides more provenance information. In con-
trast, merging tasks loses information, as tasks that are important to
the user may be invisible after the merge. Therefore, in this paper
we focus on techniques that resolve an unsound view by splitting
unsound composite tasks rather than merging them.

Our goal is to correct an unsound view by splitting its unsound
composite tasks to a minimal number of tasks, each of which is
sound. We show that this problem is NP-hard by reduction from
the independent set problem. To efficiently tackle this hard prob-
lem, we propose two optimality criteria: weak local optimality and
strong local optimality. A weak local optimal solution is one in
which no two tasks in the resulting view can be merged into a sound
task, and strong local optimal solution is one in which no any num-
ber of tasks in the view can be merged. We show that weak local
optimality can be easily achieved with an O(n2) algorithm. How-

ever, achieving strong local optimality is much more challenging,
as the straightforward way of doing so takes exponential time. We
then present a more elaborate algorithm which achieves strong lo-
cal optimality in polynomial time O(n3). The proposed algorithms
are much more efficient than the algorithm which produces an opti-
mal solution. The strongly local optimal algorithm often has com-
parable performance to the weakly local optimal algorithm, and
produces solutions that are comparable to the optimal one.

Soundness diagnosis and correction can be done either by mak-
ing suggestions while users are creating a view, or by correcting
unsound views after the view is created.

The contributions of our work include:

• We define the soundness of workflow views for the purpose
of efficient provenance computation.

• We design algorithms to efficiently validate workflow views
and identify unsound composite tasks.

• We prove that the problem of correcting an unsound task by
splitting it into a minimum number of sound tasks is NP-
hard.

• We design efficient algorithms for correcting unsound tasks
which produce solutions of different forms of local optimal-
ity in polynomial time.

• A system for resolving unsound views was developed and
verified for its efficiency and effectiveness through experi-
mental studies. This provides an effective tool to guide the
design of workflow views.

The rest of paper is organized as follows: Section 2 introduces
the general workflow model and the definition of view. Section 2
defines sound views, formulates the View Soundness Problem (VSP)
and its equivalent problem: Task Soundness Problem (TSP). Sec-
tion 4 introduces two optimality criteria, weak local optimality
and strong local optimality, and presents algorithms which achieve
each criteria for unsound view correction. Experimental results are
given in Section 5. Section 6 discusses related work, and Section
7 concludes the paper.

2. PRELIMINARIES
In this section, we introduce the background on the general work-

flow model and views.

Definition 2.1: A workflow specification W is a directed graph
where each node corresponds to a task and each edge indicates the
dataflow between them. N(W) denotes the node set of W, and E(W)
the edge set.

A view is a directed graph that is an abstraction of a workflow
specification by grouping some tasks along with their edges to-
gether into a single task as defined in [11, 13, 14, 9]. In other
words, each task in a view corresponds to a group of tasks in the
workflow specification.

For example, consider the sample workflow specification in Fig-
ure 2(a). A view specified by the user is shown in Figure 2(b),
where the nodes from a to m in (a) are mapped to a single task M.
(c) and (d) are another two views of (a). The formal definition of
view is given below.

Definition 2.2: A view V of workflow specification W is a directed
graph induced by a partition of the nodes N(W): {P1, P2, ..., Pn}
such that ∅ , Pi ⊂ N(W), Pi ∩ P j = ∅ for i , j, and P1 ∪ P2 ∪ ... ∪
Pn = N(W).
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Figure 2: Sound versus Unsound Views

• The node set of V , N(V), is defined by a bijection from the
partition to N(V), Φ : 2N(W) −→ N(V). ∀Pi, ∃Ti = Φ(Pi) ∈
N(V). Conversely, ∀Ti ∈ N(V), ∃Pi, such that Φ−1(Ti) = Pi.

• The edge set of V , E(V), is defined by a surjection from E(W)
to E(V), Ψ : E(W) −→ E(V). ∀l ∈ E(W) from tm to tn,
tm ∈ Pi, tn ∈ P j. If i , j, Ψ(l) = L ∈ E(V), where L is an
edge from Φ(Pi) to Φ(P j); conversely, l = Ψ−1(L). Otherwise
if i = j, Ψ(l) = ε.

• Each T ∈ N(V) is called a composite task, and each t ∈ N(W)
an atomic task. An edge l ∈ E(W) is called an intra-group
edge with respect to V if Ψ(l) = ε, and an inter-group edge
otherwise.

Intuitively, Φ maps each group in a partition in the workflow
specification to a task in the view. For an edge l in the workflow
specification, l is an inter-group edge if Ψ(l) is an edge in the view
(i.e., it connects two composite task). Otherwise, l is an intra-group
edge.

3. VIEW AND TASK SOUNDNESS PROB-
LEM

In this section we define sound views, formulate the problems
of determining and refining unsound views, and define the view
soundness problem and task soundness problem. We then prove
that both problems are NP-hard.

3.1 Sound Views
According to Definition 2.2, a view preserves the edges among

tasks. Specifically, there is an edge from composite task Ti to T j

in the view, if and only if there exist ti ∈ Pi = Φ−1(Ti) and t j ∈
P j = Φ−1(T j) in the corresponding workflow specification, such
that there is an edge from ti to t j. This is a desirable property of
view, as such a view preserves the dataflow between adjacent tasks.

Intuitively, we may think that the transitive closure of an edge
- a path - in the workflow is also preserved in the view, and thus
both immediate (i.e. shallow) provenance and transitive (i.e. deep)

provenance are correctly captured in the view. Unfortunately, this
is not the case. As discussed in Section 1, a view, which preserves
the edges by definition, may not preserve the paths in the work-
flow specification. In particular, a view may have a path between
two tasks which actually does not exist in the workflow specifi-
cation. Consider the view in Figure 2(b), since M is viewed as a
single task, there is a path consisting of edges L1 and L5. How-
ever, in the workflow specification, there is no path that includes
both l1 = Ψ−1(L1) and l5 = Ψ−1(L5). This view, therefore, does not
preserve the paths in the workflow specification. Such a view may
convey incorrect dataflow information and thus be misleading and
problematic in provenance analysis.

We call a view that preserves the paths in the corresponding
workflow specification as a sound view, and unsound view other-
wise, formally defined in the following definition.

Definition 3.1: A view V of a workflow specification W is sound if
the following conditions hold:

1. ∀Ti,T j ∈ N(V), for any path from Ti to T j consisting of
edges L1.L2. · · · .Lp, there exists a path in W consisting of edges
Ψ−1(L1).C1.Ψ

−1(L2).C2. · · · .Cp−1.Ψ
−1(Lp), where Cm(1 ≤ m ≤ p −

1) is a path consisting of intra-group edges only.
2. ∀ti, t j ∈ N(W), for any path from ti to t j consisting of edges

l1.l2. · · · .lp, there is a path in V consisting of edges Ψ(l1).Ψ(l2). · · · .Ψ(lp).

As we can see, a view is sound if and only if it preserves the
paths, that is, if for any path p in the view, there is a corresponding
path p′ in the workflow specification, and vice versa. A path p in
the view corresponds to a path p′ in the workflow specification if p′

consists of the mapping Ψ of edges in p, with possibly intra-group
edges in between. For example, Figure 2(c) is a sound view: for
any path in Figure 2(c), e.g., L1.L2.L4, there is a path in (a), i.e.,
l1.l2.l3.l4, such that l1, l2 and l4 maps to L1, L2 and L4, and l3 is
an intra-group edge. Besides, for any path in (a), there is also a
corresponding path in (c).

Our focus in this paper is to determine unsound views and refine
an unsound view into a sound one, e.g., Figure 2(b) is determined
to be an unsound view, and (c), (d) are two possible refinements of
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(b). Next we discuss how to determine unsound views, then define
a view soundness problem, whose goal is to refine an unsound view
with minimal cost. We then transform it to an equivalent problem
called task soundness problem, and prove it to be NP-hard.

3.2 Determining Unsound Views
We first need to check whether a view is sound. However, it is

very expensive to do so by directly applying Definition 3.1, as we
will need to check if every path in the view satisfies condition 1,
and every path in the data satisfies condition 2 in Definition 3.1.
Even if we do not count cycles, the number of paths in a workflow
specification is O(2n) in the worst case, where n is the number of
tasks. Thus checking view soundness by checking paths is expo-
nential, making it intractable.

Interestingly, we discover that it is sufficient to check the paths
between the input and output of each composite tasks to check the
view soundness, which can be done in polynomial time. We define
the soundness of a task in a view, and show that a view is sound if
and only if all its tasks are sound. This property scales the problem
down to task-level, such that we can check the soundness of each
task to determine the soundness of the view, and later on correct
each unsound task individually to resolve an unsound view.

Definition 3.2: Given a composite task T , T.in denotes the atomic
tasks in T that receive input from some atomic task t < T , and T.out
denotes the atomic tasks in T that send output to some atomic task
t < T .

Definition 3.3: A composite task T in a workflow view is sound if
and only if ∀ti ∈ T.in and ∀to ∈ T.out, there is a directed path from
ti to to which is composed of nodes in Φ−1(T ) and hence intra-group
edges.

As an example, the composite task M in Figure 2(b) is unsound
because there is no path from a, e ∈ M.in to m ∈ M.out. All com-
posite tasks in Figure 2 (c) and (d) are sound.

Proposition 3.1: A view V of a workflow specification W is sound
(Definition 3.1) if and only if all composite tasks in V are sound.

P. ⇒: Suppose V is a sound view, but it contains an un-
sound task T . Since T is unsound, ∃ti ∈ T.in and to ∈ T.out, such
that there is no directed path from ti to to which is composed of
intra-cluster edges in T . Assume that in the incoming edge of ti is
li, and the outgoing edge of to is l j. Let Li = Φ(li) and L j = Φ(l j).

In V , there is a path Li.L j. By Definition 3.1, there should be a
path in the workflow specification, such that it consists of li, l j and
intra-cluster edges in T . However, there is no such path, which is a
contradiction.
⇐: Suppose all the composite tasks in V are sound. Take any

path p in V consisting of edges L1.L2. · · · .Lp. Let li = Ψ−1(Li)(1 ≤
i ≤ p), and let the endpoints of li be ni1 and ni2. Consider a path
consisting of nodes n11, n12, n21, n22, · · · , np1, np2 in the workflow
specification. Each ni1 and ni2 is connected by edge li, and each ni2

and ni+1,1 must be the same task, or belong to the same compos-
ite task. Since each composite task in V is sound, there is a path
from ni2 to ni+1,1 for all i consisting of intra-cluster edges. There-
fore, the entire path consisting of edges li and intra-cluster edges,
which means V satisfies condition 1 of Definition 3.1. Using the
same idea, it is easy to prove that V satisfies condition 2 as well.
Therefore, V is a sound view.

According to Proposition 3.1, we can check whether a view is
sound by checking whether each composite task in the view is
sound. To check the soundness of a composite task, we simply
need to check whether there is a directed path composed of intra-
group edges from every input to every output of the task, which can

be done efficiently. Therefore we have the following proposition.

Proposition 3.2: Checking whether a view is sound can be done in
polynomial time with respect to the number of tasks in the work-
flow specification.

P. The proof is omitted.

3.3 Refining Unsound Views
To make a view sound, according to According to Proposition 3.1,

we can make each composite task in the view sound. Therefore, we
define the notion of view refinement as follows.

Definition 3.4: A view V1 of workflow W is a refinement of another
view V0 of W if and only if ∀T1 ∈ N(V1), ∃T0 ∈ N(V0), such
that Φ−1

1 (T1) ⊆ Φ−1
0 (T0). The set of tasks {T1|Φ−1

1 (T1) ⊆ Φ−1
0 (T0)},

which can be viewed as a split of T0, is called a group and denoted
as S (T0). A refinement/split is sound if the resulting view is sound.

According to Definition 3.4, a refinement of an unsound view V0

is to split some composite tasks into smaller tasks to create a finer
grained view V1, which is sound. For example, The unsound view
in Figure 2(b) is refined into (c) by splitting task M in (b) into eight
smaller tasks shown in dotted rectangles in (c).

Definition 3.5: Given a view V0, the cost of splitting a task T0 in
V0 into a set of tasks S (T0) in V1 is defined as cost(T0, S (T0)) =

|S (T0)| − 1. The cost of refining the view V0 to another view V1 is
given as cost(V0,V1) =

∑
T0∈N(V0) cost(T0, S (T0)).

In Figure 2, the cost of refining (b) into (c) is 7, while the cost of
refining (b) into (d) is only 4. In fact, the view in (d) is a minimal
sound refinement of (b).

Given an unsound view, we would like to refine it with minimal
cost, thus we define the following view soundness problem.

Definition 3.6: View Soundness Problem (VSP): Given an unsound
view V0, find a sound refinement V1 such that cost(V0,V1) is mini-
mized over all sound refinements of V0.

According to Proposition 3.1, VSP is equivalent to the following
task soundness problem (TSP). In the rest of this paper, we focus
on the discussion of TSP.

Definition 3.7: Task Soundness Problem (TSP): Given an unsound
task T0, find a sound split S (T0) such that cost(T0, S (T0)) is the
minimal among all the sound splits of T0.

Therefore, to refine a view with minimal cost, we should split
each unsound task in the view into the smallest number of sound
tasks.

3.4 NP-hardness of Task Soundness Problem
The equivalent decision problem for TSP is defined as: Given

a directed graph with M nodes, can we divide it into at most S
disjoint subgraphs, such that for each subgraph, all its inputs can
reach all its outputs?

We prove the NP-completeness of this problem by reduction
from the independent set problem. We first introduce two defini-
tions and a proposition, and then prove the NP-completeness.

Definition 3.8: A complete bipartite task of size p, Kp, is defined
as follows:

1. There are two sets of nodes, a1 - ap and b1 - bp.
2. ai ∈ Kp.in(1 ≤ i ≤ p), bi ∈ Kp.out(1 ≤ i ≤ p).
3. There is an edge from each ai(1 6 i 6 p) to each b j(1 6 j 6

p).

For example, K3 is the composite task shown in Figure 3 (a).
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(a) Selecting b1 and a′3 (b) Merging b1 and a′3

Figure 3: Joining K3 and K′3

Definition 3.9: The join of two complete bipartite tasks of size p,
Kp and K′p, is defined as follows:

Let the nodes of Kp be a1 - ap, b1 - bp, and the nodes of K′p be
a′1 - a′p, b′1 - b′p. Before the join, all nodes in Kp and K′p are called
open nodes.

1. Randomly select an open node n1 in b1...bp (or b′1...b
′
p), and

another open node n2 in a′1...a
′
p (or a1...ap).

2. Remove the output of n1 and the input of n2, and merge the
nodes.
After the join, the merged node (n1, n2) is called a closed node.

For example, consider K3 and K′3 in Figure 3(a). If the open
nodes b1 and a′3 are selected, then the joined task is shown in Fig-
ure 3(b). Similarly, we can join multiple complete bipartite tasks
by joining every pair of them.

Proposition 3.3: Suppose there a task, consisting of M complete
bipartite tasks of size p, (Kp)1...(Kp)M , several of which are joined.
M must be an unsound task. No matter how we refine/split this
task, the following statements hold: (1) Each resulting task must
be either an entire (Kp)i, or a single node, and (2) If we choose
(Kp)i to be a resulting task, then for each (Kp) j which is joined
with (Kp)i (i.e., (Kp) j has a common node with (Kp)i), each task in
it must be in a separate resulting task.

The idea of proposition 3.3 is that, for a complete bipartite task,
either all atomic tasks of it are in a group, or each of its atomic
tasks is in a separate group. No other subset of a complete bipartite
task can form a sound group, either by itself or with other nodes.
In Figure 3(b), for example, nodes {a1, a2, a3, b1, b2, b3} either are
in the group, or in six separate groups. The formal proof is omitted
and can be found in [15].

From Proposition 3.3, a minimal cost refinement of joined bipar-
tite tasks can be obtained. Note that Figure 3(b) is an unsound task.
The smallest split is 6: we can either put {a1, a2, a3, (a′3, b1), b2, b3}
into one group and the other five nodes into five groups, or put
{a′1, a′2, (a′3, b1), b′1, b

′
2, b

′
3} into one group and the other five nodes

into five groups. Based on this proposition, we have the following
proof of NP-completeness of the decision version of TSP.

Theorem 3.4: The decision version of the TSP is NP-complete.

P. Consider an arbitrary instance of the independent set prob-
lem. Let G(N, E) be an undirected graph. Let m = |N|. The inde-
pendent set problem is: Can we find a subset N′ of N, such that
|N′| ≥ c and there is no edge between any two nodes in |N′|?

Now we construct an instance of TSP. For each node n in N,
we prepare a complete bipartite task Km. For every pair of nodes
ni, n j ∈ N that have an edge, we join the corresponding bipartite
tasks, (Km)i and (Km) j. Now, we get a big composite task T , which
is unsound. Suppose T has M nodes. The following question is
asked: Can we split T into at most (c + M − 2cm) groups, such that

every group is sound? It is easy to see that this transformation takes
polynomial time.

Given a solution N′ of the independent set problem, suppose N′

has c′ nodes (c′ ≥ c), n1...nc′ . Then in the corresponding TSP, we
let each of (Km)1, (Km)2...(Km)c′ form a group. Since no two of
them are joined, this is legal. Each other node has to be in one
group alone. The total number of groups is thus c′ + M − 2c′m ≤
c + M − 2cm.

Now the other direction. Suppose there is a solution for TSP.
Note that according to Proposition 3.3, each group either contains
a Km or contains a single node. Therefore, if the number of groups
is no more than c + M − 2cm, then it is easy to see that there must
be at least c such Kms, each of which forms a group. This means
no two of such Kms are joined. Then, we can get a solution N′ to
the independent set problem, which consists of the corresponding
nodes in N.

4. ALGORITHMS
In this section, we first discuss how to discover unsound tasks in

a workflow view efficiently, then propose algorithms for splitting
an unsound composite task into a set of groups, each of which is a
sound task.

We proved in Section 2 that the task soundness problem is NP-
hard. Therefore, instead of aiming for the optimal solution, we
propose two other criteria which, as will be shown later, can be
achieved in polynomial time: weak local optimality and strong lo-
cal optimality. An algorithm that satisfies weak or strong local op-
timality does not necessarily produce the optimal solution for an
unsound task, but one that is “good” in a local sense. We show that
weak local optimality is easy to achieve with a straightforward al-
gorithm (Section 4.2). However, achieving strong local optimality
is much more challenging. We present in Section 4.3 an algorithm
which is strong local optimal, which proved in Section 4.4. Both
algorithms are illustrated by the same running example as that in
Section 2.

4.1 Detecting Unsound Tasks in a Workflow
View

We begin by discussing how to determine whether a composite
task is sound. First, we introduce the notion of an input set.

Definition 4.1: In a composite task T , the input set of a task t ∈
N(T ) with respect to T , denoted as t.inS et(T ), is a set of nodes
N ⊆ T.in, such that ∀n ∈ N, n can reach t through directed edges.

For example, for the composite task T in Figure 4(a), the inS et(T )
of each atomic task is annotated in Figure 4(b). According to Defi-
nition 4.1, a task T is sound if ∀t ∈ T.out, t.inS et(T ) = T.in.

The algorithm for detecting unsound tasks is presented in Algo-
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Figure 4: Running Example

Algorithm 1 Unsound Task Detection Algorithm
DetectAndCorrect (V)
1: for each T ∈ N(V) do
2: CalcInset(T )
3: if !IsS ound(T ) then
4: / ∗ The detaield implementation o f S PLIT ()
5: will be presented in the f ollowing sections. ∗ /
6: S PLIT (T )
7: end if
8: end for

CalcInset (T )
1: for each t ∈ T.out do
2: go backwards along dataflow from t to traverse each task t′
3: if t′ ∈ T.in then
4: t.inS et(T ) = t.inS et(T ) ∪ {t′}
5: end if
6: end for

IsS ound (T )
1: for each t ∈ T.out do
2: if t.inset(T ) , T.in then
3: return f alse
4: end if
5: end for
6: return true

rithm 1. For each composite task T in a view V , procedure
DetectAndCorrect calls CalcInset(V) to compute inset(T ) for each
task in T.out, which can be obtained by traversing T . Then it calls
IsS ound(T ) to check the soundness of T , and if T is unsound, it
calls S PLIT (T ) to split it (for which it can use Algorithm 2 for
weak local optimality or Algorithm 3 for strong local optimality).

For the composite task in Figure 4(a), we determine that it is
unsound because m.inset(T ) = {h} while j.inset(T ) = {a, e, h}.

For each task t ∈ T.out, Algorithm 1 finds t.inset(T ) by travers-
ing the task starting from t, which takes O(n2) time, where n is the
number of atomic tasks in T . Therefore, if T has m output tasks,
then the complexity of Algorithm 1 is O(mn2).

4.2 Weakly Local Optimal Algorithm
In this subsection we introduce the weak local optimality crite-

rion for judging the quality of correcting task soundness problem.
Then a polynomial time algorithm satisfying weak local optimality
is presented with examples.

Definition 4.2: If two tasks T1 and T2 can be merged so that the
resulting composite task is sound, then T1 and T2 are combinable,
denoted as T1 � T2. If a set of tasks T can be merged so that the
resulting composite task is sound, then we say � (T ).

Definition 4.3: A split S = S 1, S 2, ..., S n of an unsound task T is
weak local optimal if and only if there does not exist S i, S j ∈ S,
S i � S j. An algorithm for the task soundness problem is called a
weakly local optimal algorithm if for any unsound task T , it guar-
antees to produce a split which is weak local optimal.

In short, weak local optimality indicates that any two groups in
the split are not combinable. Weak local optimality can be achieved
by a straightforward algorithm which works as follows:

1. Split the given unsound task, such that each group contains
one atomic task.

2. Test whether any two groups are combinable. If so, merge
them.

3. Repeat 2) until no two groups are combinable.

The pseudo code of this algorithm is shown in Algorithm 2. In
our running example, Figure 4(a), during the first iteration we find
that a � b, i � j and h � k, and we merge these three pairs.
During the next iteration, we find (h, k) � m, and put h, k,m in
one group. During the third iteration, no two groups are found to
be combinable, and therefore we stop and output the current split.
The result of splitting the task in Figure 4(a) using Algorithm 2 is
shown in Figure 4(c).

Algorithm 2 obviously gives a split of an unsound task which is
guaranteed to be weak local optimal. The formal proof is omitted.

Now we analyze the time complexity of Algorithm 2. Let n
denote the number of atomic tasks in T , thus we initially have n
groups. Each time we execute line 8 to merge two groups, the total
number of groups decreases by 1, thus line 8 is executed at most
n times. During each “while” loop, suppose there are currently p
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Algorithm 2 Weakly Local Optimal Algorithm
S PLIT (T )
1: break T into pieces, i.e., each single task forms a group
2: changed = true
3: while changed = true do
4: changed = false
5: for every pair of new groups (a, b) and every pair of one old group

and one new group (a, b) do
6: {Initially, all groups are new groups. From the 2nd iteration, a

group is a new group if it is merged from two groups in the last
iteration.}

7: if CanMerge(a, b) then
8: merge a and b
9: changed = true

10: end if
11: end for
12: end while
CanMerge (A, B)
1: A2B = B2A = Ain = Aout = Bin = Bout = false
2: if A has an outgoing edge to B then
3: A2B = true
4: end if
5: if A has an incoming edge from B then
6: B2A = true
7: end if
8: if A has more outgoing edges other than the one to B then
9: Aout = true

10: end if
11: if A has more incoming edges other than the one from B then
12: Ain = true
13: end if
14: if B has more outgoing edges other than the one to A then
15: Bout = true
16: end if
17: if B has more incoming edges other than the one from A then
18: Bin = true
19: end if
20: if A2B=true AND Aout=true AND Bin=true then
21: return false
22: end if
23: if B2A=true AND Bout=true AND Ain=true then
24: return false
25: end if
26: return true

groups (p ≤ n), and line 8 is executed q times to merge 2q groups
into q groups (2q ≤ p). Then in the next iteration of the “while”
loop, we have p − 2q old groups and q new groups, thus the “for”
loop will be executed q2 + q(p − 2q) < pq ≤ nq times. This means
that, each time line 8 is executed in the current “while” loop, it
causes procedure CanMerge (line 7) to execute at most n times in
the next iteration of the “while” look. In addition, CanMerge is
executed n2 times in the first iteration of the “while” loop. There-
fore, CanMerge is executed O(n2) times altogether. CanMerge
requires O(1) time to run with the help of a hash table, which can
be pre-built in O(n2) time. Therefore, the total time complexity of
Algorithm 2 is O(n2).

4.3 Strongly Local Optimal Algorithm
Running Algorithm 2, which is weak local optimal, on the task

in Figure 4(a) produces the split shown in Figure 4(c). As we can
see, tasks c, d, f and g in Figure 4(c) are combinable. However,
since no two of them are combinable, Algorithm 2 fails to put
them in a single group. In this subsection, we propose and dis-
cuss a stronger optimization goal, namely strong local optimality,
for achieving better splits of unsound tasks.

Definition 4.4: A split S = S 1, S 2, ..., S n of an unsound task T is

� ��� ��� ���

��

�� ��

Figure 5: Strongly Connected Component

strong local optimal if and only if there does not exist S′ ⊂ S, �
(S′). An algorithm for the task soundness problem is called a strong
local optimal algorithm if for any unsound task T , it guarantees to
produce a split which is strong local optimal.

According to Definition 4.3 and 4.4, Figure 4(c) is a weak local
optimal split.

Achieving strong local optimality is much more challenging than
achieving weak local optimality. A straightforward way of achiev-
ing strong local optimality is to check whether any subset of atomic
tasks are combinable. Since the number of subsets are exponential
in the number of atomic tasks, this takes exponential time. Before
presenting a clever algorithm that achieves strong local optimality
in polynomial time, we introduce a lemma and a definition as nec-
essary background.

Lemma 4.1: Given an unsound task T , if there is a strongly con-
nected component S ⊆ T , then in any strong local optimal split of
T (hence any optimal split of T as well), all tasks in S must belong
to the same group.

P. In Figure 5, an unsound task is split into some number
groups. The triangle nodes comprise a strongly connected com-
ponent, which is not placed in one group, but instead in n groups
G1,G2, ...,Gn. Assume that the lemma is not true, and this split is
strong local optimal.

Since the triangle nodes are placed in multiple groups, in any
such group, e.g., G1, at least one triangle node, e.g., a, belongs to
G1.out, as it needs to connect to triangle nodes in another group.
For the same reason, in any other such group, e.g., G2, at least one
triangle node b belongs to G2.in. This indicates that � (G1,G2, ...,Gn).
The reason is that for any input i of G1 and any output o of an-
other group G2, i can reach a through edges in G1 (because G1 is
sound), a can reach b through edges among the triangle nodes, and
b can reach o through edges in G2. This means that each input of⋃

(G1,G2, ...,Gn) can reach each of its output through edges in it,
and thus � {G1,G2, ...,Gn}, which contradicts with the assumption
that the split is strong local optimal.

Lemma 4.1 indicates that if an unsound task has a strong con-
nected component within it, the nodes in the strongly connected
component can be directly merged into one group. In the rest of
this section, we focus on discussion on unsound task which does
not have strongly connected components.

Definition 4.5: In a composite task T , the complete predecessor
set of a set of nodes U ⊆ T , denoted as CPS (U), is a set of nodes
P ⊆ T , such that for every task p ∈ P, each of p’s output edges
points to a task in U. The complete predecessor closure of U, de-
noted as CPC(U), is equal to U ∪ CPS (U) ∪ CPS (CPS (U)) ∪
CPS (CPS (CPS (U))) ∪ ....

For example, in Figure 4(a), let U = {d, g, i, j}. Then CPS (U) =

{c, f }. h < CPS (U) because h has an output edge (h→ k) that does
not point to any task in U. CPC(U) = {a, b, c, d, e, f , g, i, j}.

The concept of CPC is crucial for achieving strong local opti-
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mality in polynomial time. We will show in Section 4.4 that given
a certain set of nodes S , a sound group whose output nodes are ex-
actly those in S must be a subset of CPC(S ). Besides, if such a
sound group exists, then CPC(S ) is sound. Therefore, as long as
we can efficiently find the correct set of nodes S which can serve as
the output node set for a sound group, we can find the sound group
from S easily, by simply computing CPC(S ).

Fortunately, finding such S sets is achievable as well. We will
prove later that if there exists a sound group S ′ within a composite
task T such that S ′.out = S , then all nodes in S have the same
inS et(T ). Therefore, we can cluster the nodes in T according to
inS et(T ), and iteratively reduce the scope of T until S is found,
such that CPC(S ) is sound.

Now we present an algorithm which guarantees to produce a
strong local optimal split for any unsound task in polynomial time.
The pseudo code is shown in Algorithm 3.

Similar as Algorithm 2, Algorithm 3 first puts each atomic task
in a unique group (line 3-5 of procedure S PLIT ). In each “while”
loop, it computes t.inS et(T ) for each node t ∈ T (line 9), then
cluster the groups in T into C = {C1,C2, ...,Cc} (line 10). Groups
with the same inS et are placed in the same cluster.

In our running example, Figure 4(a), the inS et(T ) of each node
is annotated using input set near the node in Figure 4(b). There
are six clusters: C1 = {a, b}, C2 = {e}, C3 = {h, k,m}, C4 = {c},
C5 = { f }, C6 = {d, g, i, j}.

Then, Algorithm 3 finds the complete predecessor closure (CPC)
for each Ci ∈ C. In our running example, the CPC of {d, g, i, j}
is {a, b, c, d, e, f , g, i, j}; the CPC of {c} is {b, c}, and the CPC of
each other cluster is itself, each of which is a potential sound task.
Then the algorithm checks each Ci ∈ C to see whether CPC(Ci)
is sound (line 3 of procedure FindS oundCluster). If so, we merge
the groups in CPC(Ci), and then repeat the “while” loop in S PLIT .
Otherwise, we further cluster Ci into a set of clusters, and recur-
sively do so until the CPC of a cluster is sound, or an unsound
CPC containing at least two nodes exists.

Continue our running example. There are four CPCs that con-
tains more than one group. {a, b}, {b, c} and {h, k,m} are sound,
but {a, b, c, d, e, f , g, i, j} is not sound, as the input from h to i can-
not reach the output from d and g through a directed path within
it. In the first two “while” loops, we merge {b, c} and {h, k,m}. In
the third “while” loop, there is only one CPC that contains more
than one group, which is CPC({d, g, i, j}) = {a, {b, c}, d, e, f , g, i, j}.
Therefore, we calculate the inS et of {d, g, i, j} with respect to these
eight nodes. As shown in Figure 4(d), we group {d, g, i, j} into
two clusters, {d, g} and {i, j} in terms of their newly generated in-
put sets. Now we find that CPC({d, g}) = {{b, c}, d, f , g}, which
is sound. Therefore, we merge {b, c}, d, f and g into one group.
The procedure is continued until the result is produced as shown in
Figure 4(e).

Now we analyze the time complexity of Algorithm 3. Each
“while” loop in procedure S PLIT merges at least two groups into
one, therefore the “while” loop is executed at most n times, where
n is the number of atomic tasks in T . During each “while” loop,
to compute inset(T ) of the nodes t ∈ T (line 9), we use a pre-
calculated reachability matrix of the graph (which can be built in
O(n2) time). Therefore line 9-10 takes O(n) time. The “for” loop in
line 11-20 recursively processes each cluster C j ∈ C. If CPC(C j)
is sound and contains more than one groups, then we merge them
and enter the next “while” loop. The soundness of CPC(C j) can be
checked in O(|C j| time, where |C j| is the number of groups in C j.
Since

∑

C j∈C
|C j| ≤ n, checking the soundness of all such CPC(C j)

takes O(n) time. Those C js whose CPC is not sound are then recur-

Algorithm 3 Strongly Local Optimal Algorithm
SPLIT (T )
1: {Initially, each atomic task in T is represented by a node. Each atomic

task is in a separate group}
2: changed = true
3: group = ∅
4: for each atomic task t ∈ T do
5: group = group ∪ {t}
6: end for
7: while changed = true do
8: changed = false
9: Compute t.inS et(T ) for each node t ∈ T

10: Cluster the groups in T according to their inS et into C =
{C1,C2, ...,Cc}. Nodes with the same inS et are placed in the same
cluster.

11: for each C j ∈ C do
12: if (soundCluster = FindS oundCluster(C j)) , NULL then
13: changed = true
14: for each group g ∈ soundCluster do
15: group = group − {g}
16: end for
17: group = group ∪ soundCluster
18: break
19: end if
20: end for
21: end while
FindSoundCluster (cluster)
1: if CPC(cluster) has only 1 node then
2: return NULL
3: else if isS ound(CPC(cluster)) then
4: return CPC(cluster)
5: end if
6: Compute t.inS et(CPC(cluster)) for each node t ∈ cluster
7: Cluster the nodes in cluster according to their inS et into C =
{C1,C2, ...,Cc}. Nodes with the same inS et are placed in the same clus-
ter.

8: for each C j ∈ C do
9: if (soundCluster = FindS oundCluster(C j)) , NULL then

10: return soundCluster
11: end if
12: end for
13: return NULL

sively separated into several clusters (line 6-7 of FindS oundCluster);
checking the soundness of all their CPCs takes O(n) time for the
same reason. Since the recursive procedure FindS oundCluster can
at most go to depth n which means there are at most n rounds of
clustering, the “for” loop in S PLIT takes O(n2) time. Therefore,
the total complexity of Algorithm 3 is O(n3).

4.4 Proof of Strong Local Optimality
To prove that Algorithm 3 is strong local optimal, we start with

some lemmas.

Lemma 4.2: In an unsound composite task T , for any set of tasks
S ⊆ T such that S is sound, ∀t1, t2 ∈ S .out, t1.inS et(T ) = t2.inS et(T ).

P. Since S is sound, ∀t ∈ S .out, t.inS et(T ) =
⋃

t′∈S .in t′.inS et(T ).
Therefore, any two nodes in S .out has the same inS et with respect
to T .

Lemma 4.2 indicates that, after we cluster tasks in T into C =

C1,C2, ...,Cc in line 10 of procedure S PLIT , for any sound com-
posite task S ⊆ T , S .out must be a subset of a cluster Ci (1 ≤ i ≤ c).

Lemma 4.3: In an unsound composite task T , for any set of tasks
S ′ ⊆ T , if there exists S ⊆ T such that S is sound and S .out = S ′,
then S ⊆ CPC(S ′).

P. Suppose there is an S ⊆ T , S is sound, S .out = S ′ but
there is a node s ∈ S such that s < CPC(S ′). Then according
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to the definition of CPC, s must have an output edge that goes to
somewhere else other than the triangle nodes. By our assumption,
every task has at least one input and one output edge, which means
that there must be another output of S which does not belong to S ′.
This contradicts with the condition.

Lemma 4.4: In an unsound composite task T , ∀S ′ ⊆ T , if CPC(S ′)
is not sound, then there does not exist S ⊆ T , such that S is sound
and S .out = S ′.

P. Suppose there exists an S such that S is sound, S .out =

S ′ and S , CPC(S ′). According to Lemma 4.3, S ⊂ CPC(S ′).
Then for any node s ∈ CPS (S ), {s} � S . The reason is that since
s ∈ CPS (S ), each of s’s output edges serves as an input edge of
S , as shown in Figure 6. In addition, because S ′ ⊂ S and S ⊂
CPC(S ′), therefore, CPC(S ) = CPC(S ′), which means all nodes
in CPC(S ′) can be added into S . Thus, CPC(S ′) is sound, which
contradicts with the condition.

�
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Figure 6: Lemma 4.4

Lemma 4.4 indicates that given a set of nodes S ′, if we want
to find out whether there exists a sound task S whose output node
set is exactly S ′ (i.e., S .out = S ′), we can simply see if the com-
plete predecessor closure of S ′ is sound. Besides, according to
Lemma 4.3, if CPC(S ′) is sound, then it is the largest sound com-
posite task whose output node set is exactly S ′.

Now we present the proof of strong local optimality of our algo-
rithm.

Theorem 4.5: Algorithm 3 is strong local optimal.

P. To show that the algorithm is strong local optimal, we
only need to prove that, during any “while” loop between line 7
and 21 of S PLIT , if the current split is not strong local optimal,
then the algorithm guarantees to find a set of groups that can be
merged. If this is true, then it means that the number of groups
decreases at each iteration, and the iteration stops when the split
reaches strong local optimality.

Suppose that in a “while” loop, the current split is T . Each group
is represented by a node in T , and is considered as an atomic task.
Suppose there are several sets of atomic tasks that can be merged.
Then our algorithm will find one of them, say S , in the following
way:

1. Line 10 of S PLIT splits T into C = C1,C2, ...,Cc. According
to Lemma 4.2, ∃C j ∈ C, S .out ⊆ C j.

2. If S .out = C j, then according to Lemma 4.4, CPC(C j) is
sound. Therefore, when we visit CPC(C j) during the “for”
loop between line 11 and 20, a sound group is found.

3. Otherwise, since S .out ⊆ C j, CPC(S .out) ⊆ CPC(C j). Line
7 of procedure FindS oundCluster further cluster tasks in C j

into C′ = C′1,C
′
2, ...,C

′
c′ based on the inS et of each node in C j

with respect to CPC(C j). According to Lemma 4.2, ∃C′j′ ∈
C′, S .out ⊆ C j′ .

4. If S .out = C j′ , then according to Lemma 4.4, CPC(C j′ ) is
sound. Therefore, a sound group is found. Otherwise, proce-
dure FindS oundCluster recursively cluster tasks in C j′ into
a set of groups. The procedure continues in such a way. We
can observe that:

• At each clustering (line 10 in S PLIT and line 7 in
FindS oundCluster), since the set of tasks being clus-
tered is not sound, we at least produce two clusters.
This means that the algorithm will terminate, as the
clusters become smaller and smaller.

• At each clustering, according to Lemma 4.3, we guar-
antee to produce a cluster whose CPC is a superset of
S , and this cluster becomes smaller each time (as the
nodes in it are further clustered into at least two clus-
ters each time). So we guarantee to find S eventually.

Therefore, this algorithm will always terminate, and if in the cur-
rent “while” loop, we find such an S , we merge the nodes in it, treat
it as a single task and then enter the next “while” loop. Otherwise,
the current split is strong local optimal and we output it.

5. EVALUATION
In our experimental evaluations, we begin by surveying work-

flow views appearing in the real world (Section 5.1). To verify the
effectiveness (Section 5.2) and efficiency (Section 5.3) of our al-
gorithms, we then test them from two perspectives: the number of
tasks produced when correcting an unsound view, and the time it
takes to process an unsound view.

The experiments were performed on a laptop with Intel Core(TM)
2 CUP 1.66GHZ, 2GB memory, running Windows XP.

5.1 Existence of Unsound Views
To demonstrate the applicability of our approach, we use work-

flows in the Kepler repository [11]. Kepler is a popular scientific
workflow management system, and has a repository of well curated
workflows with composite tasks specified by users. After checking
the workflow repository in Kepler, we found that 7 out of 170 (4%)
workflows contained at least one unsound task. This indicates that
sound views are generally desirable in practice, but unsound views
exist even in a well-curated workflow repository.

Workflow view construction tools, such as Zoom [9], are de-
signed to help users construct views of workflows. Zoom takes
as input a set of user specified relevant tasks, and generates a view
that is driven by the user’s interest. Here, we choose ten workflows
from Kepler repository; for each workflow, we randomly specify
2 sets of relevant tasks, whose sizes are no more than 10% of the
workflow size. We then use Zoom to construct a view for it, and
count the number of unsound tasks among all the composite tasks
created by Zoom.

As shown in Figure 7, only 2 out of 20 of views generated by
Zoom are sound. In addition, the percentage of unsound tasks
within an unsound view varies from 4% to 28.6%, which is a mea-
surement of the view quality. We also observe there is no obvious
relationship between the view quality and the size of the workflow.

This set of experiments suggests that although sound views are
generally desirable, unsound views are often created.

5.2 Quality of Unsound View Correction
Now we test the effectiveness and efficiency of our algorithms on

synthetic workflows. Different parameters of synthetic workflows
are used to test a variety of cases and verify the effectiveness of our
approach.
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Figure 7: The Percentage of Unsound Views Constructed by
Zoom

Table 1: Synthesized Workflows with Different Sizes
Set # Input Size Output Size Workflow Size Task Size
Set 1 3±1 3±1 10±1 8-11
Set 2 20±2 20±2 100±10 90±10
Set 3 50±2 50±2 200±10 190±10
Set 4 80±5 80±5 300±10 290±10
Set 5 110±5 110±5 400±10 390±10
Set 6 140±10 140±10 500±10 490±10
Set 7 170±10 170±10 600±10 590±10

Table 2: Synthesized Workflows with Different Number of In-
puts/Outputs

Set # Input Size Output Size Workflow Size Task Size
Set 8 10±2 10±2 300±10 290±10
Set 9 20±2 20±2 300±10 290±10
Set 10 30±2 30±2 300±10 290±10
Set 11 40±2 40±2 300±10 290±10
Set 12 50±2 50±2 300±10 290±10
Set 13 60±2 60±2 300±10 290±10

To generate synthetic workflows, we take commonly used work-
flow patterns1 (e.g., parallel, sequential, etc.) and randomly com-
bine them, varying two parameters: the number of atomic tasks
in the workflow, and the number of inputs/outputs. To combine
two workflow patterns, we randomly connect the inputs of one pat-
tern to the outputs of the other. To test the workflow size parame-
ter, we repeatedly combine workflow patterns until the desired size
is reached. Seven sets of workflows are generated based on their
sizes, as shown in Table 1. Each class has 50 workflows. To test
the parameter of the number of inputs/outputs, six sets of work-
flows are generated, each containing 50 workflows with 300 ± 10
nodes. The numbers of inputs/outputs in the six sets vary from
10 ± 2 to 60 ± 2, as shown in Table 2.

For each synthetic workflow, we create a view by randomly choos-
ing some atomic tasks to create a composite task. The size of the
composite task is shown in column “Task Size” in Table 1 and 2.
We let each view have only one composite task, as multiple com-
posite tasks in a view are treated independently by our algorithms,
and the complexity to refine a view is dominated by the complexity
of splitting the largest unsound task.

Since the processing time of the optimal algorithm grows ex-
ponentially with the size of the composite task, and becomes un-
acceptable when the workflow size is only 12 (it can take several
hours), we only test the optimal algorithm on workflows in Set 1
of Table 1. The quality of the algorithms is measured as the size of
the refined view.

1http://www.workflowpatterns.com/
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Figure 8: Quality of Weakly, Strongly Local Optimal and Op-
timized Algorithms
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Figure 9: Quality of Weakly, Strongly Local Optimal Algo-
rithms w.r.t Workflow Size

Figure 8 shows the quality of the three algorithms on views of
the 15 randomly selected workflows in set 1 of Table 1. As we can
see, the number of tasks in the view refined by the strongly local
optimal algorithm is the same as that of the optimal algorithm for
many views, and is similar to the optimal algorithm for the others.
On the other hand, the weakly local optimal algorithm may have
many more tasks in the refined view. The last column also shows
the average quality of the three algorithms on all the workflows in
set 1. It is clear that the optimal algorithm has the best quality; the
strongly local optimal gives slightly worse results, and the weakly
local optimal generates the worst results.

Figure 9 shows the average number of tasks after the split using
the weakly and strongly local optimal algorithms on workflows in
sets 1-7 in Table 1. As we can see, the quality of both the weakly
and strongly local optimal algorithms increases slowly. Moreover,
the strongly local optimal algorithm consistently produces fewer
tasks than the weakly local optimal one.

Figure 10 shows that the number of tasks in the refined view
produced by the two algorithms grows with increased input/output
size. The reason is that for a composite task T , a larger input size
means a larger possibility that an output does not depend on an
input, and thus T is likely to be split into more groups.

From the quality tests, it is clear that the strongly local optimal
algorithm produces better quality refinements (roughly 15% bet-
ter) than the weakly local optimal one for both synthetic and real
workflows. In addition, the quality of the strongly local optimal
algorithm is quite close to the quality of the optimal algorithm.

5.3 Processing Time
The average processing time in set 1 of Table 1 for the weakly

and strongly local optimal algorithms and for the optimal algorithm
are 389 milliseconds, 165 milliseconds and 352×103 milliseconds,
respectively. Clearly, the processing time of both the weakly and
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Figure 11: Efficiency of Weakly, Strongly Local Optimal Algo-
rithms w.r.t Workflow Size

strongly local optimal algorithms are dramatically better than that
of the optimal algorithm even for small workflows. Note that the
strongly local optimal algorithm is faster than the weakly local op-
timal one for this set of workflows; the reason is that when a work-
flow is small, it is likely that each complete predecessor closure
(CPC) is already sound, and does not need to be recursively split
by the function FindSoundCluster in Algorithm 3. However, the
weakly local optimal algorithm still needs to compare every pair of
tasks.

Figure 11 shows the processing time of workflows in sets 1-7 in
Table 1. The processing time of both the weakly and strongly local
optimal algorithms increases with the size of the workflow. Al-
though the strongly local optimal algorithm takes more time than
the weakly local algorithm in each class, when the size of the work-
flow is less than 600 the extra processing time is no more than 0.01
second. This indicates that the strongly local optimal algorithm
provides a more practical solution with good quality improvements
and little processing overhead compared with the weakly local op-
timal one.

To summarize, the strongly local optimal algorithm is the best
overall choice regardless of workflow size. It produces views with
similar quality as the ones generated by the optimal algorithm with
much better efficiency, which is comparable with the efficiency of
the weakly local optimal algorithm.

6. RELATED WORK
Provenance on workflows have been much studied in recent works

[2, 1, 3, 4, 5]. As workflows become large and complex, the cost of
answering transitive closure queries in overwhelming provenance
information becomes unacceptable. Therefore, a number of tech-
niques [8, 7, 9] have been proposed to reduce the complexity of
provenance graph and improve provenance calculation efficiency.

One way to simplify the provenance graph of a workflow is to cre-
ate views in workflow management system, and the provenance
information can then be shown to users w.r.t the specified views.

Many workflow systems allow a user to manually create com-
posite tasks which constitute views. For instance, Kepler [11] and
Taverna/myGrid [12] allow users to specify a composite task/view
through a graphical interface or using files. [16, 17, 18] allow users
to specify views using their proposed view definition languages.

There are also systems [13, 14, 9, 19, 20, 21, 22] that construct
views automatically based on user requirements. The Zoom system
[19, 9, 20] constructs views for focusing user attention on user-
specified “relevant tasks” on a workflow, such that (1) a composite
task either contains one relevant task (relevant composite task) or
none (non-relevant composite task), (2) there is a path between rele-
vant composite tasks in the view if and only if there is path between
their contained relevant tasks in the workflow, (3) the number of
non-relevant composite tasks are minimized. [13, 21, 14, 22] con-
struct “order-preserving” views for easing execution order analysis
on workflows. Specifically, if there is an edge between two com-
posite tasks Ti and T j in a view, then for any atomic task tm in Ti

and tn in T j, there is a path from tm to tn. In contrast, in this paper
we propose the definition of soundness of a view with respect to
provenance analysis. None of existing work can guarantee that the
generated views are sound. More comparison of these views can
be found in [15].

The term “soundness” of workflow has been used in existing
works to evaluate the execution of workflow: a workflow execu-
tion is sound if and only if every process will be terminated and
there are no dangling references or dead tasks [23, 24, 25, 26, 27,
28]. The notion of soundness in this paper is different from the
previous works: it refers to correct provenance analysis at the view
level.

Another related field is Program Slicing [29], which is a program
analysis technique for debugging and understanding programs. It
attempts to identify a set of program points whose execution con-
tributes to the value of a variable. Both program slicing and data
provenance analyze data dependency [30, 31, 32]. Recent papers [31,
32] identifies the problem of “incorrect dependency provenance”
on programs, which shares the same spirit of the “unsound view”
problem on workflows. No existing works, however, provide a so-
lution to resolve incorrect dependency provenance in programs.

7. CONCLUSION AND FUTURE WORK
Unsound views, which do not preserve all the paths in the work-

flow specification, can be misleading and lead to incorrect prove-
nance analysis. In this paper, we formalize and study the problem
of identifying and correcting unsound views. A view is sound if
and only if it preserves all the data dependencies between any two
tasks in the workflow specification. When we identify an unsound
view, we generate a sound refinement of the view by splitting each
unsound composite task into a minimal set of sound tasks. Conse-
quently, we define the view soundness problem and an equivalent
task soundness problem, and prove that they are NP-hard. In order
to provide practical solutions, we introduce two criteria: weak local
optimality and strong local optimality. Then we design polynomial
time algorithms for correcting workflow views with unsound com-
posite tasks that satisfy these criteria. Empirical evaluations show
that they efficiently generate sound view refinements with good
quality. Furthermore, the strongly local optimal algorithm produces
better solutions with small processing overhead compared with the
weakly local optimal algorithm.

In the future, we will investigate approximation or randomized
algorithms for this problem, and study how to correct unsound
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views with minimal cost if tasks are allowed to be either split or
merged.
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