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ABSTRACT to the usercertain answerghat exactly satisfy all the user query

Incompleteness due to missing attribute values (aka “null values”) _pn_edlcates. F_or example, in a used car trading application, if a user
is interested in cars made onda all the returned answers will

is very common in autonomous web databases, on which user ac;

cesses are usually supported through mediators. Traditional quer>have th_e v_alue lHOfnd‘;’\IA fEr at_t”nbumdijake Thusaa:)rAccodehmh
processing techniques that focus on the strict soundness of answ as amissingvalue forMakewill not be returned by such systems.

tuples often ignore tuples with critical missing attributes, even if onfortunately, such an approach is both inflexible and inadequate
they wind up being relevant to a user query. Ideally we would like for querying autonomous web databases Wh'.Ch. are inherently in-
the mediator to retrieve such possible answers and gauge their rel_complfgte. As lan exarIan?, Table 1 shows Stat'St'CS (cj)n ﬂée percer;]t-
evance by accessing their likelihood of being pertinent answers to@g€ ot incomp ete tuples from two autonomous web databases. The
the query. The autonomous nature of web databases poses se latistics were comp_uted from a randomly prob_ed'sample. The ta-
eral challenges in realizing this objective. Such challenges includeBIedalsg) gljlvezétatl_stlcs O.E the percentage of missing values for the
the restricted access privileges imposed on the data, the limited ody StyleandEngineattributes.

support for query patterns, and the bounded pool of database and

! ) ” Website # of Total Incomplete Body Engine
network resources in the web environment. We introduce a novel ‘ Attributes ‘ Tuples ‘ Tuples% | Style % % ‘
query rewriting and optimization framewo®PIAD that tackles ~ [www.AutoTradercom| 13 | 26127 | 33.6/% | 3.6% | 8.1% |
these challenges. Our technique involves reformulating the user_www.CarsDirectcom| 14 [ 32564 [ 98.74% [ 55.7% [ 55.8% |
query based on mined correlations among the database attributes. o o ]

The reformulated queries are aimed at retrieving the relevant pos- ~ 1able 1: Statistics on missing values in web databases

sible answers in addition to the certain answ&#®&IAD is able to ) )
gauge the relevance of such queries allowing tradeoffs in reducing SUch incompleteness in autonomous databases should not be sur-
the costs of database query processing and answer transmission. T/iSing as it can arise for a variety of reasons, including:
support this framework, we develop methods for minatgibute Incomplete Entry: Web databases are often populated by lay indi-
correlations(in terms of Approximate Functional Dependencies), viduals without any central curation. For example, web sites such as
value distributions(in the form of Nave Bayes Classifiers), and  Cars.com andYahoo! Autog obtain information from individual
selectivity estimatesWe present empirical studies to demonstrate car owners who may not fully specify complete information about
that our approach is able to effectively retrieve relevant possible their cars, thus leaving such databases scattered with missing val-
answers with high precision, high recall, and manageable cost.  ues (aka “null” values). Consider a car owner who leavedvtake
attribute blank, assuming that it is obvious as khedel of the car
she is selling ifAccord This type of incompleteness is expected to
1. INTRODUCTION increase even more with services such as GoogleBase which pro-
Data integration in autonomous web database scenarios hayide users significant freedom in deciding which attributes to define
drawn much attention in recent years, as more and more data beand/or list [23].

comes accessible via web servers which are supported by back-enthaccurate Extraction: Many web databases are being populated
databases. A mediator provides a unified query interface as a globalsing automated information extraction techniques. As a result of
schema of the underlying databases. Queries on the global schemghe inherent imperfection of these extractions, many web databases
are then rewritten as queries over autonomous databases througfhay contain missing values. Examples of this include imperfec-
their web interfaces. Current mediator systems [21, 16] only return tions in web page segmentation (as described in [11]) or imperfec-
tions in scanning and converting handwritten forms (as described
in [2]).
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the global schema for cars haviBgdy Styleequal toCoupe me- fiers (NBC) for value distributions, and query selectivity estimates
diators which only return the certain answers are not able to makefrom a database sample obtained off-line. These data source statis-
use of information from th&ahoo! Autoslatabase thereby failing  tics are then used to provide a ranking scheme to gauge the rele-
to return a possibly large portion of the relevant tuples. vance of a possible answer to the original user query. Furthermore,
Although there has been work on handling incompleteness ininstead of ranking possible answers directfIAD orders the
databases (see Section 2), much of it has been focused on singleswritten queries in the order of the number of relevant answers they
databases on which the query processor has complete control. Thare expected to bring as determined by the attribute value distribu-
approaches developed—such as the “imputation methods” that attions and selectivity estimations. The rewritten queries are issued in
tempt to modify the database directly by replacing null values with this order, and the returned tuples are ranked in accordance with the
likely values—are not applicable for autonomous databases wherejuery that retrieved them. By ordering the rewritten queries rather
the mediator often has restricted access to the data sources. Conséian ranking the entire set of possible answ&®PB|AD is able to
quently, when faced incomplete databases, current mediators onlyoptimize both precision and recall while maintaining efficiency. We
provide the certain answers thereby sacrificing recall. This is partic- extend this general approach to handle selection, aggregation and
ularly problematic when the data sources have a significant fractionjoin queries, as well as supporting multiple correlated sources.

of incomplete tuples, and/or the user requires high recall (‘?O”Sider’Contributions: QPIAD’s query rewriting and ranking strategies
for example, a law-enforcement scenario, where a potentially rel- 5\ it to efficiently retrieve relevant possible answers from au-
evant criminal is not identified due to fortuitous missing informa- 5nomous databases given mediator's query-only capabilities and
tion). ) ) ) ) limited query access patterns to these databases. To the best of our
A naive approach forimproving the recall in these systems would knowledge, theQPIAD framework is the first that retrieves rele-
be to return, in addition to all the certain answers, all the tuples with yant possible answers with missing values on constrained attributes
missing values on the constrglned attnbut_e(sbassnbleanswers without modifying underlying databases. Consequently, it is suit-
to the query. For example, given a selection query for cars madegpje for querying incomplete autonomous databases. The idea of
by “Honda", a mediator could return not only those tuples whose sing learned attribute correlations, value distributions, and query
Makevalues are "Honda” but also the ones whikekevalues are  ggjectivity to rewrite and rank queries, which consider the natural
missing(null). This approach, referred to ASLRETURNED, has tensjon between precision and recall, is also a novel contribution
an obvious drawback, in that many of the tuples with missing val- ¢ our work. In addition, our framework can leverage attribute cor-

ues on constrained attributes aelevantto the query. Intuitively,  rejations among data sources in order to retrieve relevant possible
not every tuple that has a missing value Makecorresponds 1o 4ngyers from data sources not supporting the query attribute (e.g.
a car made bydondd Thus, while improving recall, thé\LL Re- local schemas which do not support the entire set of global schema
TURNED approach can lead to drastically lower precision. attributes). Our experimental evaluation over selection, aggrega-

In an attempt to improve precision, a more plausible solution o an join queries shows th@PIAD retrieves most relevant

could start by first retrieving all the tuples withull values on the ,4siple answers while maintaining low query processing costs.
constrained attributes, predicting their missing values, and then de-A ions: In thi h | -
ciding the set of relevant query answers to show to the user. This ssumptions:In this paper we assume that tuples containing more

approach, that we will cal\LL RANKED, has better precision than than one null over the set of query constrained attributes are Igss
ALLRETURNED. However, most of the web-accessible database in- relevant to the user. Therefore, such tup_le_s are not ranke_d but sim-
terfaces we've found, such ¥ahoo AutosCars.comRealtor.com ply output after the ranked tgples co.ntalnlng zero or a single null
etc, do not allow the mediator to directly retrieve tuples with null  OVer the set of query constrained attributes.

values on specific attributes In other words, we cannot issue Organization: The rest of the paper is organized as follows. In

queries like “list all the cars that have a missing value Bady the next section we discuss related work on handling incomplete
Styleattribute”. Even if the sources do support bindinghafl val- data. Next, we cover some preliminaries and an overview of our
ues, retrieving and additionally ranking all the tuples with missing framework in Section 3. Section 4 proposes online query rewriting
values involves high processing and transmission costs. and ranking techniques to retrieve relevant possible answers from

incomplete autonomous databases in the context of selection, ag-
egregation, and join queries, as well as retrieving possible answers
from data sources which do not support the query attribute in their
local schemas. Section 5 provides the details of learning attribute
correlations, value distributions, and query selectivity used in our
query rewriting phase. A comprehensive empirical evaluation of
our approach is presented in Section 6. We conclude the paper in
Section 7.

Our Approach: In this paper, we prese@PIAD,* a system for
mediating over incomplete autonomous databases. To make the r
trieval of possible answers feasib@P1AD bypasses the null value
binding restriction by generatingwritten queries according to a
set of mined attribute correlation rules. These rewritten queries are
designed such that there are no query predicates on attributes fo
which we would like to retrieve missing values. Thu3PIAD

is able to retrieve possible answers without binding null values or
modifying underlying autonomous databases. To achieve high pre-
cision and recallQPIAD learns Approximate Functional Depen- 2. RELATED WORK

dencies (AFDs) for attribute correlations, iMa Bayesian Classi- Querying incomplete databasesTraditionally, incompleteness in

databases has been handled by one of two broad approaches. The

3 - . . .
Moreover, an attribute may not appear in a schema intensionally .. . :

as the database manager may suppress the values of certain aﬂ-:St_Wh'Ch we callpos_3|ble world approacheis, .22' 2]—track_s

tributes. For example, the travel reservation webBiieeline.com the completions of all incomplete tuples. All feasible completions

suppresses the airline/hotel name when booking tickets and hotel. are considered equally likely and the aim of query processing is to
4QPIAD is an acronym for Qery Rocessing overricomplete return certain vs. possible answers without making any distinctions

Autonomous Btabases. A 3-page poster descriptionQ#FIAD among the possible answers. To help track all possible warlds,
first appeared in [19]. values are typically represented using one of three different meth-




ods, each of increasing generality: (i) Codd Tables where all the the most common value, default value of the attribute in question,
null values are treated equally; (ii) V-tables which allow many dif- or using k-Nearest Neighbor [3], association rules [35], etc. An-
ferentnull values marked by variables; and (iii) Conditional tables other approach used to estimate missing valugmiameter esti-

which are V-tables with additional attributes for conditions. mation Maximum likelihood procedures that use variants of the
The second type of approaches for handling incomplete Expectation-Maximization algorithm [8, 29] can be used to esti-
databases—which we cairobabilistic approacheq[6, 3, 35])— mate the parameters of a model defined for the complete data. In

attempt to quantify the distribution over the completions of an in- this paper, we are interested not in the standard imputation prob-
complete tuple, and use this information to distinguish between thelem but a variant that can be used in the context of query rewriting.
likelihood of various possible answers. Our work falls in this sec- In this context, it is important to have schema level dependencies
ond category. The critical novelty of our work is that our approach between attributes as well as distribution information over missing
learns the distribution automatically, and also avoids modifying the values. We use AFDs for the former, and an AFD-enhanceadeNa
original database in any way. It is therefore suitable for query- Bayes Classifiers for the later. We experimented with other meth-
ing incomplete autonomous databases, where a mediator is nobds including association rules and bayes network learning - but
able to store the estimation of missing values in sources. [6] han-found them to be either significantly less accurate or significantly
dles incompleteness for aggregate queries in the context of OLAPcostlier to compute.

databases, by relaxing the original queries using the hierarchical

OLAP structure. Whereas our work learns attribute correlations, 3. PRELIMINARIES AND ARCHITEC-

value distributions and query selectivity estimates to generate and TURE OF QPlAD

rank rewritten queries.

N . N . We will start with formal definitions of certain answers and pos-
Querying inconsistent databasesWork on handling inconsistent . . ; )
sible answers with respect to selection queries.

databases also has some connections. While most approaches for
handling inconsisteﬂnt databases are more similar to the “possible  eeniTION 1 (COMPLETE/INCOMPLETE TUPLES). Let

worlds approaches” used for handling w_u_:o_mpleteness (e.q. [4])vR(A1, As,---, A,) be a database relation. A tuptec R is said
some recent work (e.g. [1]) uses probabilistic approaches for han-y, e complete if it has non-null values for each of the attributes
dling inconsistent data. A;; otherwise it is considered incomplete. A complete tupie
Probabilistic Databases: Incomplete databases are similar to considered to belong to the set of completions of an incomplete
probabilistic databases (c.f. [33, 7, 31, 34]) once the probabilities tuplet (denoted’(t)), if ¢t and¢ agree on all the non-null attribute

for missing values are assessed. [33] gives an overview of queryingvalues.

probabilistic databases where each tuple is associated with an ad-

ditional attribute describing the probability of its existence. Some  Now consider a selection quer: oa4,,=v,, OVer relation
recent work on the TRIO [31, 34] system deals with handling un- (A1, -+, An) where(1 < m < n).

certainty over probabilistic relational databases. In such systems,

the notion of incompleteness is closely related to uncertainty: an. DEFINITION 2 (CERTAIN/POSSIBLEANSWERS. A tuplet;
incomplete tuple can be seen as a disjunction of its possible comple!S S@id to be a certain answer for the queqy: oa,, if
tions. However, we go a step further and view the incomplete tuple i-Am=vm.  1; is said to be an possible answer fap if

as aprobability distributionover its completions. The distribution ~ ti-Am=null, wheret;. A, is the value of attributed.,, in ;.

can be interpreted as giving a quantitative estimate of the probabil-
ity that the incomplete tuple corresponds to a specific completion
in the real world. Furthermore we address the problem of retrieving
incomplete tuples from autonomous databases where the mediator
does not have capabilities to modify the underlining databases. QPIAD

=Um

Notice an incomplete tuple is a certain answer to a query, if its null
values are not on the attributes constrained in the query.
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Processor
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Query
Reformulator

. . . . AFDs,
Query Relaxation: Reformulating queries using database con- Classifiers,

straints for query optimization in distributed mediator systems has | [, | LLigiuo Eaimates ]
been described in [28]. There has been work on query relaxation | |Information
over databases [25] which focuses on how to relax input query con-
straints such that the data whiglartially satisfies the query con-
straints is also returned. Our work is similar to such efforts in the Sampler ) ()
spirit of retrieving relevant data even when it does not exactly sat-
isfy user queries. However, we focus on retrieving data that has

missing values in the query constrained attributes, yet is likely to Result Tuples
be relevant to the original user query. Furthermore, our query re-
laxation for retrieving possible answers is value directed. Sampling Queries

Certain Answers +
Relevant Uncertain Answers

Extended
Result Set

Knowledge
Miner

Rewritten Queries

> User Query
Autonomous

Ranked Joins: The part of our query processing framework which Database
handles join queries over autonomous sources is similar to work

onranked joingl4]. However, we use predicted values learnt from Figure 1: QPIAD System Architecture.
the data itself to perform joins without modifying the underlying

databases. There are several key functionalities tf@PIAD needs to per-

Learning missing values:There has been a large body of work on form in order to retrieve and rank possible answers to a user query:
missing values imputation [8, 29, 30, 35, 3]. Common imputation (i) learning attribute correlationso generate rewritten queries, (ii)
approaches include substituting missing data values by the meanassessing the value probability distributioakincomplete tuples



[ ID | Make | Model | Year [ Body Style | is done such that the query patterns are likely to be supported by

1 Audi A4 2001 Convt the web databases, and only the most relevant possible answers are
2 BMW Z4 2002 Convt retrieved by the mediator in the first place.
3 | Porsche| Boxster| 2005|  Convt Generating Rewritten Queries: The goal of the query rewriting
4 | BMW Z4 2003 null is to generate a set of rewritten queries to retrieve relevant possi-
5 | Honda | Civic | 2004 null ble answers. Let’s consider the same user qdgmysking for all
6 | Toyota | Camry | 2002 Sedan convertible cars. We use the fragment of the Car database shown
in Table 2 to explain our approach. First, we issue the qadgtg
Table 2: Fragment of a Car Database the autonomous database to retrieve all the certain answers which

correspond to tupleg;, t2 andt; from Table 2. These certain
] ) ] - ) answers form théase result sebf Q. Consider the first tuple
to provide a ranking scheme for possible answers, g8jmating t1=(Audi, A4,2001, Convt) in the base result set. If there is a
query selectivityto estimate the recall and determine how many yple ¢, in the database with the same value diodel ast; but

rewritten queries to issue, and based on the aboveofiring missing value fotBody Style, thent;. Body Style is likely to be
rewritten queriedo retrieve possible tuples that have a high degree .4, We capture this intuition by mining attribute correlations
of relevance to the query. from the data itself.

The system architecture of tH@PIAD system is presented in One obvious type of attribute correlation ifufictional depen-

Figure 1. A user accesses autonomous databases by issuing a quegancies. For example, the functional dependenig§odel — M ake

to the mediator. The query reformulator first directs the query to the often holds in automobile data records. There are two problems in
autonomous databases and retrieves the set of all certain answergqopting the method directly based on functional dependencies: (i)
(called thebase result s¢t In order to retrieve highly relevant pos-  often there are not enough functional dependencies in the data, and
sible answers in ranked order, the mediator dynamically generatesiiy autonomous databases are unlikely to advertise the functional
rewritten queries based on the original query, the base result setgependencies. The answer to both these problems invigues-

and attribute correlations in terms of Approximate Functional De- jng approximate functional dependencies from a (probed) sample
pendencies(AFDs) learned from a database sample. The goal okt the database.

these new queries is to return extended result seivhich consists

of highly relevant possible answers to the original query. Since  DEFINITION 3 (APPROXIMATE FUNCTIONAL DEPENDENCY).
these rewritten queries are not all equally good in terms of retriev- X~+A over relation R is anapproximate functional depen-
ing relevant possible answers, they are ordered before being posedency(AFD)if it holds on all but a small fraction of the tuples. The
to the databases. The ordering of the rewritten queries is based orset of attributesX is called thedetermining sebf A denoted by
their expectedF-Measurewhich considers the estimated selectivity dtrSet(A).

and the value distributions for the missing attributes.

QPIAD mines attribute correlations, value distributions, and
query selectivity using a small portion of data sampled from the au-
tonomous database using random probing queries. The knowledg
mining module learns AFDs and AFD-enhancedi\iaBayesian
Classifiers (where the AFDs play a feature selection role for the
classification task) from the samples. Then the knowledge min-
ing module estimates the selectivity of rewritten queries. Armed . Y ,
with the AFDs, the corresponding classifiers, and the selectivity es- 1211Y: W ISSUE QUEre®s: onroder=za ANA Q31 Oarodel=Boxster
timates, the query reformulator is able to retrieve the relevant pos-to retrieve other relevant possible answers.
sible answers from autonomous databases by rewriting the originalOrdering Rewritten Queries: In the query rewriting step of
user query and then ordering the set of rewritten queries such thafQPIAD, we generate new queries according to the distinct value
the possible answers are retrieved in the order of their ranking in combinations among the base set's determining attributes for
precision. each of the constrained attributes. In the example above, we

used the three certain answers to the user qugryo gener-
ate three new queriesQ}: onrodei=a4, Q5: Oiodel=z4 and

4. RETRIEVING RELEVANT POSSIBLE Q% OModel=Bozster- Although each of these three queries retrieve
ANSWERS possible answers that are likely to be more releva than a ran-

In this section, we describe tig@@P1AD query rewriting approach ~ dom tuple with missing value faBody Style, they may not all be
for effectively and efficiently retrieving relevant possible answers equally good in terms of retrieving relevant possible answers.
from incomplete autonomous databases. We support queries in- Thus, an important issue in query rewriting is the order in which
volving selections, aggregations and joins. This query rewriting to pose the rewritten queries to the database. This ordering depends
framework can also retrieve relevant answers from data sources nobn two orthogonal measures: thgpected precisionf the query—

For example, an AFDM odel~ Body Style may be mined,
which indicates that the value of a cal$odel attributesometimes
ébut not always) determines the value of Bedy Style attribute.
According to this AFD and tuple;, we issue a rewritten query
Q' : 0Model=a4 With constraints on theetermining sebf the at-
tribute Body Style, to retrieve tuples that have the samé&odel
ast; and therefore are likely to b€onuvt in Body Style. Simi-

supporting the entire set of query constrained attributes. which is equal to the probability that the tuples returned by it are
. . . answers to the original query, and geectivityof the query—which
4.1 Hand“ng Selection Querles is equal to the number of tuples that the query is likely to bring in.

To efficiently retrieve possible answers in their order of preci- As we shall show in Section 5, both the precision and selectivity
sion,QPIAD follows a two-step approach. First, the original query can be estimated by mining a probed sample of the database.
is sent to the database to retrieve the certain answers which are then For example, based on the value distributions in the sample
returned to the user. Next, a group of rewritten queries are intelli- database, we may find that 24 model car is more likely to
gently generated, ordered, and sent to the database. This procedse aConvertiblethan a car whose model i44. As we discuss



in Section 5.2, we build AFD-enhanced classifiers which give
the probability values P(Body Style=Convt|Model=A4),
P(Body Style=Convt|Model=2Z4) and

P(Body Style=Convt|Model=Boxster). Similarly, the

selectivity of these queries can be different. For example, we may

find that the number of tuples having odel=A4 is much larger
than that ofM odel=24.
Given that we can estimate precision and selectivity of the

queries, the only remaining issue is how to use them to order the
queries. If we are allowed to send as many rewritten queries as we

would like, then ranking of the queries can be done just in terms

of the expected precision of the query. However, things become

more complex if there are limits on the number of queries we can

pose to the autonomous source. Such limits may be imposed by
the network/processing resources of the autonomous data source or

possibly the time that a user is willing to wait for answers.

Given the maximum number of queries that we can issue to a
database, we have to find a reasonable tradeoff between the preci-

sion and selectivity of the queries issued. Clearly, all else being
equal, we will prefer high precision queries to low precision ones
and high selectivity queries to low selectivity ones. The tricky is-
sue is how to order a query with high selectivity and low precision
in comparison to another with low selectivity and high precision.
Since the tension here is similar to the precision vs. recall ten-
sion in IR, we decided to use the well knoiraMeasuremetric

for query ordering. In the IR literaturd;-Measureis defined as
the weighted harmonic mean of the precisid?) @nd recall R)
measures: 12 2R e yse the query precision fét. We es-

a*xP+R
timate the recall measum® of the query by first computing query

throughput, i.e., expected number of relevant answers returned by

the query (which is given by the product of the precision and se-
lectivity measures), and then normalizing it with respect to the ex-
pected cumulative throughput of all the rewritten queries. Notice
that theF-Measurebased ordering reduces to precision-based or-
dering whem = 0.

In summary, we use the F-measure ordering to seletdp
queries, wheré is the number of rewritten queries we are allowed
to issue to the database. Once thgueries are chosen, they are
posed in the order of their expected precision. This way the rele-

vant possible answers retrieved by these rewritten queries need no,

be ranked again, as their rank — the probability that their null value

corresponds to the selected attribute— is the same as the precisio

of the retrieving query.

Note that the parameter in the F-measure as well as the pa-
rameterk (corresponding to the number of queries to be issued to
the sources), can be chosen according to source query restriction

source response times, network/database resource limitations, an

user preferences. The unique featureQRIAD is its flexibility

to generate rewritten queries accordingly to satisfy the diverse re-

quirements. It allows the tradeoff between precision and recall to
be tuned by adjusting the parameter in it§--Measurebased or-
dering. Whena is set to be0, the rewritten queries are ordered
solely in terms of precision. When is set to bel, the precision
and recall are equally weighted. The limitations on the database an
network resources are taken into account by varyiathe number

of rewritten queries posed to the database.

4.2 Query Rewriting Algorithm

In this section, we describe the algorithmic details of @fIAD
approach. LeR(A1, As, - - - , A,) be a database relation. Suppose
dtrSet(A.,) is the determining set of attributé,, (1 < m < n),

according to the highest confidence AFD (to be discussed in Sec-

tion 5.3). QPIAD processes a given selection quély o a,,, =v,,
according to the following two steps.

1. SendQ to the database and retrieve the base resuR$€t)) as the
certain answers df). ReturnR.S(Q) to the user.

. Generate a set of new queri@$, order them, and send the most rel-

evant ones to the database to retrieve the extended resﬁﬁ%é})
as relevant possible answers@f This step contains the following
tasks.

(a) Generate rewritten queriesLet mgy,5e¢(4,,)(RS(Q)) be
the projection ofRS(Q) onto dtrSet(Ay,). For each dis-
tinct tuple t; in Tay.gee(a,,)(RS(Q)), create a selection
query Q/ in the following way. For each attributel,. in
dtrSet(Ay ), create a selection predicate, =t;.v,.. The se-
lection predicates af’, consist of the conjunction of all these
predicates.

(b) Select rewritten queriesFor each rewritten querg)’, com-

pute the estimated precision and estimated recall using its es-
timated selectivity derived from the sample. Then order all
Q!s in order of theiF-Measurescores and choose the top-K

to issue to the database.

(c) Re-order selected top-K rewritten querieRe-order the se-
lected top-K set of rewritten queries according to their esti-
mated precision which is simply the conditional probability of
PQ; :P(A’"L:v‘rn‘ti) . 5

(d) Retrieve extended result set.Given the top-K queries
{Q_’l, e ,QfK} issue them i_n the accord_ing to their
estimated precision-base orderings. Their result sets

RS(Q}), RS(Q5),- - , RS(Q’) compose the extended re-
sult setRS(Q).6

Post-filtering. If the database does not allow binding of null
values, remove fronRS(Q) the tuples withA,, # null.

Return the remaining tuples RAS(Q) as the relevant possible
answers ofy).

(e

~

Multi-attribute Selection Queries: Although we described the

above algorithm in the context of single attribute selection queries,

it can also be used for rewriting multi-attribute selection queries

by making a simple modification to Step 2(a). Consider a multi-

attribute selection quer§) : 4, —v; Ads—von--AA.=v.. 10 gENEI-

te the set of rewritten queri€3’, the modification requires Step

(a) to runc times, once for each constrained attribdtg 1 < ¢ <

. In each iteration, the tuples frofy;,se:(a,)(RS(Q)) are used

0 generate a set of rewritten queries by replacing the attridute

with selection predicates of the for,=t¢;.v, for each attribute

A, € dirSet(A;). For each attributel,, € dtrSet(A,,) which is

not constrained in the original query, we add the constraintd.pn
the rewritten query. As we have discussed in Section 1, we only

rank the tuples that contain zero or andl in the query constrained

attributes. If the user would like to retrieve tuples with more than

one null, we output them at the end without ranking.

For example, consider the multi-attribute selection query
Q: O Model=AccordAPrice between 15000 and 20000 and the mined
AFDs {Make, Body Style} ~» Model and{Y ear, Model} ~~

The algorithm first generates a set of rewritten queries

rice.
dfy replacing the attribute constraidt/ odel=Accord with se-

lection predicates for each attribute in the determining set of
Model using the attribute values from the tuples in the base set
Tatrset(Model) (RS(Q)).  After the first iteration, the algorithm
gﬁyFé%?o%?m%f%%dt%l@lmw&qﬁlegﬁ?ér of their precision we
ensure that each of the returned tuples will have the same rank as
the query that retrieved it.

8All results returned for a single query are ranked equally.




define acorrelated sourcé. as any data source that satisfies the
Qll: O Make=HondaABody Style=SedanAPrice between 15000 and 20000 fOHOWing: (l) Sc SUpportS attrlbUte4L in its local schema, (”)Sc
Q2 OMake=HondaABody Style=Coupen Price between 15000 and 20000 has an AFD whered; is on the right hand side, (iiip. supports

Similarly, the algorithm generates additional rewritten queries by the determining set of attributes in the AFD tdg mined froms,..

replacing Price with value combination of its determining set From all the sources correlated with a given sousgewe use
from the base set while keeping the original query constraint the one for which the AFD ford; has the highest confidence.
Model=Accord. After this second iteration, the following rewrit-  Then using the AFDs, value distributions, and selectivity estimates

ten queries may have been generated: learned fromS.., ordered rewritten queries are generated and issued
Q3 OModel=Accord\Y ear=2002, in Step 2 to retrieve relevant possible answers for the user query
Qil : OModel=AccordA\Y ear=2001, from sourceS;.

/.
Q5 . OModel=AccordA\Y ear=2003

_ _ _ _ 4.4 Handling Aggregate Queries
After generating a set of rewritten queries for each constrained at- As th N fi lete tuples | ¢
tribute, the sets are combined and the queries are ordered just as S he percentage of Incomplete tuples Increases, aggregates

they were in Step 2(b). The remainder of the algorithm requires no such assumandCountneed to take the incomplete tuples_ Into ac-
modification to support multi-attribute selection queries. count to get accurate results. To support aggregate queries, we first

. i . retrieve the base set by issuing the user’s query to the incomplete
Base Set vs. Samplehen generating rewritten queries, one may yaiahase. Besides computing the aggregate over the base set (cer-
consider simply rewriting the original query using the sample as op- iy answers), we also use the base set to generate rewritten queries
posed to first retrieving the base set and then rewriting. However, according to theQPIAD algorithm in Section 4.2. For example,
since the sample may not contain all answers to the original query,-qnsider the aggregate qUEY o sody Style—ConvinCount(s) OVET

such an approach may not be able to generate all rewritten queriesihe car database fragment in Tablg 2.y First, we would retrieve the
By utilizing the base setQPIAD obtains the entire set of deter-  qrtain answers, , t,, andt; for which we would compute their
mining set values that the source can offer, and therefore achievegertain aggregate valuount(x) = 3. As mentioned previously,

a better recall. our first choice could be to simply return this certain answer to the

4.3 Retrieving Relevant Answers from Data user effectively ignoring any incomplete tuples. However, there is a

; _ better choice, and that is to generate rewritten queries according to
tsrﬁ))lartcéis Not SUpportmg the Query At the algorithm in Section 4.2 in an attempt to retrieve relevant tuples

whoseBodyStyle attribute isnull.

In information integration, the global schema exported by a me-  \When generating these rewritten queries, tuplérom the base
diator often contains attributes that are not supported in some of theset would be used to form the rewritten qQUER: o nrodei—z4
individual data sources. We adapt the query rewriting techniquesbased on the AFDVModel ~» Body Style. Before issuing the
discussed above to retrieve relevant possible answers from a datguery to the database we must first consider how to combine the
source not supporting the constrained attribute in the query. For ex-certain and possible aggregate values. When combining the certain
ample, consider a global schei&y scacars SUpported by the me-  and possible aggregate values, we have two options (i) combine a

diator over the sourceéhoo! AutosindCars.comas showninFig-  fraction of the rewritten query’s aggregate result with the certain
ure 2, whereYahoo! Autosloesn’t support queries dlody Style aggregate where the fraction is equal to the query’s precision or (ii)
attribute. Now consider a quer: opody Style=Convt ON the combine the entire rewritten query’s aggregate result with the cer-

global schema. The mediator that only returns certain answerstain aggregate but do so only for those queries in which the most
won't be able to query th¥ahoo! Autoslatabase to retrieve cars |ikely value is equal to the value of the constrained query attribute.

with Body Style Convt. None of the relevant cars froiYahoo! Using the first approach, we would find
Autoscan be shown to the user. P(Body Style=Convt|Model=Z4), issue the rewritten
query, and take this probability, namely the query’s precision,
Mediator GS(Make, Model, Y ear, Price, Mileage, Location, Body Style) and mu|t|p|y it with the aggregate result which is returned. This
Voo Ao | LS (Nae Model y car Price arilcase Toatiany -~  fraction of the aggregate is then added to the certain aggregate.

For example, assuming the probability above, the final resulting

Figure 2: Global schema and local schema of data sources aggregate over the incomplete data source would be calculated as

Countrotar(x) = Countcertain (*)+(Count possivie (%)) (P(Convt| Z4))
In order to retrieve relevant possible answers fiahoo! Autos
we apply the attribute correlation, value distribution, and selectiv-
ity estimates learned on ti@ars.comdatabase to th¥ahoo! Au- )
tos database. For example, suppose that we have mined an AFCPPECtively. _ o
Model~ Body Style from theCars.comdatabase. To retrieve rel- _USing the second approach, we would find the probability dis-
evant possible answers from tifehoo! Autoslatabase, the media-  tibution over all Body Style values given that the\lodel is
tor issues rewritten queries ¥ahoo! Autosising the base set and  KnoWn. Since the original quer was onBody Style=Conuvt
AFEDs from theCars.corrdatabase. we check theBody Style distribution to find the value with
The algorithm that retrieves relevant tuples from a socaot the highest probability. If the value with the highest prob-
supporting the query attribute is similar to tQgP1AD Algorithm ability happens to beConvt then the entire aggregate from

presented in Section 4.2, except that the base result set is retrievel1® rewritten query combined with the certain aggregate, if the
from thecorrelated sources. in Step 1. highest probability is not for the valu€onuvt then the rewrit-

ten query's aggregate is discarded. Therefore, when consider-
DEFINITION 4 (CORRELATED SOURCE). For any  au- ing the rewritten queryQh: oarodei—z4 from above, the final
tonomous data sourcéy not supporting a query attributd;, we resulting aggregate over the incomplete data source would be

and the process repeated for tuplesndts whose corresponding
rewritten queries ar@’ : o arodei=44 ANAQ5 : T rrodel=Boxster I€-



Countrotar(x)=Countcertain (*)+Count possipie (¥)=3+1=4 as- of the rewritten query’s precision, selectivity, and the value

suming thatC onwt is the maximum predicted probability given that probability distribution for eithep;; or vjs.
Model=Z4. In Section 6, we present the results of our empirical (c) For each query paifp € QP compute the estimated selectiv-
evaluation on aggregate query processing in the conteF3AD. ity of the query pair to be
The rgsults show an improvgment in .the aggregate value accuracy EstSel(qp)= 3 EstSel(gp1,vj1)*EstSel(gpz, vjz)
when incomplete tuples are included in the calculations. vj1 € JD1

vj2 € JD2

4.5 Handling Join Queries

To support joins over incomplete autonomous data sources, the ~4- For each query pair, compute EsMeasurescore using the new pre-
cision, estimated selectivity, and recall values. Next, select the top-K

_re_sults are retrleyed mdepende!‘ltly from e_ach source and then query pairs from the ordered set of all query pairs according to the
joined by the mediator. When retrieving possible answers, the chal- algorithm described in Section 4.2.
lenge comes in deciding which rewritten queries to issue to each of

the sources and in what order. 5. For each selected query paip, if the component queriegp; and

gp2 have not previously been issued as part of another query pair,

We must consider both the precision and estimated selectivity issue them to the relation&1 and R2 respectively to retrieve the
when ordering the rewritten queries. Furthermore, we need to en- extended result seBST and RS2,

sure that the results of each of these queries agree on their join at- —~ =~ = —~ —~
tribute values. Given that the mediator provides the global schema, 6. Foreach tuplé,, in RS1 andty; in RS2 wheret;i.v;1 = tizv;2
a join query posed to the mediator must be broken down as a pair create a possible joined tuple. In the case where effhen;, or
of queries, one over each autonomous relation. In generating the tiz-v;2 i null, predict the missing value using the NBC classifiers

; . o e . and create the possible join tuple. Finally, return the possible joined
rewritten queries, we know the precision and selectivity estimates tuple to the user.
for each of the pieces, thus our goal is to combine each pair of
gueries and compute a combined estimate of precision and selec;
tivity. It is important to consider these estimates in terms of the 5. LEARNING STATISTICS TO SUPPORT
query pair as a whole rather than simply considering the estimates RANKING AND REWRITING
of the pair's component queries alone. For example, when perform-  As we have discussed, to retrieve possible answers in the or-
ing a join on the results of two rewritten queries, it could be the case der of their relevanceQPIAD requires three types of information:
that the top ranked rewritten query from each relation does not haveyj) attribute correlations in order to generate rewritten queries (ii)
join attribute values in common. Therefore despite their high ranks yajue distributions in order to estimate the precision of the rewrit-
at each of their local relations, the query pair could return little or ten queries, and (i) selectivity estimates which combine with the
no answers. As a result, when retrieving both certain and possibleyajye distributions to order the rewritten queries. In this section,
answers to a query, the mediator needs to order and issue the rewritye present how each of these are learned. Our solution consists
ten queries intelligently so as to maximize the precision/recall of the of three stages. First, the system mines the inherent correlations
joined results. among database attributes represented as AFDs. Then it builds

In processing such join queries over relatidis and k2, we Naive Bayes Classifiers based on the features selected by AFDs
must consider the orderings of each pair of queries from the sets

01UQ1" andQ2U Q2 whereQ1 andQ2 are the complete queries to_co_mpute 'probability Qistribution over th(_e possible values of the
derived from the user’s original join query over the global schema MSSINg attribute for a given tuple. Finally, it uses the data sampled

andQ1’ andQ2’ are the sets of rewritten queries generated from from the original database to produce estimates of each query's se-
the bases sets retrieved frdt and R2 respectively. Given thatthe  lectivity. We exploit AFDs for feature selection in our classifier
gueries must return tuples whose join attribute values are the sames it has been shown that appropriate feature selection before clas-
in order for a tuple to be returned to the user, we now consider sification can improve learning accuracy[5]. For a more in depth

adjusting theo: parameter in ouF-Measurecalculation so as t0  eyajyation of our feature selection techniques we refer the reader to
give more weight to recall without sacrificing too much precision. [18]

The details of the approach taken ®P1AD are as follows"
1. Send complete querieg1 and Q2 to the databaseB1 and R2 to 5.1 Learning Attribute Correlations by

retrieve the base result séss(Q1) and RS(Q2) respectively. ApprOXimate Functional Dependen-
2. For each base set, generate a list of rewritten quédigsand Q2 cies(AFDs)
using theQPIAD rewriting algorithm described in Section 4.2. In this section, we describe the method for mining AFDs from a
3. Compute the set of all query paifsP by taking the Cartesian prod-  (probed) sample of database. Recall that an AFB a functional
uct of each query from the se@@1 U Q1" and Q2 U Q2'. For dependency that holds on all but a small fraction of tuples. Accord-
each pair, calculate the new estimated precision, selectivityFand ing to [20], we define theonfidenceof an AFD ¢ on a relation
Measurevalues. R as: conf(¢) = 1 — gs(¢), wheregs is the ratio of the mini-
mum number of tuples that need to be removed fi@ro makegp

(a) For each rewritten query i@1’ and@2’, use the NBC clas- . " - -
sifiers to determine the join attribute value distributioh®1 a functional dependency aR. Similarly, we defineapproximate

and.J D2 given the determining set attribute values from the key(AKey)which is a key of all but a small fraction of tuples &
base setskS1 and RS2 respectively as discussed in Sec- We use TANE[13] algorithm to discover AFDs and AKeys whose
tion 5.2. confidence is above a thresheldwhich is set td).3 in QPIAD to

(b) For each join attribute value;; andvj2 in JD1 and JD2 ensure that we do not miss any significant AFDs.
respectively, compute its estimated selectivity as the product Pruning Noisy AFDs: In most cases, AFDs with high confidence

"The selectivity estimation steps are only performed for the rewrit- &€ desirable for learning probability distributions for missing val-
ten queries because the true selectivity of the complete queries igles. However, not all high confidence AFDs are useful for feature
already known once the base set is retrieved. selection, such as high confidence AKeys whose values are distinct.




For example, consider a relatiarar(VIN, Model, Make) After to learn probability distribution using NBC. Our experiments de-
mining, we find thatVIN is an AKey (in fact, a key) which deter-  scribed in Section 6 show that Hybrid One-AFD approach has the
mines all other attributes. Given a tugleith null value onModel| best classification accuracy among these choices.
its VIN is not helpful in estimating the missirngodelvalue, since . .. .
there are no other tuples sharitig VIN value. Therefore AFDs 5.4 Leammg SeleCUV'ty Estimates
with a superset of AKey attributes in the determining set are not As discussed in Section 4, the F-measure ranking requires an
useful features for classification and should be removed. For exam-estimate of the selectivity of a rewritten query. This is computed as
ple, suppose we have an ARDL,, A> }~~ A3 with confidence 0.97,  SmplSel(Q)*SmplRatio(R)*PerInc(R), whereSmplSel(Q)
and an AKey{ A, } with confidence 0.95. Since most ffi, 4>} is the selectivity of the rewritten quely when it is issued to the
value pairs would be distinct, this AFD won't be useful in predict- sample.SmplRatio(R)s the ratio of the original database size over
ing the values fords and needs to be pruned. An AFD will be the size of the sample. We send queries to both the original database
pruned if its confidence difference to the corresponding AKey is and its sample off-line, and use the cardinalities of the result sets to
below a threshold(currently set af.3 based on experimentation).  estimate the ratio.Perinc(R)is the percentage of tuples that are

. N . . incomplete in the database. It can be estimated as the percentage
5.2 Learning Value Distributions using Clas-  ofincomplete tuples that we encountered while creating the sample

sifiers database.

Given a tuple with a null value, we now need to estimate the prob-
ability of each possible value of this null. We reduce this problem 6. EMPIRICAL EVALUATION
to a classification problem using mined AFDs as selected features. |, this section, we describe the implementation and an empirical

A classifier is a functiory that maps a given attribute vectarto evaluation of our systef®PIAD for query processing over incom-
a con_f!de_nce that the vector belongs to a class. The input of OUrplete autonomous databases.
classifier is a random sampfeof an autonomous databa&ewith

attributesA;, A,, - - , A, and the mined AFDs. For a given at- 6.1 Implementation and User Interface

tribute A,,, (1 < m < n), we compute the probabilities for all The QPIAD system is implemented in Java and has a
possible class values of,, given all possible values of its deter-  \ep form based interface through which the users issue their
mining setdtrSet(An) in the corresponding AFDs. queries. A live demo of th&QPIAD prototype is available at
We construct a Nae-Bayes Classifier(NBC),,,. Let a value http://styx.dchp.asu.edu:8080/QPIADWeb _ Given a
v; in the domain ofA,, represent a possible class fdr,. Let user query, the system returns each relevant possible answer to the
denote the values afirSet(Ar,) in a tuple with null onA,,. We user along with @onfidenceneasure equal to the answer’s assessed
L}J)S(‘E‘Eaxe_s)}tj:iorfm)to estimate the probabilitlegA . =vi|7) = degree of relevance. Although the confidence estimate could be bi-
Hem=pe == for all valuesw; in the domain. To im-  ased due to the imperfections of the learning methods, its inclusion
prove computation efficiency, NBC assumes that for a given class,can provide useful guidance to the users, over and above the rank-
the featuresXy, - - - , X, are conditionally independent, and there- ing.
fore we have: P (Z|Am=v;) = [[ P (z:|Am=v;). Despite this In addition, QPIAD can optionally “explain” its relevance as-

sessment by providing snippets of its reasoning as support. In
particular, it justifies the confidence associated with an answer
by listing the AFD that was used in making the density assess-
ment. In the case of our running example, the possible answer
t4 for the queryQ’ will be justified by showing the learned AFD

5.3 Combining AFDs and Classifiers Model~Body Style.

So far we glossed over the fact that there may be more than oneg 2 Experimental Settings
AFD associated with an attribute. In other words, one attribute may

have multiple determining set with different confidence levels. For three data sets. The first datasars(year, make, model, price,

example, we have the AFD/ odel~ M ake with confidence).99. : e ; .
We also see that certain types of cars are made in certain coun-m”eage’ body style, certified built by extracting around 55,000

tries, so we might have an AFDountry~ M ake with some con- ItrL:E(I)enS] T;ct)gq acsrjécs?:rrri]bedDe}Lat}rzstﬁes kke _[PES soencf)na:jre d;r:hiere_ntly
fidence value. As we use AFDs as a feature selection step for NBC’sus(a pe workshop, education maritél-status occupation reléltion-
we experimented with several alternative approaches for combining ge, P, ' ' P '

o e U . ship, race, sex, capital-gain, capital-loss, hours-per-week, native-
AFDs and classifiers to learn the probability distribution of possible ; .
values for null. One method is to use the determining set of the AFD country) is theUnited States Censutatabase made up of 45,000

with the highest confidencerhich we call theBest-AFDmethod. tuples which we obtained from the UCI data repositbihe third

However, our experiments showed that this approach can degradgatasetcomp.laints(mOdeL year, crash, fail date, fire, general com-
the classification accuracy if its confidence is too low. Therefore we Eotne_nt, céetaned concw:poneln_t, tzotmgry' OWR.E LSh'p' tcgr type, |;1I1ar-
ignore AFDs with confidence below a threshold (which is currently 2&% (')%g or?sumelrl on:jpfaln aha l?lﬁasv'l\'lAICOﬁ(':on a:(n; r;)ug Iy
set to be0.5 based on experimentation), and instead use all other 000 tuples co e?c;: d rom t ;. : fice (')h ke@eCt n-
attributes to learn the probability distribution using NBC. We call \ézfgggggrfﬁrr:\%zggn 'noinls Szﬁesm conjunction with thears

this approactHybrid One-AFD We could also use aBnsemble | der t f 9) ql A d d d truth

of classifierscorresponding to the set of AFDs for each attribute, n order to perform arracular stu ybased on ground tru

and then combine the probability distribution of each classifier by we consider only the complete tuples and then artificially introduce
a weighted average. At the other extreme, we could ignore fea- ®http://www.ics.uci.edu/mlearn/MLRepository.html

ture selection based on AFD completely but use all the attributes °http://www-odi.nhtsa.dot.gov/cars/problems/complain/

strong simplification, NBC has been shown to be surprisingly ef-
fective[9]. In the actual implementation, we adopt the standard
practice of using NBC with a variant of Laplacian smoothing called
m-estimates[24] to improve the accuracy.

To evaluate th&@PIAD system, we performed evaluations over




1 1 T T T T 1 T 1
Qlée?é ily Relation=Own Child) g Qlen
:(Family Relation=Own Chi L :(Price=20000 i
08 0.8 b 08 - Q ((Krfe.’}LO Rewri)tten
Query =Tae Queries)
S 06} Q:(Body Style=Convt) S _5 0.6 -
@ @ ko
g e i g
a 04y AllReturned ==rm=: T a 04 AlReturned =r=w==: o 04f alpha=0.0 —— 1
QPIAD =— QPIAD alpha=0.1 ====
02+ g 02 e m——— 02+ alpha=1 ------- R
TP s L A S fiashini
jast
0 . Il Il Il Il 0 Il Il 1 L 0 1 Il Il Il
0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1 0 0.2 0.4 0.6 0.8 1
Recall Recall Recall
Figure 3: Comparison of ALL RE- Figure 4: Comparison of ALL RE- Figure 5: Effect of o on precision
TURNEDand QPIADfor Query TURNED and QPIAD for Query and recallin QPIAD.
Q(CGTS) : OBodyStyle=Conuvt- Q(C@TZSUS) * OFamilyRelation=0wnChild-

the data incompleteness. Specifically, for each database, we start To reflect the “density” of the relevant answers along the time
with only complete tuples and take this to be the oracular databaseline, we also plot the precision of each method at the time when first
Using a copy of the oracular data, we construct our test database/{ (K=1,2,--- ,100) answers are retrieved as shown in Figures
by randomly selecting 0% of the tuples each of which are then 6 and 7. AgainQPIAD is much better tha\LLRETURNED in

made incomplete by setting one attributentdl at random. Next, retrieving relevant possible answers in the fisresults, which is

we partitioned each database into two parts: a training set (i.e. thecritical in web scenarios.

sample from which AFDs and classifiers are learned) and a testgffect of Alpha Value on F-Measure: To show the effect of on

set. To simulate the relatively small percentage of the training dataprecision and recall of the query, we present the result for a query
available to the mediators, we experimented with training sets of pyjce = 20000 with differenta values in Figure 5. The number of
different sizes, ranging fror8% to 15% of the entire database, as  rewritten queries was restricted to 10. we can see that as the value

will be discussed in Section 6.5. o . of a is increased from OQPIAD gracefully trades precision for
To compare the effectiveness of retrieving relevant possible an-recall.

swers, we consider two salient dimensions of Q@IAD ap- . .
proach, namelRankingandRewriting which we evaluate interms 6.4 Evaluation of Efficiency
of Quality and Efficiencyrespectively. For the experiments, we  To evaluate the effectiveness@PIAD’s rewriting, we compare
randomly formulate single attribute and multi attribute selection it against theALL RANKED approach which simply retrieves all the
queries and retrieve possible answers from the test databases.  tuples having missing values on the query constrained attributes and
We compareQPIAD with the ALLRETURNED and ALL- then ranks all such tuples according to their relevance to the query.
RANKED approaches. Recall thaALLRETURNED approach  Aswe mentioned earlier, we do not expéatl RANKED approach
presents all tuples containing missing values on the query con-to be feasible at all for many real world autonomous sources as they
strained attribute without ranking them. The L RANKED ap- do not allow direct retieval of tuples with null values on specific at-
proach begins by retrieving all the certain and possible answers,tributes. Nevertheless, these experiments are conducted to show
as INALLRETURNED, then it ranks possible answers according to that QPIAD outperformsALL RANKED even when null value se-
the classification techniques described in Section 5. In fact, nei-|ections are allowed. Figure 8 shows the number of tuples that are
ther approach is feasible as web databases are unlikely to suppoffetrieved by theA LL RANKED andQPIAD approaches respectively
binding of null values in queries. In contrast, Q€1AD approach  in order to obtain a desired level of recall. As we can see, the num-
uses query rewriting techniques to retrieve only relevant possible ber of tuples retrieved by th&LL RANKED approach is simply the
answers in a ranked order and fits for web applications. Even whentotal number of tuples with missing values on the query attribute,
bindings of null values are allowed, we show in this section that the hence it is independent of the desired level of recall. On the other
QPIAD approach provides better quality and efficiency. hand, theQPIAD approach is able to achieve similar levels of re-
In the rest of the evaluation, we focus on comparing the effec- call while only retrieving a small fraction of the tuples retrieved by
tiveness of retrieving relevant possible answers. In other words, all ALL RANKED. The reason for this is that many of the tuples re-
the experiments presented in this section, except for those on agtrieved byALL RANKED, while having missing values on the query
gregate queries, ignore the “certain” answers as all the approachesgttributes, are not very likely to be the value the user is interested
are expected to perform equally well over such tuples. in. QPIAD avoids retrieving irrelevant tuples and is therefore very

efficient.
6.3 Evaluation of Quality . .
To evaluate the effectiveness QPI1AD ranking, we compare it 6.5 Evaluation of Leammg Methods
against theALL RETURNED approach which simply returns to the  Accuracy of Classifiers: Since we use AFDs as a basis for feature
user all tuples with missing values on the query attributes. Figuresselection when building our classifiers, we perform a baseline study

3 and 4 show the precision and recall curves of a query o€ #rs on their accuracy. For each tuple in the test set, we compute the
and Censugdatabases respectively. It shows that GWelAD ap- probability distribution of possible values of a null, choose the one
proach has significantly higher precision when comparefito- with the maximum probability and compare it against the actual

RETURNED. value. The classification accuracy is defined as the proportion of the
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tuples in the test set that have their null values predicted correctly. presents ranked relevant possible answers to users along with a con-
Table 3 shows the average prediction accuracy of various AFD- fidence so that the users can use their own discretion to filter off

enhanced classifiers introduced in Section 5.3. In this experiment,answers with low confidence. We conducted experiments to eval-

we use a training set whose size is 10% of the database. The clastate how pruning answers based on a confidence threshold affects

sification accuracy is measured over 5 runs using different train- the precision of the results returned. Figure 9 shows the average

ing set and test set for each run. Considering the large domainprecision obtained over 40 test queries on Cars database by pruning

sizes of attributes iarsdatabase (varying frora(Certified) to answers based on different confidence thresholds. It shows that the

416(M odel)), the classification accuracy obtained is quite reason- high confidence answers returned@¥1AD are most likely to be

able, since a random guess would give much lower prediction accu-relevant answers.

racy. We can also see in Table 3 that the Hybrid One-AFD approach

performs the best and therefore is used in our query rewriting im- !
plementatiort® 0s
0.7
Database| Best All Hybrid 2 os
AFD | Attributes | One-AFD H o4
Cars 68.82 66.86 68.82 02
Census 72 70.51 72 °‘; ‘
04 0.5 0.6 0.7 08 0.9 1
Table 3: Null value prediction accuracy across different AFD- Confidence

enhanced classifiers
Figure 9: Average Precision for various confidence thresh-
While classifier accuracy is not the main focus of our work, olds(Cars).
we did do some comparison studies to ensure that our classifier

was (_:c_)mpe'titive. Specifically, we compared AFD-enhanced NBC Robustness w.r.t. Sample SizeThe performance oQPIAD ap-
classifier with two other approaches —one ba;ed on aSSOC'""t'orbroach, in terms of precision and recall, relies on the quality of the
rules[35] and the other based on 'eam'F‘g Bayesian networks fr_omAFDs, Nave Bayesian Classifiers and selectivity estimates learned
the data [12]. For ques network learning, we experimented with by the knowledge mining module. In data integration scenario, the
the WEKA Data Mlnl_n_g Softwarlﬂ}_. W? found that although the availability of the sample training data from the autonomous data
AFD-enhanced classifiers were significantly cheaper to learn thansources is restrictive. Here we present the robustness GfRHAD
Bayes networl_<s, their accuracy was competitive. To compare our pproach in the face of limited size of sample data. Figure 10 shows
approach against a_lssomatlon-rule ba_sed classifiers, we used th? he accumulated precision of a selection query on the Car database,
gorlthm proposed in [35]. Our experiments ShOVYed that assoma-using various sizes of sample data as training set. We see that the
tion rules perform poorly as they focus only on attribute-value level o ,5jity of the rewritten queries all fluctuate in a relatively narrow
correlations and thus fail to learn from small samples. In contrast range and there is no significant drop of precision with the sharp
AFD-enhanced NBC classifiers can synergistically exploit schema- decrease of sample size from% to 3%. We obtained a similar
level and value-level correlations. Details of these evaluations are o it for the Census database [18].

available [18].

Robustness w.r.t. Confidence Threshold on PrecisionQPIAD 6.6 Evaluation of Extensions

%n Table 3 the Best-AFD and Hybrid One-AFD approaches are 5\? ectlver_wgss of uz!n? Corr;elathn Izettwe_e? Datt_a Sourcet?]:
equal because there were high confidence AFDs for all attributes in /¢ CONSIC€r a meaiator periorming data Iniegration over three

the experimental set. When this is not the case, the Hybrid One-data sourcesCars.com (www.cars.com), Yahoo! ~ Autos(au-
AFD approach performs better than the Best-AFD approach. tos.yahoo.com) an@arsDirect(www.carsdirect.com). The global
Havailable from http://www.cs.waikato.ac.nz/mliweka/ schema supported by the mediator and the individual local schemas
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Figure 10: Accumulated precision curve with different sample
sizes on Cars database. Figure 12: Accuracy of aggregate queries with and without

missing value prediction.

are shown in Figure 2. The schemag#rsDirectandYahoo! Autos
do not supporiBody Style attribute whileCars.comdoes support  database to find its true aggregate value. We also issued the same
queries on theBody Style. We use the AFDs and NBC classi- query to the incomplete database and computed the aggregate value
fiers learned fromCars.comto retrieve cars fronivahoo! Autos  without considering incomplete tuples. Finally, we issued the query
andCarsDirectas possible relevant possible answers for queries onto the incomplete database only this time we predicted the missing
Body Style, as discussed in Section 4.3. values and included the incomplete tuples as part of the aggregate
To evaluate the precision, we check the actBally Style of result. When predicting the missing values, we only included in-
the retrieved car tuples to determine whether the tuple was indeedomplete tuples whose missing attribute value is mostly likely to be
relevant to the original query. The average precision for thefirst  the value constrained in the query, nammlgthod 2n Section 4.4.
tuples retrieved fronYahoo! AutosandCarsDirectover the 5 test In Figure 12, we show the percentage of queries which achieve
queries is quite high as shown in Figure 11. This shows that usingdifferent levels of accuracy with and without missing value predic-
the AFDs and value distributions learned from correlated sourcestion. The results are significant, for example, Figure 12(a) shows
QPIAD can retrieve relevant answers from data sources not sup-that when missing value prediction is used to computed the aggre-
porting query attribute. gate result, roughly 10% more queries achieve 100% accuracy than
if the aggregate had only taken the certain tuples into account, thus

. " |gnor|ng all mcor.'nplete 9nes. _
o 07 Evaluation of Join Queries: To evaluate our approach in the con-
o c os text of join queries we performed a set of experiments orChes
204 andComplaintdatabases. In the experiments, we join@zesand
g:g & - Complaintsrelations on thé\/ odel attribute. The experimental re-
02 01 sults shown in Figure 13 involve join queries where the attributes
1 T T T e from both the relations are constrained. We evaluate the perfor-
ST Kth Tuple mance of our join algorithm in terms of precision and recall with

respect to a complete oracular database.

Figure 11: Precision curves for first K tuples retrieved using 1 : . . . 1 T T T T
correlated sourceCars.com sl 1 Abhaos comm | sl ik s ol
: v Riphata oo :
06 e T 1 06 1

cision

Evaluation of Aggregate Queries: To evaluate our approach in 2
terms of supporting aggregate queries, we measured the accuracy Y eraneandEngine Cw"ng‘) 04 QU s o 1
of aggregation queries iQ PIAD where missing values in _the in- o2} oo N e 1 02| gt N ‘
complete tuples are predicted and used to compute the final aggre- . (k = 10 Rewriien Queries) . k= 10Rewriten Queries)
gate result. We compare the accuracy of our query rewritingand o o2 04 06 08 1 o 02 04 06 08 1
missing value prediction with the aggregate results from the com- Recall Recall
plete oracular database and the aggregate results from the incom-
plete database where incomplete tuples are not considered. Nexkigure 13: Precision-Recall Curves for Queries on Cars Join
we will outline the details of our experiments. Complaints

We performed the experiments over &ars database con-
sisting of 8 attributes. First, we created all distinct subsets We present the results for a join queryfodel =

Precision

of attributes where the size of the subsets ranged fioro Grand Cherokee N General Component = FEngine and

7 (e.g. {make}, {make,model}, {make, model,year}, ..., Engine Cooling. We seta to 0, 0.5 and 2 to measure the effect of
{model}, {model,year}, ..., etc.). Next, we issued a query to  giving different preferences to precision and recall. In addition, we
the sample database and selected the distinct combinations of valrestricted the number of rewritten queries which could be sent to
ues for each of these subsets. the database to 10 queries. Figure 13(a) shows the precision-recall

Using the distinct value combinations for each of these subsets,curve for this query. We can see that fer= 0 high precision is
we created queries by binding the values to the corresponding at-maintained but recall stops at 0.34. ker= 0.5 the precision is
tribute in the subsets. We then issued each query to the completehe same as whem = 0 up until recall reaches 0.31. At this point,



the precision decreases although, a higher recall, namely 0.66, is[8] A.P. Dempster, N. M. Laird, and D. B. Rubin. Maximum likelihood

achieved. The precision when = 2 is similar to the case where
a = 0.5 but achieves 0.74 recall with only a small loss in preci-
sion near the tail of the curve. When looking at the top 10 rewritten

queries for each of thesevalues we found that whem = 0, too

much weight is given to precision and thus incomplete tuples are
never retrieved from th€ars database. This is due to our ability

to predict missing values which happens to be better orCibra-

B

[20]

[11]

plaints database and hence the top 10 rewritten queries tend to in-

clude the complete query from th@ars database paired with an
incomplete query from th€omplaintsdatabase. However, when
a = 0.5 ora = 2 incomplete tuples are retrieved from both the
databases because in this approach the ranking mechanism tries
combine both precision and recall. Similar results for the query

Q ‘Model=f150AGeneral Component=Electrical System are shown
in Figure 13(b).

7. CONCLUSION

Incompleteness is inevitable in autonomous web databases. Re

[12]
[13]

Ba
[15]

[16]

[17]

trieving highly relevant possible answers from such databases is
challenging due to the restricted access privileges of mediator, lim-[18]
ited query patterns supported by autonomous databases, and sensi-

tivity of database and network workload in web environment. We

developed a novel query rewriting technique that tackles these chal{19]
lenges. Our approach involves rewriting the user query based on the

knowledge of database attribute correlations. The rewritten querie
are then ranked by leveraging attribute value distributions accord

5120]

ing to their likelihood of retrieving relevant possible answers before o1
they are posed to the databases. We discussed rewriting techniques
for handling queries containing selection, joins and aggregations.[22] W. Lipski. On semantic issues connected with incomplete
To support such query rewriting techniques, we developed methods

to mine attribute correlations in the form of AFDs and the value dis- [23]

tributions of AFD-enhanced classifiers, as well as query selectivity

from a small sample of the database itself. Our comprehensive ex-

periments demonstrated the effectiveness of our query processin

and knowledge mining techniques.

As we mentioned, part of the motivation for handling incom-

&

[26]

pleteness in autonomous databases is the increasing presence of
databases on the web. In this context, a related issue is handling27] A. Ola and G.Ozsoyoglu. Incomplete relational database models
query imprecision—-most users of online databases tend to pose im-

precise queries which admit answers with varying degrees of rel-

evance (c.f. [26]). In our ongoing work, we are investigating the [28]

issues of simultaneously handling data incompleteness and que

imprecision [17].
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