Hexapod-Drone Peter Malakawi Yuvraj Patel Bassam Hinnawi

Instructor: Dr Marek Sosnowski

Project objective

 Build a prototype of an affordable robot that can fly and walk with a transmitter station which can control both, drone and hexapod.

Project significance

- Prototype can be used by developers to create an advance model which supports remote operation with a camera.
- Prototype is fully compatible with any other drone and hexapod.
- Also, the communication between transmitter and receiver supports full range of 100m.

- A device that has the ability to walk like a robot or fly like a drone instead of having one or the other and can be controlled from one control station/transmitter.
- The budget for communication and final prototype was comparatively low than the market.

Radio Connection

Approach, Methods and Procedures:

Approach:

1) Controlling the two parts of the project using one controller.

Solution → Building a labVIEW program with a cheap transceiver(nRF24L01), microcontroller(Arduino Nano).

- 2) Achieving the most optimum symmetrical design to avoid complexity in programing to balance the project while flying and walking.(Used 3D modelling software)
- 3) Optimizing the motion of the hexapod for better speed and avoiding obstacles.

Methods & Procedures:

3D modeling and design

Transmitter: LabView interface

Block Diagram

Methods: Design

Lower part: Hexapod

Testing, measurements and evaluations (include data you obtained).

Test1:

Test2:

Test/3:

Verification and validation:

The video shown above shows that our project works, and could be operated from one station. However, that satisfies the objective that we were working on.

Transmitter Prototype: Able to operate both parts.

Drone Prototype: Fly and controlled

Hexapod Prototype: Walks and controlled

BUDGET

	Brushless motor	\$25	Arduino-Nano	\$15
	Servos	\$30	nRF24	\$13
	Propellers	\$25	Flight Controller	\$20
	Electromagnet	\$5	ESC	\$25
	Buck converter	\$15	Voltage converter	\$5
	Battery (hexapod drøne)	\$65	Plastic (PLA Roll 1 Kg)	\$20
\	Total	\$263		

Learning experience:

We learned a lot through this project,

- Implementing labVIEW for communications
- Utilizing 3D printing and cad software (Fusion 360)
- Embedded systems and programming
- Robotics dynamics
- Several communications protocol like I2C, SPI, PPM and serial (UART)

Future potential on the prototype:

- Camera for better control
- GPS
- Speakers and microphones for communications
- Drone: Different kind of connection between arduino
 and flight controller for more channels to work.

References:

- Marvin Ziskin , 04/19/2006 , PC95.1 IEEE Draft Standard for Safety Levels with Respect to Human Exposure to Electric, Magnetic and Electromagnetic Fields, 0 Hz to 300 GHz, IEEE standard association,
- Michael Wixted, 05/09/2017, Standard for Small Unmanned Aircraft Systems (sUAS) Used for Public Safety Operations, National Fire Protection Association,
- BSI, 10/15/1992, Specification for primary active lithium batteries for use in aircraft, International Standards and Testing Applicable to Batteries,
- Chih-Hsiung Yang, 04/11/2011, Hexapod Robot Device, NATIONAL KAOHSIUNG UNIVERSITY OF APPLIED SCIENCE,
 - Arthur Holland Michel, 09/2017, Amazon's Drone Patents, Amazon,
- Del Castillo, Patrick, Miller, Jason Curtis, 05/10/2018, FLYING AND WALKING DRONE, http://www.freepatentsonline.com
- imp.//www.ireeparemsonline.com
- Dejan. "Arduino Wireless Communication NRF24L01 Tutorial." *HowToMechatronics*, 8 Apr. 2019, howtomechatronics.com/tutorials/arduino/arduino-wireless-communication-nrf24l01-tutorial/.

Acknowledgements: We Thank Professor Marek Sosnowski for helping us in the project and give us helpful advice.

Questions???