
Performance Analysis
of CNN using CPU and
GPU Environment

Presented by,

Sayeed Anwar Syed Kamal

Yuvraj Patel

Contents

• Introduction

• GPU Working

• GPU Architecture

• CUDA

• TensorFlow and Tensors

• Convolutional Neural Network (CNN)

• Implementation of CNN using MNIST Dataset

• Results and Analysis

• Inference

• References

Introduction

• CNN is a class of deep learning neural networks. It is a huge breakthrough in the field of image recognition.

• They can be found at the core of everything from Facebook to self driving cars.

• They are fast and efficient.

• They are mainly used for image classification.

• Image classification is the process of taking an input (image) and outputting a class (cat or dog) or the
probability that the input belongs to particular class.

GPU Working

• Vertex Processing - Vertex Transformation. Each
vertex is transformed independently.

• Primitive (Triangles) Processing - Vertexes are
organized into Triangles.

• Rasterization - Process of converting a given
image described by its vector graphic format into
raster image. Each primitive is rasterized
separately.

• Fragment processing - Fragments are shaded to
compute a color at each pixel. Each fragment is
processed independently.

• Pixel operation - Fragments are blended into the
frame buffer at their pixel location.

GPU Architecture

• GPUs utilize parallelism and pipelining more
effectively than a general-purpose CPU.

• Shader processors are generally SIMD, single
instruction on every vertex or fragment.

• Modern GPUs have a unified Shader cores.
Dynamic task scheduling helps to reduce the load
on all cores. Example: Frames with more edges
require more vertex shaders and Frames with
more primitives require more fragment shaders.

• Unified Shaders are more efficient as they limit
the number of idle shader cores, Instruction set is
shared among all the shader cores, program
determines the type of shader.

CUDA

• Compute Unified Device Architecture (CUDA), It is a GPU programming language released by Nvidia. It is
written in standard C language with some extensions related to GPU computation.

• The input data is transferred to the GPU as a texture or a vertex values. The computation is then
performed by the vertex or fragment shader. The vertex or fragment shaders performs a routine for
every vertex or fragment.

• GPU programs can gather or read data from the DRAM but cannot write to specific locations in the
DRAM. CUDA features a parallel data cache or on-chip shared memories with very fast general read and
write access, that threads are used to share data with each other. Thus, applications can take advantage
of it by minimizing over fetch and round-trips to DRAM.

• A thread is basic unit of execution and a thread block is a batch of threads ,that cooperate efficiently by
sharing data through some fast-shared memory and synchronize their execution to coordinate memory
accesses.

TensorFlow and
Tensors
• TensorFlow is a framework that defines and runs

computations involving tensors. TensorFlow represents
tensors as n-dimensional array of base datatypes. Base
datatypes could be a float32, int32, or a string.

• A tensor is a mathematical object analogous to vector
but in a more general form. It is represented by an array
of components that are functions to the coordinates of a
space.

• The main object you manipulate and pass around is the
tf.Tensor. TensorFlow programs work by first building a
graph of tf.Tensor objects, detailing how each tensor is
computed based on the other available tensors and then
by running parts of this graph to achieve the desired
results.

• A Tensor has the following properties:

a) Data Type

b) Shape

Convolutional Neural Network (CNN)

• A CNN can successfully capture the Spatial and Temporal dependencies in an image through the application
of relevant filters. The network can be trained to understand the sophistication of the image better.

• An RGB image which has been separated by its three-color planes — Red, Green, and Blue. It gets
computationally intensive as we increase the image dimensionality. For example: 4K images.

Why CCNs?

• A 400X400 image in 3 channels (RGB) - 480000 input neurons
for MLPs

• Hidden layer of 1000 neurons- 480 million parameters!!!

• Take advantage of the spatial relationship of the pixels.

• Each hidden unit is connected to a section of neurons in the
input layer

• Using CNNs, with a kernel size of 40 X 40, we have

1600 X 5 (F) X 3 (C) = 24,000 weights !!

• 3 main layers in CNNs - Convolution, Pooling and Fully
connected layer

Convolution layer

• Reduces the dimensionality of an
image without losing the features that
are critical for getting a good
prediction.

• The kernel slides across the input and
sum of element wise multiplication of
input with the kernel results in feature
map

Pooling Layer

• It is responsible for reducing the
spatial size of the Convolved
Feature.

• It extracts the dominant features
which are rotational and
positional invariant, which
doesn’t affect the training.

• Max Pooling also performs as a
Noise Suppressant.

Flatten layer

• The image is converted to a
column vector.

• Flattened output is fed to a
feed-forward neural network
and backpropagation applied to
every iteration of training.

Dense layer

• A linear operation in which every input
is connected to every output by a
weight.

ReLu activation function

• The Rectified Linear Unit (ReLU) activation function is a
piecewise linear function that will output the input
directly if is positive, otherwise, it will output zero.

• It is responsible for transforming the summed weighted
input from the node into the activation of the node or
output for that input.

• It has become the default activation function for many
types of neural networks because a model that uses it is
easier to train and often achieves better performance.

Softmax fucntion

• SoftMax function: The SoftMax
regression is a form of logistic
regression that normalizes an
input value into a vector of values
that follows a probability
distribution whose total sums up
to 1.

• We can accommodate many
classes since the output values are
between the range [0,1].

Implementation of CNN using MNIST Dataset

Implementation of CNN using MNIST Dataset

Results and Analysis

• The top result corresponds to the GPU training and
the bottom result corresponds to the CPU training.

• The weights are updated in each epoch; 10 epochs
is optimum for this task as it gave an accuracy of
about 98-99%.

• When the training time for each epoch is compared
it might not look significant but as we increase the
number of epochs or look at the overall training
time for 10 epochs the GPU training time is nearly
1/3 of the total CPU training time.

• GPUs are more efficient than CPUs in implementing
CNN as GPUs can handle large data sets.

Results and Analysis

CPU GPU

More flexible to support various kind
instructions

GPUs are designed to perform in parallel the
same kind of computation

CPUs have few complex computational cores GPUs have more computational units and
having a higher bandwidth to retrieve from
memory

It is not programmed to do highly parallelized
computation

It is highly parallel, highly multithreaded
multiprocessor

Interconnection between CPU cores is
complex

Interconnection between cores is easier than
CPU

• The GPU architecture plays a key role in efficient implementation of the neural network.
• Some of the dominant features of the GPU vs CPU are listed below:

Example

• Even if GPU and CPU cores are been equalized, the implementation of neural network on GPU will be much
more efficient than CPU.

• GPUs are designed to perform in parallel the same kind of computation.

• Neural Networks are structured in a very uniform manner such that at each layer of the network thousands
of identical artificial neurons perform the same computation.

• The GPU follows Single Instruction Multiple Data(SIMD) principle.

• Therefore the structure of a neural network fits quite well with the kinds of computation that a GPU can
efficiently perform.

Inference

• Convolutional Neural Networks is not only a breakthrough in the fields of Image Processing and Video
Processing, but it has also made a huge impact in the development of AI and Computer Vision.

• This is all made possible since GPU shader cores are unified and programmable (CUDA).

• GPU architecture has flexibility along with modern software libraries like TensorFlow. It allows data scientist,
engineers, mathematicians, and other researchers to implement such computationally intensive task with
reduced time and space complexity.

• It had opened the door for new possibilities and technology.

References

• https://towardsdatascience.com/wtf-is-image-classification-8e78a8235acb

• https://towardsdatascience.com/image-classification-in-10-minutes-with-mnist-dataset-54c35b77a38d

• https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-
3bd2b1164a53

• https://ieeexplore.ieee.org/document/4700015

• https://www.cs.cmu.edu/afs/cs/academic/class/15462-f11/www/lec_slides/lec19.pdf

• http://meseec.ce.rit.edu/551-projects/spring2015/3-1.pdf

• https://www.tensorflow.org/guide/tensor

• https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-learning/

• https://datascience.stackexchange.com/questions/19220/choosing-between-cpu-and-gpu-for-training-a-
neural-network

https://towardsdatascience.com/wtf-is-image-classification-8e78a8235acb
https://towardsdatascience.com/image-classification-in-10-minutes-with-mnist-dataset-54c35b77a38d
https://towardsdatascience.com/a-comprehensive-guide-to-convolutional-neural-networks-the-eli5-way-3bd2b1164a53
https://ieeexplore.ieee.org/document/4700015
https://www.cs.cmu.edu/afs/cs/academic/class/15462-f11/www/lec_slides/lec19.pdf
http://meseec.ce.rit.edu/551-projects/spring2015/3-1.pdf
https://www.tensorflow.org/guide/tensor
https://www.analyticsvidhya.com/blog/2017/05/gpus-necessary-for-deep-learning/
https://datascience.stackexchange.com/questions/19220/choosing-between-cpu-and-gpu-for-training-a-neural-network

Thank you!

Questions are welcomed!!

