

Dip Coating SiO2 on Si & Si/SiO2/W

HERZLICH WILLKOMMEN

am Helmholtz-Zentrum Berlin

-Yuvraj Patel

- Objective/Goal
- What is dip coating?
- Challenges with dip coating
- Model used to obtain properties of the graph: ellipsometry
- Details of tools used
- Recipe for dip coating
- Obtained data and results
- Conclusion

Bigger picture

- Today, machine learning and neural networks based technology is used in almost every sector.
- We have reached the possible limit to feature size of a transistor
- Conventional CPUs and GPUs are inefficient for computing complex neural networks.
- RRams is a non-volatile technology and can do complex computations very efficiently
- RRam fabricated using thin film scales down the operational power from Volts to millivolt.
- Fabricating RRams with thin film is a current challenge to researchers.

Calendar year Source: https://www.sciencedirect.com/science/article/pii/S 1369702106715395

Device Fabrication

- Use Dip Coating method to deposit SiO2 layer
- Find optimal parameters for obtaining thin layer that can be further use as a device.

Structural characterization

- Study the structural and surface morphology, thickness of the layer deposited.
- Homogeneity, porosity of the film
- Optical properties of the SiO2 deposited
- Conclude and compare the results with other techniques

Dip coating process

- Dip coating is a gel based deposition technique
- To obtain a film, substrate is dipped and removed in a precursor solution
- The thickness of the film controlled by
 - Withdrawal speed
 - Chamber temperature
 - Evaporation rate
 - Viscosity of precursor
- The substrate is annealed afterwards in presence of oxygen to scale the oxide layer as per requirement

Source: https://www.sciencedirect.com/topics/engineering/dip-coating

Challanges with dip coating

- Withdrawal speed
- Volume of the dip coating container
- Chamber temperature
- Correct amount of Et-OH/2-propanol in the precursor solution.

Ellipsometry

- Ellipsometry is optical technique that is used for analysing the properties of the layer.
- An light beam is reflected from the surface of sample and analysed at other end to see change happened due to sample.
- Ellipsometry can give information on:
 - Optical constants
 - Film thickness
 - Porosity
 - Roughness
 - Other properties associated with change in optical response.

Source: https://www.azom.com/article.aspx?ArticleID=3755

Images of tools used

Ellipsometer

Dip coater

Recipe:

Molar ratio	TEOS/2-Propanol/HCL/H2O: 1/42/4/0.006
Sol Composition	56.3604ml TEOS + 91.505ml 2-propanol + 0.064ml HCL + 2.0526 H2O
Stirring time	90 mins
Temperature	80°C

Solution for Dip Coating	5ml Sol(The sol was directly used)
Diluted solution	5ml Sol + 2ml 2-Propanol

- Thinner film was obtained at lower speeds
- Trend was obtained for higher and lower speeds

Dipcoating at ambient chamber temperature

*Gradient at 0.05 mm/s

Thickness map

Speed (mm/s)
A gradient was obtained when moved away from center on both sides.

Dipcoating at ambient chamber temperature

Edge effect

Thin film was obtained but there was an edge effect at lower end of the coating.

Speed vs Thickness comparison

To eliminate the edge effect, chamber temperature was increased With **50°C** chamber temperature

W and Si substrate:

Si substrate: 0.25mm/s Edge effect still there

Temperature vs Thickness

Further, an attempt was done to increase the temperature for eliminating the edge effect

At 50°C, 0.25mm/s

Put optical image And say map is outside edge

The sol was diluted with isopropanol, to reduce the edge effect.

W substrate

AFM was performed to see how the surface looks

S7-15: W substrate 0.25mm/s withdrawal speed, 50°C chamber temperature

 Surface with less pinholes, although we can see peaks upto 15nm height

AFM

Deposition:

- Dip coating is cheap and easy method for depositing thin films
- Less efficient in compare to other depositing techniques
- Desired thickness can be achieved by tweaking parameters like speed, temperature, etc.

Structural Characterisation

- Ellipsometry
 - It is great tool to determine thickness, roughness and density of the film.
 - However, hard to fit some models of samples with impurities.
- AFM
 - Great tool for checking surface roughness and surface uniformity

Thank You for your time

Questions???