1 Leaking Bucket

This engineering application may be used to augment the materials in §2.3: Modeling with First Order Equations. This application is problem # 6 in §2.3.

The leaking bucket in figure 1 can be described by investigating the water level $h(t)$ as a function of time. The volume conservation of water in the system is represented by the balance of volumetric flow rate Q as follows:

$$Q_{in} - Q_{out} = Q_{stored}. \tag{1}$$

In the case when no water is flowing into the tank, $Q_{in} = 0$, we obtain

$$Q_{stored} = -Q_{out}. \tag{2}$$

The volumetric flow rate Q_{stored} can be calculated by multiplying the velocity by the area of the tank

$$Q_{stored} = A_{tank} \frac{dh(t)}{dt}. \tag{3}$$

Q_{out} is computed by multiplying the flow velocity by the area of the spout A_{spout}

$$Q_{out} = A_{spout}v(t). \tag{4}$$

![Figure 1: Sketch of a leaking bucket.](image-url)
where \(v(t) \) is the velocity of water coming out of the straw. For fluids of height \(h(t) \), the velocity of water coming out at the bottom is \(v(t) = \sqrt{2gh(t)} \). Therefore we arrive at the governing equation for \(h(t) \) as

\[
A_{tank} \frac{dh(t)}{dt} = -A_{spout} \sqrt{2gh}.
\] (5)

Rearranging terms, we obtain the following equation

\[
\frac{dh(t)}{dt} = -K \sqrt{h},
\] (6)

with \(K = \frac{A_{spout}}{A_{tank}} \sqrt{2g} > 0 \). Before solving equation 6, we observe that the water height is decreasing with time as \(\frac{dh}{dt} < 0 \) for all \(h \geq 0 \). With the initial condition \(h(0) = h_0 \), equation 6 can be solved by separation of variables as follows.

\[
\frac{dh}{\sqrt{h}} = -K dt, \quad \Rightarrow \quad \frac{dh}{\sqrt{h}} = -K dt.
\] (7)

Integrating both sides

\[
\int \frac{dh}{\sqrt{h}} = \int -K dt, \quad \Rightarrow \quad 2\sqrt{h} = -Kt + c,
\] (8)

where the integration constant \(c = 2\sqrt{h_0} \). Thus the water height can be expressed explicitly in terms of time as

\[
h(t) = \left(\sqrt{h_0} - \frac{Kt}{2} \right)^2.
\] (9)

Note that the solution \(h(t) \) in equation 9 decreases from the initial height \(h_0 \), and at time \(t_{end} = \frac{2\sqrt{h_0}}{K} \), the water is completely drained out (by gravity) and \(h(t_{end}) = 0 \).

2 Forced Vibrations
1) WITH DAMPING \[m\ddot{u} + f u' + ku = F_0 \cos \omega t \] \hspace{1cm} (8) \hspace{1cm} \text{damping} \hspace{1cm} \to 0 \text{ damping} \hspace{1cm} F_0 \cos \omega t \text{ 'harmonic' forcing} \\

Solution \[u(t) = u_c(t) + u_p(t) \]

\text{particular solution} \[u_p = F_0 \cos \omega t \]

\text{complementary solution} \[u_c = 0 \]

From p. 37, \[u_c(t) = \frac{A e^{\alpha t} + B e^{-\alpha t}}{\alpha^2 - 4\Omega^2} \]

\[t^2 - 4\Omega^2 > 0, \quad \gamma, \Omega < 0 \]

\[t^2 - 4\Omega^2 = 0, \quad \gamma = \Omega = \frac{1}{2\mu} \]

\[t^2 - 4\Omega^2 < 0, \quad \mu = \sqrt{4\mu^2 - \Omega^2} \]

with damping, \(t \to \infty, \) \(u_c(t) \to 0 \) as \(t \to \infty \). So, \(u_c(t) \), which contains the initial condition data \(u(0) \) and \(u'(0) \) in \(A, B, \alpha, \) and \(\Omega \), is 'transient' - negligible for large times.

\[u_p(t) = A \cos \omega t + B \sin \omega t \]

\[\text{periodic, steady-state (forced)} \]

\[= R \cos(\omega t - \delta) \] \hspace{1cm} (10) \hspace{1cm} \text{large-time response.}

Find \(R, \delta \) by substitution in (8). \[(u_p' = -R \sin(\omega t - \delta), \ u_p'' = -R^2 \cos(\omega t - \delta)) \]

\[R \left[-m \Omega^2 \cos(\omega t - \delta) - f \Omega \sin(\omega t - \delta) + k \cos(\omega t - \delta) \right] = F_0 \cos \omega t. \]

\[\therefore \frac{k}{F_0} \left(\{ k - m \Omega^2 \} \cos \delta + f \Omega \sin \delta + k \cos \omega t \right) = \cos \omega t. \]

\[\text{equate (lin. indep.) \ \sin \omega t, \ \cos \omega t \ terms, \ \text{put} \ \omega \delta = \frac{k}{m} \ \text{to eliminate} \ \delta.} \]
\[\sin \theta = \mu (w_0^2 - w^2) \sin \theta - F_0 \cos \theta = 0 \] \hspace{1cm} (i) \\
\cos \theta = \frac{F_0}{K} \hspace{1cm} (ii) \\

Solve \(\mu (w_0^2 - w^2) (i) + F_0 (ii) \Rightarrow \)

\[\left(\mu^2 (w_0^2 - w^2)^2 + F_0^2 \right) \sin \theta = \frac{F_0}{K} \]

\[\mu (w_0^2 - w^2) (i) - F_0 (i) \Rightarrow \]

\[\left(\mu^2 (w_0^2 - w^2)^2 + F_0^2 \right) \cos \theta = \frac{F_0 \mu (w_0^2 - w^2)}{K} \]

Let \(\Delta = \sqrt{\left(\mu^2 (w_0^2 - w^2)^2 + F_0^2 \right)} \). Square and add \(\Rightarrow \)

\[\Delta^2 (\cos^2 \theta + \sin^2 \theta) = \left(\frac{F_0}{K} \right)^2 \cdot \Delta^2 \]

\[\therefore \Delta = \frac{F_0}{K} \text{, then } \cos \theta = \frac{\mu (w_0^2 - w^2)}{\Delta}, \text{ } \sin \theta = \frac{F_0}{\Delta} \] \hspace{1cm} (11)

\[\exp \left(\Delta \cos \left(\omega t - \phi \right) \right) \]

Amplitude: \(\quad \text{Phase Difference, Between Response } \phi \text{ and Forcing } \omega \).

How do \(\Delta \) and \(\phi \) depend on \(w_0 \) ? \(\Delta = \sqrt{\left(\mu^2 (w_0^2 - w^2)^2 + F_0^2 \right)} \) \hspace{1cm} (12)

\(\omega_0^2 = \frac{K}{m} \)

\[\frac{\Delta k}{F_0} = \frac{1}{\sqrt{\left(1 - \frac{w^2}{\omega_0^2} \right)^2 + \left(\frac{\omega^2}{\omega_0^2} \right)} \hspace{1cm} (\text{13}) \]

where \(\Gamma = \frac{\omega^2}{\omega_0^2} \).

Here, each 'group': \(\frac{\Delta k}{F_0}, \frac{\omega^2}{\omega_0^2}, \omega \) is dimensionless. Parameters (\(w, k, \)

\(F_0, \omega_0 \)) to 3 dimensionless Groups.

\(k \to 0 \); \(\frac{\Delta k}{F_0} \to 1 \); \(\omega \to \omega_0 \); \(k \to 0 \); \(\frac{\omega^2}{\omega_0^2} \to 0 \)

LIMIT OF \(\omega \) \(\text{High freq. forcing. No Amplitude.} \)
At what forcing frequency ω is the amplitude a maximum?

\[Q' = \left(\frac{\Delta k}{\omega_0} \right)^2 = \frac{1}{(1-\rho)^2 + \rho} \quad \text{where} \quad \rho = \frac{\omega^2}{\omega_0^2} \quad \frac{d}{d\rho} \left((1-\rho)^2 + \rho \right) = 0 \Rightarrow \]

\[-2(1-\rho) + \rho = 0 \Rightarrow \rho = \frac{\omega^2}{\omega_0^2} = 1 - \frac{1}{2} \Rightarrow \omega_m^2 = \omega_0^2 \left(1 - \frac{1}{2} \right) \left(\frac{\omega_0^2}{\omega_m^2} \right) \]

or \[\omega_m^2 = \omega_0^2 \left(1 - \frac{\omega^2}{\omega_0^2} \right) \] (This causes max. amplitude)

Then \[Q' = \frac{1}{\Delta(1-\rho)} \Rightarrow \frac{\Delta k}{\omega_0} = \frac{k}{\Delta \omega_0 \left(1 - \frac{\omega^2}{4\omega_0^2} \right)^{1/2}}. \]

For small damping, \(t << \omega_0 \Delta \omega \) = \(\frac{k}{\omega_0} \), \(\frac{\Delta k}{\omega_0} \) ~ \(\frac{k}{\Delta \omega_0} \) \(\rightarrow \) \(\infty \) as \(t \rightarrow 0 \).

\[\frac{\Delta k}{\omega_0} \]
\[\omega_0 \]

For \(\Delta = 0.015 \)

Max. and \(\frac{\Delta k}{\omega_0} > 8 \)

"Near Resonance"

(\(\text{This is Fig. 382, p. 321 in book} \))

ZERO DAMPING: \(\Delta = 0 \Rightarrow \rho = 0 \), Then (13) \(\Rightarrow \frac{\Delta k}{\omega_0} = \frac{1}{1 - \frac{\omega^2}{\omega_0^2}} \)

\(\rightarrow \infty \) as \(\omega \rightarrow \omega_0 \)

(ii) \(\delta \)-phase shift formula (11) \(\sin \delta = \frac{\omega_1 A}{\Delta} \), \(\cos \delta = \frac{\omega_0 (\omega_1^2 - \omega_0^2)}{\Delta} \), \(\Delta = \sqrt{\left(\omega_1^2 - \omega_0^2 \right)^2 + \omega_0^2 \omega_1^2} \)

\(\omega \rightarrow 0 \): \(\sin \delta \rightarrow 0 \), \(\cos \delta \rightarrow 1 \) \(\Rightarrow \delta \rightarrow 0 \). Then (low frequency forcing) response \(\omega_p = A \cos (\omega t - \delta) \) nearly in phase with forcing \(\omega_0 \cos \omega_0 t \).

\(\frac{\omega}{\omega_0} = 1 \); \(\sin \delta = 1 \), \(\cos \delta = 0 \) \(\Rightarrow \delta = \frac{\pi}{2} \).

Response is behind forcing by \(\frac{\pi}{2} \)
\[
\frac{c_l}{c_o} \gg 1: \quad (\frac{c_l \to \infty}{c_o}) \quad \text{sin} \delta \to \frac{\delta}{\omega} \to 0, \quad \text{cos} \delta \to -1 \to \delta \to \pi.
\]

Response Lags Forcing by \pi

"\pi out of phase."

\[
\delta
\]

\[
\pi
\]

\[
\begin{array}{c}
\text{Response Lags Forcing by } \pi \\
\text{"\pi out of Phase"}
\end{array}
\]

\[
\text{small damping} \\
\left(\frac{c_l}{m} \ll 1 \right)
\]

\[
\text{rapid change in } \delta
\]

\[
\text{from } \delta = \pi \text{ for } c_l = c_o
\]

\[
\text{(This is Fig. 3.3.3, p. 212 in book)}
\]

\[
\frac{c_l}{c_o}
\]

\[
\text{2) Forces, with no damping, (p. 214)}
\]

\[
\text{not resonant.}
\]

\[
\begin{aligned}
\text{General solution:} \\
\dot{u} + \omega_0 u &= F_0 \cos \omega t \\
(17) \\
\omega_0 &= \sqrt{\frac{c_l}{m}} \\
\end{aligned}
\]

\[
\begin{aligned}
\text{Check this.}
\end{aligned}
\]

\[
\text{up check this.}
\]

\[
\text{No forcing periodic}
\]

\[
\text{no transient}
\]

\[
\text{and substitute for}
\]

\[
\text{unresonant coefficients.}
\]

\[
\text{c}_1 \text{, and } c_2 \text{ determined by IC's. Take example of motion beginning from zero displacement (} u(0) = 0 \text{) at rest (} u'(0) = 0 \text{) — only the forcing excites: } u(0) = 0 \Rightarrow \}
\]

\[
\begin{aligned}
\text{c}_1 &= -\frac{F_0}{m(\omega_0^2 - \omega^2)} \quad \text{, } \\
u(0) = 0 \Rightarrow \quad c_2 &= 0 \quad \text{Then}
\end{aligned}
\]

\[
\begin{aligned}
\dot{u} &= \frac{F_0}{m(\omega_0^2 - \omega^2)} (\cos \omega t - \cos \omega_0 t) \\
(20)
\end{aligned}
\]

\[
\text{Equal Amplitudes}
\]

\[
\text{Recall } \cos(A-B) = \cos(A+B) = 2 \sin A \cdot \sin B.
\]

\[
\text{but } A-B = \omega t \quad \Rightarrow \quad A = (\omega + \omega_0) t, \quad B = (\omega - \omega_0) t.
\]
\[u = \frac{2u_0}{\omega (\omega^2 - \omega_0^2)} \sin(\omega_0 - \omega)t \sin(\omega_0 + \omega)t \] (21)

For \(\omega_0 \) close to \(\omega_0 \)
But \(\omega_0 \neq \omega_0 \).
Near resonance:
No Banzans.

\[\omega_0 + \omega \approx \omega_0 \]

[Amplitude modulation]
BEATS

\[\phi(t) = (2.77...) \sin \frac{\pi}{10} \sin \frac{9\pi}{10} \]

3) Forces, no Banzans
Resonant (p215)

\[\omega = \omega_0 \]
Full response for
\[u_p = (A + B) \cos \omega_0 t + (C + D) \sin \omega_0 t \]

\[\omega_0 = \frac{1}{2 \omega_0} \]

The general solution is
\[u = c_1 \cos \omega_0 t + c_2 \sin \omega_0 t + \frac{\phi(t)}{2 \omega_0} \sin \omega_0 t \]

The ICs give \(c_1, c_2 \)

\[u_p \text{ oscillatory and 'diodes without bound'} \]
For large \(t \), \(\text{hierarchy/swallow amplitude model 'fang' of } u \)