
Math 222 Spring 2016, Additional Engineering Applications of

Di↵erential Equations

1 Leaking Bucket

This engineering application may be used to augment the materials in §2.3: Modeling with
First Order Equations. This application is problem # 6 in §2.3.

The leaking bucket in figure 1 can be described by investigating the water level h(t) as
a function of time. The volume conservation of water in the system is represented by the

Figure 1: Sketch of a leaking bucket.

balance of volumetric flow rate Q as follows:
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The volumetric flow rate Q
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can be calculated by multiplying the velocity by the area of
the tank
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where v(t) is the velocity of water coming out of the straw. For fluids of height h(t), the
velocity of water coming out at the bottom is v(t) =

p
2gh(t). Therefore we arrive at the

governing equation for h(t) as
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Rearranging terms, we obtain the following equation
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with K = A
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2g > 0. Before solving equation 6, we observe that the water height is

decreasing with time as dh

dt

< 0 for all h � 0. With the initial condition h(0) = h0, equation 6
can be solved by separation of variables as follows.
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Integrating both sides
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where the integration constant c = 2
p

h0. Thus the water height can be expressed explicitly
in terms of time as
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Note that the solution h(t) in equation 9 decreases from the initial height h0, and at time

t
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= 2
p
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K

, the water is completely drained out (by gravity) and h(t
end

) = 0.

2 Forced Vibrations
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