
Math 222 Spring 2016, Linear Algebra Review

We consider 2× 2 systems, that is, two linear algebraic equations in two unknowns. The
results can be generalized to n × n systems but these will not be needed in the context of
this course, where we consider systems of just two coupled first order linear ODEs.

1. The general case. The general 2× 2 system is

a11x1 + a12x2 = b1

a21x1 + a22x2 = b2 (1)

where all quantities are real, {aij} and {bi} are given and we want to solve for {xi} with i
and j = 1, 2. It is often useful to write this in matrix form as(

a11 a12
a21 a22

)(
x1
x2

)
=

(
b1
b2

)
, (2)

or with vector notation as

Ax = b , where A =

(
a11 a12
a21 a22

)
,x =

(
x1
x2

)
, and b =

(
b1
b2

)
. (3)

Here A = (aij) is a 2 × 2 matrix, with 2 horizontal rows and two vertical columns, and aij
is the element (or entry) in the ith row and the jth column. Both x and b are 2× 1 column
vectors. In general, an m× n matrix has m rows and n columns.

On the left hand side of (2) or (3), Ax is an example of matrix multiplication, which is
defined as follows:

Definition. If A = (aij) is a m× n matrix and B = (bij) is a n× r matrix, their product
AB is an m × r matrix with element in the ith row and jth column given by multiplying
each element in the ith row of A by the corresponding element in the jth column of B.

In other words, the i, jth element of AB is the dot product of the ith row of A with the
jth column of B, both considered as vectors of dimension n. Equivalently, if C = AB then

cij =
n∑

k=1

aikbkj .

Example 1. If A =

(
1 3
2 −1

)
and B =

(
2 4
−1 2

)
then AB =

(
−1 10
5 6

)
. Notice

however that BA =

(
10 2
3 −5

)
. It is true in general that, even for square matrices, the

matrix product AB 6= BA, so that the matrix product ‘does not commute’.
We have the ‘identity matrix’ which has entries 1 along the ‘leading diagonal’ and 0

elsewhere. So I =

(
1 0
0 1

)
. In this case only, for any matrix A we have AI = IA = A.
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2. Solution of a linear algebraic system. The next two examples show the different
types of solution structure we can find when solving Ax = b.

Example 2. Solve

x1 + 3x2 = 5 (i)

2x1 − x2 = 3 (ii).

The quickest and simplest way is to eliminate one of x1 or x2 then find the other by ‘back
substitution’. For example, we can form (ii)−2×(i) to eliminate x1 and find −7x2 = −7, so
that x2 = 1. Substitution back in (i) then gives x1 = 5− 3x2 = 2.

Notice that geometrically the two equations represent two straight lines in the x1, x2-plane
that intersect in the one point (2,1).

Example 3. Solve, where α and β are parameters,

x1 + 2x2 = α (i)

3x1 + 6x2 = β (ii).

We can form (ii) −3×(i) to eliminate x1, and we find that

0x2 = β − 3α (iii).

This leads to two cases:

(a) If β = 3α then (iii) is satisfied for any x2. We have x1 + 2x2 = α in (i), and equation
(ii) is just 3×(i), which gives no further information. In the x1, x2-plane we have a line of
solutions, or infinitely many solutions, each one being a point on the line. We can let x2 = t
to find parametric equations for the line, as x1 = α − 2t and x2 = t. We have a solution
for all t no matter what value α takes – when β = 3α. Geometrically, (i) and (ii) are two
coincident lines.

(b) If β 6= 3α then we can not satisfy (iii) for any x2. In this case there is no solution
for x1 and x2. Equations (i) and (ii) are said to be ‘inconsistent’. Geometrically, (i) and (ii)
are two parallel lines that are not coincident, and therefore do not intersect .

Homogeneous and nonhomogeneous. A system of linear algebraic equations Ax = b is
‘nonhomogeneous’ when the right hand side b 6= 0. When b = 0 we have Ax = 0 and the
system is ‘homogeneous’. Notice that this terminology is very similar to the use of the same
words in the context of ODE’s for Lu = f , where L is a differential operator and u and f
are functions of t.

If we set b = 0 in the last two examples, then in example 2 we find that there is just one
solution again, and it is x = (x1, x2)

T = 0. However, in example 3, we are in case (a), not
(b), since β = 3α = 0, and we have the nonzero solution x = t(−2, 1)T for any t.

3. Return to the general case. In

a11x1 + a12x2 = b1 (i)

a21x1 + a22x2 = b2 (ii) (4)
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we can eliminate x1 by taking a11×(ii) −a21×(i) to find

(a11a22 − a12a21)x2 = a11b2 − a21b1 . (5)

Back substitution with this works, but is slow, so we eliminate x2 by taking a22×(i) −a12×(ii)
to find

(a11a22 − a12a21)x1 = a22b1 − a12b2 . (6)

On the left hand side of both expressions, we have the determinant of A,

detA =

∣∣∣∣ a11 a12
a21 a22

∣∣∣∣ = a11a22 − a12a21 ,

and we can write the solution for x1 and x2 in vector form as(
x1
x2

)
=

1

detA

(
a22 −a12
−a21 a11

)(
b1
b2

)
. (7)

You may recognize this as ‘Cramer’s rule’ for solving linear algebraic equations. It can be
generalized to larger n×n systems. It is OK to use it when n = 2, although it has no advan-
tage over elimination and back substitution, and it becomes increasingly slow to compute,
either by hand or numerically, as n increases. Even when n = 3 the method of elimination
and back substitution is quicker. It is then referred to as Gaussian elimination, and the
construction of linear combinations to eliminate components of x before back substitution
is done by ‘elementary row operations’.

Inverse of a matrix. We have constructed (7) because it makes an important point that
is true for general n × n systems: Notice that we can only reason from (5) and (6) to (7)
when the matrix A is such that detA 6= 0. Also, when detA 6= 0, we can write (7) in vector
notation as

x = A−1b , where A−1 =
1

detA

(
a22 −a12
−a21 a11

)
, (8)

where A−1 is called the ‘inverse’ of the matrix A. As an exercise, we can check by matrix
multiplication in the 2× 2 case, that

AA−1 = I and A−1A = I . (9)

4. Central Result. From (7) we can conclude that for the 2× 2 case, and it is true in
general when A is an n× n matrix and x and b are n-dimensional column vectors, that:

(i) When the matrix A is such that detA 6= 0, the inverse matrix A−1 exists, and the
solution of the system Ax = b is x = A−1b. Both A−1 and x are unique. The matrix A is
said to be ‘nonsingular’ or ‘invertible’.
(ii) Conversely, when A is such that detA = 0, there is no inverse matrix A−1. The matrix
A is said to be ‘singular’ or ‘non-invertible’.
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In what follows below, we need the second part (ii). It is true in general that it is only
when detA = 0 that the homogeneous system Ax = 0 has nonzero solutions. In the first
part (i), with b = 0 the only solution is x = 0.

Example 4. We saw a contrast or difference in the form that the solution of a 2× 2 system
can take in examples (2) and (3) above. The difference is due to the value of the determinant
detA, and we have examples of each of the two cases (i) and (ii) of the central result (4)
above.

In example (2), check that detA = 1(−1) − 3(2) = −7 6= 0, so we are in case (i). A is
invertible, and we can find the inverse matrix from (8). It is

A−1 =

(
1/7 3/7
2/7 −1/7

)
.

We can then compute x = A−1b to find the unique solution or single point x = A−1b =
(2, 1)T , but the elimination we performed earlier is probably quicker.

Conversely, in example (3), detA = 0. We saw that the nonhomogeneous system Ax = b
only has a solution for a specific choice of b, and then it is nonunique and is a line of points.
For other b 6= 0, the nonhomogeneous has system no solution. However, the homogeneous
system Ax = 0 has nonzero solutions, as we saw when we introduced the terms homogeneous
and nonhomogeneous for algebraic equations.

5. Eigenvalues and eigenvectors of a 2 × 2 matrix.

We have seen that Ax is a vector, and when A is given or fixed it takes or maps a general
point x in the plane to another point in the plane. We can think of the two points as the
tips of two vectors, both with their tails at the origin. In this way a matrix can be thought
of as a linear map or transformation of the plane that maps or transforms the vector x to
the vector Ax.

Example 5. The matrix A =

(
1 3
2 −1

)
maps the unit vector i =

(
1
0

)
that is parallel

to the x-axis to Ai =

(
1
2

)
and it maps the unit vector j =

(
0
1

)
that is parallel to the

y-axis to Aj =

(
3
−1

)
.

There are vectors in particular directions that remain unchanged by the action of A, and
they turn out to be important in many applications. For these, the vector Ax is parallel to
x, and so one is a scalar multiple of the other. We then have

Ax = λx for x 6= 0 and some λ . (10)

Now, (10) is a linear algebraic system of equations. Its solutions for x are the called the
‘eigenvectors’ of A and the corresponding values of λ are the ‘eigenvalues’ of A.

To find these, notice that for any vector x if we take the identity matrix I then Ix = x,
since

Ix =

(
1 0
0 1

)(
x1
x2

)
=

(
x1
x2

)
= x.
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So, we can write (10) as Ax = λIx, Next, put λ on the left hand side to find Ax−λIx = 0,
and then group the terms in x to find (A − λI)x = 0. Notice that, like A, λI is also a
square 2× 2 matrix. We now have the homogeneous algebraic system

(A− λI)x = 0 or

(
a11 − λ a12
a21 a22 − λ

)(
x1
x2

)
=

(
0
0

)
. (11)

It is a part of the definition of an eigenvector x at (10) that x 6= 0, so we are looking
for solutions of (11) that are nonzero. From our central result on linear algebra above, we
therefore require that

det(A− λI) = det

(
a11 − λ a12
a21 a22 − λ

)
= 0. (12)

This gives a quadratic equation for the eigenvalues λ that has real coefficients when the
matrix A is real. It is

(a11 − λ)(a22 − λ)− a12a21 = 0 or λ2 − (a11 + a22)λ+ a11a22 − a12a21 = 0. (13)

This is called the ‘characteristic polynomial’ of A, and for real A its two roots are either real
or a complex conjugate pair. Once we have found the two eigenvalues λ1 and λ2, we return
to the linear system (11) to find the corresponding eigenvectors x(1) and x(2). We can also
write (13) as

λ2 − λ tr(A) + det(A) = 0 ,

where tr(A) = a11 + a22 = sum of diagonal entries of A ,

which is called the ‘trace of A’.

Example 6. (Question 20 from the problems in section 7.3.) Find the eigenvalues and

eigenvectors of the matrix A =

(
1
√

3√
3 −1

)
.

These are the solutions of (A− λI)x = 0, and so(
1− λ

√
3√

3 −1− λ

)(
x1
x2

)
=

(
0
0

)
.

For solutions x 6= 0 the characteristic polynomial is det(A−λI) = 0, so that the eigenvalues
are given by

−(1− λ)(1 + λ)− 3 = 0 ⇒ λ2 = 4 ⇒ λ1 = 2, and λ2 = −2.

(a) With eigenvalue λ1 = 2, (A− λ1I)x = 0 is(
−1

√
3√

3 −3

)(
x1
x2

)
=

(
0
0

)
⇒ −x1 +

√
3x2 = 0 (i)√

3x1 − 3x2 = 0 (ii).
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Equation (i) implies that x1 =
√

3x2, and equation (ii)= −
√

3×(i). Let x2 = c1 be a

parameter, then the eigenvector with eigenvalue λ1 = 2 is x(1) = c1

( √
3

1

)
. We can check

that Ax(1) = 2x(1).

(b) With eigenvalue λ2 = −2, (A− λ2I)x = 0 is(
3
√

3√
3 1

)(
x1
x2

)
=

(
0
0

)
⇒ 3x1 +

√
3x2 = 0 (i)√

3x1 + x2 = 0 (ii).

Equation (i) implies that x1 = −x2/
√

3, and equation (ii)=(i)/
√

3. Let x1 = c2 be a

parameter, then the eigenvector with eigenvalue λ2 = −2 is x(2) = c2

(
1
−
√

3

)
. We can

check that Ax(2) = −2x(2)

Example 7. In this example, the matrix A is real but the eigenvalues and eigenvectors are

complex. Find the eigenvalues and eigenvectors of the matrix A =

(
1 1
−2 3

)
.

These are the solutions of (A− λI)x = 0, and so(
1− λ 1
−2 3− λ

)(
x1
x2

)
=

(
0
0

)
.

The characteristic polynomial is det(A− λI) = 0, so that the eigenvalues are given by

(1− λ)(3− λ) + 2 = 0 ⇒ λ2 − 4λ+ 5 = 0 ⇒ λ1 = 2 + i, and λ2 = 2− i.

Since A is real the eigenvalues are a complex conjugate pair, i.e., λ2 = λ1, where the bar
denotes the complex conjugate u+ iv = u− iv.

(a) With eigenvalue λ1 = 2 + i, (A− λ1I)x = 0 is(
−1− i 1
−2 1− i

)(
x1
x2

)
=

(
0
0

)
⇒ −(1 + i)x1 + x2 = 0 (i)
−2x1 + (1− i)x2 = 0 (ii).

Equation (i) implies that x2 = (1 + i)x1, and equation (ii)= (1 − i)×(i). Let x1 = c1 be a

parameter, then the eigenvector with eigenvalue λ1 = 2 + i is x(1) = c1

(
1

1 + i

)
.

(b) With eigenvalue λ2 = λ1 = 2 − i, we can compute the eigenvector using the method
above. Or, since λ1 and x(1) are an eigenvalue and eigenvector pair, (A−λ1I)x(1) = 0. But
A and I are real, so that A = A, I = I, and λ2 = λ1. So, taking the complex conjugate of
the relation for λ1 and x(1), we have (A− λ2I)x(1) = 0, and so x(2) = x(1). The eigenvector

with eigenvalue λ2 = 2− i is therefore x(2) = c2

(
1

1− i

)
, where c2 is a parameter.
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