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The coarse-grained molecular dynamics (MD) or Brownian dynamics (BD) simulation is a particle-based
approach that has been applied to a wide range of biological problems that involve interactions with surrounding
fluid molecules or the so-called hydrodynamic interactions (HIs). In this paper, an efficient algorithm is proposed
to simulate the motion of a single DNA molecule in linear flows. The algorithm utilizes the integrating factor
to cope with the effect of the linear flow of the surrounding fluid and applies the Metropolis method (MM) by
Bou-Rabee, Donev, and Vanden-Eijnden [Multiscale Model. Simul. 12, 781 (2014)] to achieve more efficient BD
simulation. Thus our method permits much larger time step size than previous methods while still maintaining
the stability of the BD simulation, which is advantageous for long-time BD simulation. Our numerical results
on λ-DNA agree very well with both experimental data and previous simulation results. Finally, when combined
with fast algorithms such as the fast multipole method which has nearly optimal complexity in the total number
of beads, the resulting method is parallelizable, scalable to large systems, and stable for large time step size,
thus making the long-time large-scale BD simulation within practical reach. This will be useful for the study of
membranes, long-chain molecules, and a large collection of molecules in the fluids.
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I. INTRODUCTION

The dynamics of a single DNA or polymer macromolecule
in fluid flow has been extensively investigated experimentally
([1,2] and references therein), theoretically [3–5], and numer-
ically [6,7]. Bulk rheological experiments such as flow bi-
refringence and light scattering measurements give inference
of polymer conformation, orientation, and chain stretch in
fluid flows. The advent of single molecule visualizations using
fluorescence microscopy allows for the direct observation of
complex dynamics of individual macromolecules in dilute so-
lutions under shear, extensional, and general two-dimensional
mixed flows [2,8–11]. These measurements provide data
for direct comparison against fully parametrized models of
macromolecules, such as the bead-spring model for DNA
with finite extensibility, excluded volume (EV) [12] effects,
and hydrodynamic interactions (HI) [7]. Brownian dynamics
(BD) simulations of bead-spring and bead-rod models with
free-draining assumption (no hydrodynamic interactions) give
quantitative agreement with short chains of double stranded
DNA experiments, for example, ∼21 μm long λ-DNA
[13–15]. However, for longer chains of DNA, HI needs to
be included for quantitative agreement. For truly flexible
polymers such as single stranded DNA or synthetic polymers,
one can expect that HI will be important even for short chains.

Following Ermak and McCammon [4], Schroeder et al.
modeled the DNA macromolecule as a system of N parti-
cles subject to interparticle forces, fluctuating HI and EV
forces [7,13,14]. They designed a semi-implicit predictor-
corrector scheme for simulating the Brownian system, and
illustrated how effects of HI and EV between monomers in a
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flexible polymer chain influence both the equilibrium and non-
equilibrium physical properties of DNA macromolecules [7],
consistent with the experimental observations. The non-local
HI between the DNA macromolecule and the surrounding
fluid involves an integral of hydrodynamic forces between
a point and the rest of the macromolecule. Within the coarse-
grained framework, this integral is equivalent to a sum of all
hydrodynamic forces between a bead and the rest of the system.
Here we adopt the Rotne-Prager-Yamakawa (RPY) tensor [16]
(i.e., the mobility tensor) for HI effects:
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where Dij is the mobility of bead i due to bead j in three
dimensions, Iij the 3 × 3 identity matrix, and ζres = 6πηa is
the bead resistivity with η the solvent viscosity and a the radius
of beads.

There are two main challenges for the long-time large-scale
BD simulations with HI and EV effects. First, the correlated
random noises in the change of displacement vectors at each
time step are proportional to

√
�t with �t the time step

size. This makes the design of high-order marching scheme
very difficult and forces very small �t for many explicit
or semi-implicit numerical schemes in order to avoid the
numerical instability. The problem becomes much more
severe for long-time BD simulations since it then requires
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a very large total number of time steps for the system to
reach the desired state, which very often leads to weeks of
simulation time even for one run.

Second, the direct evaluation of the particle interaction at
each time step requires O(N2) operations where N is the total
number of particles in the system; and the generation of the
correlated random displacements requires O(N3) operations
if the standard Choleski factorization is used or O(KN2) if the
Chebyshev spectral approximation is used for computing the
product of the matrix square root and an arbitrary vector (here
K is the condition number of the covariance matrix) (see, for
example, [17]).

To summarize, in order to efficiently utilize the BD simula-
tion as a practical tool to study the properties of large systems,
say, many polymers or a large collection of DNA molecules in a
fluid, it is essential to address the following two questions: how
to numerically integrate the system with greater accuracy and
better stability property which enables much large time step
size? How to expedite the calculations of long-range particle
interactions and associated correlated random effects in BD
simulations with HI, especially for large N?

For BD simulations near equilibrium, a Metropolis scheme
for the temporal integration has been recently proposed [18,19]
for a Markov process whose generator is self-adjoint (with
respect to a density function) to expedite simulations to reach
equilibrium in a timely fashion. Under this scheme, stable and
accurate BD simulations of DNA in a solvent are obtained
using time step sizes that are orders of magnitude larger than
those for predictor-corrector schemes [6,7,14]. However, such
a Metropolis scheme relies heavily on the self-adjointness of
the Markov process generator for a quiescent flow.

In this work, we present an efficient algorithm for the
simulations of the dynamics of DNA macromolecules under
linear flows. Our method is based upon the Metropolis
scheme developed in [19] for self-adjoint diffusions, which is
applicable for the study of the DNA molecule to its equilibrium
configurations in a quiescent flow. When a linear flow such as
an extensional or a shear flow is present in the surrounding
fluid, the diffusion process is not self-adjoint anymore. We
first apply the method of integrating factors to recast the
associated system of stochastic differential equations (SDE)
into a form such that the effect of the linear flow is taken
into account by the integrating factor. We then modify the
Metropolis scheme in [19] to update the displacements of
beads which are the coarse-grained representation of the long
chain DNA molecule. Our numerical experiments show that
our scheme allows much greater time step size in the BD
simulation and avoids the numerical instability. The numerical
results on the study of λ-DNA agree very well with the
experimental data [2,11] and previous simulation results [7].
Moreover, the total simulation time is significantly reduced
in our methods as compared with the semi-implicit predictor-
corrector scheme [7].

For BD simulations that involve a “large” number of
interacting particles (so large that the calculation of their
mutual interactions becomes the computational bottleneck),
recent work in [17,20] reduces the computational cost of
particle interactions from O(N2) to O(N ) and the cost of
generating the correlated random displacements from O(N3)
or O(KN2) to O(KN ). These works yield an essentially linear

algorithm with respect to the total number of particles in the
BD simulation of interacting particles. The method devel-
oped in [17,20] extends the original fast multipole method
(FMM) [21] to the case of the RPY tensor and combines
it with the spectral Lanczos decomposition method (SLDM)
to generate correlated random vectors whose correlation is
determined by the RPY tensor. To demonstrate that long-time
large-scale BD simulations (with or without linear flows) for
large systems of interacting particles are within practical reach
when our modified Metropolis scheme is combined with the
fast method in [17,20], we use two examples to illustrate that
our algorithms do efficiently capture the HI effects in a large
BD system when compared with experimental results: One is
the hysteretic extension of a long DNA molecule in a linear
extensional flow, and the other is the multiple DNA molecules
in an oscillatory shear flow.

This paper is organized as follows. In Sec. II the formulation
for the BD simulation is presented along with a discussion
on the relevant physical parameters and forces. Section III
provides a detailed description of the numerical method used
in this paper. In Sec. IV we demonstrate the performance of our
numerical scheme by comparing our numerical results with the
experimental data [2,11] and previous simulation results [7]
where the motion of a single DNA molecule in a quiescent,
extensional, or shear flow is studied and the DNA molecule
is modeled via 29 beads. In Sec. V we briefly discuss the
extension of our method to the study of large systems by
combining it with the FMM for the RPY tensor and other fast
algorithms. Finally Sec. VI contains a short conclusion and
discussion for future work.

II. BROWNIAN DYNAMIC SIMULATION OF A DNA
MOLECULE WITH HI

The DNA or polymer macromolecule is coarse-grained into
a system of N beads described by the Langevin equation [4]
with hydrodynamic interactions. The governing equation for
the position vector ri of the ith bead is

mi

d2ri

dt2
=

∑
j

ζij ·
(

vj − drj

dt

)
+ Fi +

√
2

∑
j

σij · Wj, (4)

where mi is the mass of bead i, vj is the solvent velocity, and
ζij is the friction coefficient tensor. The coefficient matrix σ

connects the thermal fluctuations of the particles through hy-
drodynamic interactions. In the Ermak-McCammon model [4],
it is related to ζ with ζ = σ�σ/kBT , where kBT is the thermal
energy. Wj is the thermal fluctuation modeled as a Wiener
process with mean 0 and variance dt . Thus, the RHS of Eq. (4)
is the total force acting on the bead i including the drag force,
total inter-particle force and the thermal fluctuating HI.

Ignoring the bead inertia, Eq. (4) can be written as a first-
order stochastic differential equation (SDE):
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+
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αij · dWj , (5)
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where κ is the transpose of the constant velocity gradient tensor
of the linear far-field flow velocity and vi = κ · ri (vj = 0 in a
quiescent flow). The random Wiener process in the SDE dWj

is related to dt as: dWj = √
dtnj where nj is a random vector

with the standard Gaussian distribution.
D is the mobility tensor of size 3N × 3N and for the

N -bead chain the tensor D is related to the thermal energy
through the friction coefficient tensor ζij as

∑
l ζilDlj =

kBT δij . As in [4,7], we use the RPY tensor for D.
In the absence of external driving forces, the covariance

between the bead displacements satisfy the following relation:

〈dridrj 〉 = 2Dijdt. (6)

Hence, the coefficient matrix α is connected with D via the
formula D = α�α. We remark here that the choice of α is
not unique and fast algorithms for generating these correlated
random displacements actually take advantage of this fact.
Finally, we observe that for the RPY tensor,

∑
j=1

∂Dij

∂rj
is

always zero and Eq. (5) is reduced to

dri =
⎛
⎝κ · ri +

N∑
j=1

Dij · Fj

kBT

⎞
⎠dt +

√
2

i∑
j=1

αij · dWj . (7)

A. Nondimensionalization of the SDE (7)

The bead-spring chain model is widely used for BD
simulations of a DNA molecule. In the bead-spring chain
model, the DNA molecule is represented as a chain of N

beads of radius a with adjacent beads connected by a spring.
Each spring contains Nk,s Kuhn steps of length bk . So the
maximum length of each spring is Nk,sbk , and the characteristic
contour length of the double stranded DNA molecule L is
approximately (N − 1)Nk,sbk as the size of each bead is much
smaller than the length of each spring and thus neglected. We
denote the Hookean spring constant by H . The characteristic
length ls is chosen to be ls = √

kBT /H and the characteristic
time ts is chosen to be ts = ζres/4H , where ζres is the bead
resistivity appeared in the RPY tensor (3). We scale the length
and time by ls and ts , respectively and nondimensionalize
Eq. (7) into the following dimensionless form:

dri =
⎛
⎝κ · ri +

N∑
j=1

Dij · Fj

⎞
⎠dt +

√
2

i∑
j=1

αij · dWj , (8)

Here with a slight abuse of notation, we have used the same
notation to denote all corresponding dimensionless quantities.

B. Choices of the velocity gradient tensor κ

We now specify the velocity gradient tensor κ in Eq. (8) and
restrict our attention to the following two linear planar flows.
The first one is the extensional flow where vx = ε̇x,vy = −ε̇y

with ε̇ the extension rate. The second is the shear flow
where vx = γ̇y,vy = 0 with γ̇ the shear rate. We define
the Peclet number Pe = ε̇ζ/4H for the extensional flow
and Pe = γ̇ ζ/4H for the shear flow, respectively. Then the
dimensionless velocity gradient tensor κ in Eq. (8) is given by

the following formulas:

κext =

⎛
⎜⎝

Pe 0 0

0 −Pe 0

0 0 0

⎞
⎟⎠, κshear =

⎛
⎜⎝

0 Pe 0

0 0 0

0 0 0

⎞
⎟⎠. (9)

Here κ = κext for the extensional flow and κ = κshear for the
shear flow.

C. Specification of the forcing term Fi

The force Fj in Eq. (8) contains two parts: the force exerted
by the connected springs and the force due to the finite size
of the beads. We adopt the Marko-Siggia’s wormlike chain
(WLC) spring law [5] to model the spring force between beads.
In the WLC model, the dimensionless spring force acting on
the ith bead by the ith spring is

Fs
i =

√
Nk,s

3

⎡
⎣1

2

1(
1 − Qi

Q0

)2 − 1

2
+ 2Qi

Q0

⎤
⎦ Qi

Qi

, (10)

where i = 1, . . . ,N − 1, Qi = ri+1 − ri is the distance vector
between bead ri+1 and ri , Qi is the length of Qi , and Q0 is the
maximum distance between these two beads. Since all interior
beads are connected with two springs from two sides, the net
entropic spring force acting on the ith bead is

Fentropy
i = Fs

i − Fs
i−1, Fs

0 = Fs
N = 0, (11)

with i = 1, . . . ,N . For later use, we also record the potential
for the ith spring below

UWLC(Qi) = 1

2

√
Nk,s

3

(
Q2

0

Q0 − Q
− Q + 2Q2

Q0

)
. (12)

For the force due to the finite size of the beads, we adopt
the excluded volume force in [7,12] given by the formula

FEV
i = −
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j=1,i �=j

9
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3z
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)
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where z = ( 1
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3/2

ṽN2
k,s , and ṽ = 2ab2

k/ l3
s is the dimension-

less excluded volume parameter. And the excluded volume
potential between bead i and bead j is given by

UEV
ij = 3

√
3z

2
exp

(
−3r2

ij

2

)
. (14)

Finally, the total force acting on bead i is the sum of the spring
forces and the excluded volume forces, that is,

Fi = Fentropy
i + FEV

i . (15)

III. NUMERICAL ALGORITHM FOR BD SIMULATIONS
IN LINEAR FLOWS

In the past, a semi-implicit predictor-corrector
scheme [7,9,15] was often used for the temporal integration in
BD simulations. A major problem associated with that scheme
is that a very small time step size has to be used in order to
avoid the numerical instability, which leads to an excessively
large number of time steps and a very long total simulation
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time. Recently, a Metropolis integrator has been developed
to integrate the self-adjoint diffusion equations [19] for BD
simulations in a quiescent flow.

Here we extend the algorithm in [19] to study BD
simulations in linear flows. We first introduce an integrating
factor e−κt and rewrite Eq. (8) as follows:

d(e−κtri) = e−κt [D(ri)F(ri)dt +
√

2α(ri)dWi]. (16)

Let K(t) = exp(−κt). We now introduce a new variable xi =
K(t)ri [i.e., ri = K(−t)xi]. Then the original SDE Eq. (16)
can be rewritten in terms of xi as follows:

dxi = K(t)[D(K(−t)xi)F(K(−t)xi)dt

+
√

2α(K(−t)xi)dW ]. (17)

The generator of Eq. (17) is given by the following formula:

Lf (xi) = 1

ν(xi)
div{ν(xi)K(t)D[K(−t)xi]K(t)T Df (xi)},

(18)

where we introduce the stationary density given by

ν(xi) = exp{−U [K(−t)xi]}. (19)

We denote the total energy by U which is the sum of
WLC spring energy UWLC and EV potential energy UEV. It
is easy to see that the generator of the transformed stochastic
differential equation with respect to ν(xi) is self-adjoint. Thus
the algorithm in [19] can be directly applied to Eq. (17). We
now update the position vector as follows:

(1) Compute the vector x̃n+1
i and update xn

i by the following
formulas:

x̃n+1
i = xn

i + K(tn)G
[
K(−tn)xn

i

]
�t

+
√

2�tK(tn)B
[
K(−tn)xn

i

]
dWi, (20)

where the functions G and B are defined by the formulas

x1 = x + 2
3D(x)F(x)�t,

G(x) = 5
8D(x)F(x) − 3

8D(x)F(x1)

− 3
8D(x1)F(x) + 9

8D(x1)F(x1), (21)

x2 = x − 2
3D(x)F(x)�t,

B(x)B(x)� = 1
4D(x) + 3

4D(x2). (22)

We then apply the Metropolis integrator to obtain the updated
xn+1

i .
(2) Calculate the acceptance probability α as follows:

α
(
xn

i ,x̃
n+1
i

) = min

(
1,C exp

[
−|dW̃i |2

2
+ |dWi |2

2

−U
(
x̃n+1

i

) + U
(
xn

i

)])
, (23)

where C = det B(xn
i )/ det B(x̃n+1

i ), U = UWLC + UEV is the
total potential energy, and dŴi is obtained via the formula

B
(
x̃n+1

i

)
dW̃i = B

(
xn

i

)
dWi +

√
2�tG

(
x̃n+1

i

)
. (24)

(3) Generate a Bernoulli random number γ , that is, generate
a uniformly distributed random number β on [0,1] and set γ

to 1 if β � α and 0 otherwise.
(4) Compute the updated position vector at time t = tn+1

by the formula

rn+1
i = γK(−tn+1)x̃n+1

i + (1 − γ )rn
i . (25)

In other words, the position vector will be updated only if the
Bernoulli random number γ is equal to 1. This is the essence
of the Metropolis algorithm for Monte Carlo simulations.

IV. NUMERICAL RESULTS

Common measures of the “stretch” of a DNA molecule
under flow are the molecular fractional extension (x̂ is the unit
vector in the x direction)

X ≡ max
i

(ri · x̂) − min
i

(ri · x̂), (26)

and its ensemble average 〈X〉 ≡ 1
M

∑
X, where M is the total

number of experiments (or simulations). Here we first compare
the transient fractional extensions of a λ-DNA between the
experimental data, semi-explicit numerical simulations [7],
and our Metropolis scheme simulations. The initial DNA
configurations in these simulations are the equilibrium DNA
configurations in the absence of flow from the Metropolis
scheme.

For the purpose of comparison, we use the same values of
physical and model parameters as in [7]. That is, the viscosity
η of solvent is 8.4 cP (=mPa · s) and the relaxation time τ is
21.0 s. The λ-DNA is modeled with N = 29 beads of radius
a = 0.101 μm connected by 28 springs, where each spring has
Nk,s = 40 Kuhn steps of size bk = 0.132 μm and the contour
length L is 150 μm. Finally, the excluded volume parameter
v = 0.0034 μm3.

To mimic the experimental configurations, it is essential [7]
to first simulate the DNA molecule to its equilibrium in a
quiescent flow, i.e., κ · ri = 0 in Eq. (8), which is now a self-
adjoint stochastic differential equation that can be efficiently
solved to an equilibrium state using the Metropolis scheme in
Sec. III. At the beginning of the no-flow simulations, beads are
equally spaced on the x-axis. The Metropolis scheme allows
for relatively large time step 	t (an order of magnitude larger),
consequently saving a significant amount of computation time
for running no-flow simulations compared to the semi-implicit
predictor-corrector scheme in [7]. The flow-free simulation is
continued until an equilibrium configuration is reached, which
is often 10–20 relaxation times (τ ). After the equilibrium is
reached for a DNA in a quiescent flow, we then turn flow
on in the simulations and sum up dri to obtain the updated
configuration and the mean fractional extension of a DNA
molecule under linear flow.

In the figures below, we use the Deborah number to
label different flows. As a dimensionless flow strength, the
Deborah number De is equal to ε̇τ for the extensional flow
and γ̇ τ for the shear flow. We would like to remark here
that γ̇ τ is also called the Weissenberg number in the case
of the shear flow in many literature. The transient fractional
extension from these simulations is summarized in Fig. 1,
which shows two sets of comparison for Deborah number
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FIG. 1. (Color online) Transient fractional extension for a seven-
lambda (L = 150 μm) DNA in a planar extensional flow.
60 trajectories from simulations are used for ensemble average.

De = 0.98 (ε̇ ≈ 0.0467 s−1) and De = 4.0 (ε̇ ≈ 0.1905 s−1)
for panels (a) and (b), respectively. Figure 1 is simulated
by using the modified Metropolis integrator scheme with an
integrating factor [Eq. (8) in Sec. III, κ = κext]. Thin curves
are individual trajectories from experiments, filled circles
are the ensemble average from experiments, filled triangles are
ensemble average from Schroeder et al. [7], and our results are
the empty triangles. We observe that, in both panels, our results
are in good agreement with the experiment results. However,
our simulations are orders of magnitude more efficient because
a time-step �t = 10−4τ = 2.1 × 10−3 s is used for results
in panels (a), and �t = 10−3/ε̇ = 5.25 × 10−3 s is used for
panel (b). In comparison, a much smaller time step for
De = 4.0 and De = 0.98 cases are necessary for the predictor-
corrector scheme [7]. The advantage of using Metropolis
integrator is to capture the physical phenomena of the
model. Error bars in the figures denote the standard deviation
calculated from our numerical simulation data (triangles). No
error bars are provided for the data from the experiment (filled
circles) and Schroeder’s simulation (empty circles).

FIG. 2. (Color online) Comparison between experiments [11]
(thin curves for individual trajectories and filled circles for the
average) and our numerical simulations (empty circles). The vertical
dashed line in (a) shows the point below which continuous data could
not be collected in some experiments. The horizontal dashed line in
(b) shows the steady-state of the stretched ∼22 μm λ-DNA.

Similar comparison of a single DNA molecule in a planar
extensional flow between experiment and simulation are also
conducted in [6]. Figure 2 compares our results against those
from [11] for a 21 μm DNA molecule in an extensional flow
with N = 11, bk = 0.106 μm, Nk,s = 19.8, a = 0.077 μm,
23 ◦C for the temperature and v = 0.0012 μm3. Figure 2(a)
is for De = 2.0, ε̇ = 0.5 s−1, τ = 4.1 s, and η = 43.3 cP.
Figure 2(b) is for De = 48.0, ε̇ = 2.8 s−1, τ = 17.3 s, and η =
182 cP. Thin curves are trajectories from experiments [11],
filled circles are the ensemble average of experimental results,
and empty circles are the ensemble average from our modified
Metropolis integrator simulations. For De = 2.0 [Fig. 2(a)] our
average is almost identical to the simulation average from [6]
(bottom panel of their figure 2). For De = 48.0 [Fig. 2(b)], Our
simulation results are in better agreement with experimental
results than those from Jendrejack et al. [6] and we show
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FIG. 3. (Color online) Comparison between numerical results [6]
(filled and empty circles for the assemble averages of FD and HI) and
our numerical simulations (empty triangles). Solid curves are single
trajectories of HI simulations from [6].

these comparisons in Fig. 3. In these Metropolis integrator
simulations �t = 10−3 s for both De = 2.0 in Fig. 3(a) and
De = 48.0 in Fig. 3(b). Even though this time step is slightly
smaller than those used in [6], our Metropolis algorithm with
the integrating factor is second-order accurate [18,19] and no
matrix inversion is needed. In Sec. V we describe how our
numerical algorithm can be further improved when the system
size is large by using FMM to efficiently calculate the HI.

Next we compare the mean fractional extension of a DNA
molecule against experiments [2] and Jendrejack et al.’s
simulations [6]. The parameters for simulations are [2]: bead
radius a = 0.077 μm, and temperature is fixed at 20 ◦C. Two
viscosities are considered in the experiments, η = 60 cP and
220 cP for the shear flow cases, while only η = 60 cP is used
for the case of extensional flow (based on the experiments
in [2]). For the corresponding simulations in [6] the number
of beads is 11, Kuhn step size bk = 0.106 μm, the number
of springs per Kuhn step Nks = 21, and the contour length
L = 22 μm.

FIG. 4. Fractional extensions for different De and shear rate γ̇

from our simulations with (De,γ̇ ) = (3.2,0.5), (6.3,1.0), (76.0,4.0),
respectively. The relaxation time τ is 6.3 s for the first two cases
and 19.0 s for the third case. The time steps are: �t = 10−3 s for
De = 3.2, �t = 5 × 10−4 s for De = 6.3, and �t = 2.5 × 10−4 s for
De = 76.0.

Figure 4 shows the fractional extension versus time for
three cases of Deborah numbers (De = 3.2, 6.3, and 76.0)
when the DNA molecule is under the simple shear flow. Since
the relaxation time τ is fixed, shear rate γ̇ is higher at higher
De. As expected, larger mean extension of the DNA molecule
is expected at a higher shear rate. From these results the mean
fractional extension is computed by taking the averages over
a long duration.

Figure 5 shows the comparison of mean fractional extension
between experiments [2], Jendrejack et al.’s simulations [6]

FIG. 5. (Color online) Mean fractional extensions for shear flow
and extensional flow. Experimental data [2] are symbols with error
bars, bead model with and without HI (see legend) are from [6] and
our results as red symbols (empty circles for the extensional flow;
triangles and crosses for the shear flow).
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FIG. 6. (Color online) Molecular extensions for 1.3 mm DNA in
an extensional flow for De = 0.30 (top) and De = 0.57 (bottom).
Filled symbols are experimental data from [10]. Blue circles are our
simulation results. Time steps �t = 10−2 s for De = 0.30 (top), and
�t = 5 × 10−3 s for De = 0.57 (bottom).

and our simulations. Experimental data are shown in filled
dark disks for the extensional flow and dark circles for the shear
flow, and the thin solid curves are their best fits. Simulation
results from [6] are thick dashed (with HI) and dash-dotted
[without HI, or free-draining (FD)] curves. Our simulation
results are denoted by red symbols in the legends, and their
best fits are the thin dashed curves. It is clear that our results
agree well with experimental data for the shear flow cases.
For the extensional flow cases, our results agree better with
simulation results from [6] for all values of De. At larger De
(De � 40), all three agree well for the extensional flow cases.

Schroeder et al. also investigated the hysteresis of stretch-
coil transition of a long λ-DNA (∼1300 μm) in an extensional
flow [10]. Figure 6 shows the comparisons of single trajectories
of DNA extensions over strains between their experimental
data [10] and our numerical results. For the initially coiled
DNA the simulation starts without flow for several relaxation
times as done in previous numerical simulations [10]. Also

following their procedure for the initially stretched DNA,
we first run the simulations with a high Deborah number
(De = 15) until equilibrium, and then gradually lower the
flow strength (Deborah number) until the desired values
are reached (at t = 0): De = 0.30 for Fig. 6(a) and De =
0.57 for Fig. 6(b). The parameters for simulations are the
following: a = 0.28 μm, Ns = 123, Nks = 80, bk = 0.132
μm, ν = 0.00032 μm3, and τ = 126.0 s. We set the solvent
viscosity to be 1 cP and time step size (a) �t = 10−2 s and
(b) �t = 5 × 10−3 s are used for simulations. The agreement
with the experimental data demonstrates that our numerical
methods are able to capture the hysteric transition between
stretched and coiled DNA in an extensional flow.

V. EXTENSION TO LARGE SYSTEMS

In the numerical algorithm described in Sec. III, the
RPY tensor D is constructed explicitly, the matrix vector
product DF is computed directly, and the upper-triangular
matrix B is obtained by the Cholesky decomposition with
its determinant simply the product of its diagonal entries.
This is affordable for the numerical experiments presented
in Sec. IV since the total number of beads N = 29. However,
for large systems the computational cost of these standard
direct algorithms becomes prohibitively expensive since the
matrix vector product DF requires O(N2) operations, the
Cholesky factorization requires O(N3) operations, and each
BD simulation often requires more than 105 time steps. Thus,
fast algorithms become a necessity in order to make long-time
large-scale BD simulations practical.

As mentioned in Sec. I, recently a fast multipole method for
the RPY tensor (RPYFMM) has been developed in [20]. The
fundamental observation in [20] is that the RPY tensor can be
decomposed as follows:

Dij = C1

[
δij

|x − y| − (xj − yj )
∂

∂xi

1

|x − y|
]

+C2
∂

∂xi

xj − yj

|x − y|3 , (27)

where C1 = kBT
8πη

,C2 = kBT a2

12πη
.

With this decomposition, the matrix vector product Dv for
a given vector v can be interpreted as a linear combination
of four harmonic sums with suitably chosen source charges
and dipoles. In other words, the matrix vector product Dv can
be evaluated by four calls of the classical FMM for Coulomb
interactions in three dimensions [22]. Thus, the RPYFMM
avoids the explicit construction of the RPY tensor and reduces

TABLE I. Timing results (sec) for computing T = Dv by
RPYFMM.

N TRPYFMM TDirect ERPYFMM

1000 0.20897 0.31495 1.6008 × 10−02

10 000 1.6058 30.6643 5.5339 × 10−02

100 000 16.172 2738.48 8.3803 × 10−02

1 000 000 160.24 271009.4 1.1603 × 10−01
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TABLE II. Timing results (sec) for computing T = √
Dv by

RPYFMM-SLDM.

N m TSLDM Erelative

1000 4 0.54192 6.21032 × 10−06

10 000 4 9.03360 6.24604 × 10−04

100 000 6 111.80 7.92857 × 10−04

1 000 000 12 2180.8 2.91239 × 10−04

the computational cost of Dv to O(N ) in both CPU time and
memory storage.

We observe further that the Cholesky factor B of the RPY
tensor D can be replaced by any matrix C which satisfies the
same matrix equation CC� = D (note that there are actually
infinitely many matrices satisfying this matrix equation, see,
for example, [17] for details). Indeed, [20] also proposed to
replace the Cholesky factor B by

√
D and compute

√
Dv

by combining the classical Spectral Lanczos Decomposition
Method (SLDM) with the RPYFMM. The resulting algorithm
has O(κN ) complexity with κ the condition number of the

FIG. 7. (Color online) Numerical experiments of many-DNA in
an oscillatory shear flow at t = 0 and t = 25.6, when shear flow
velocity is zero.

FIG. 8. (Color online) Numerical experiments of many-DNA in
an oscillatory shear flow at t = 38.4 and t = 49.024.

RPY tensor D. We remark here that for most BD simulations
with HIs, the beads do not overlap with each other due to
the EV force and our numerical experiments show that the
condition number of the RPY tensor in this case is fairly low.
This indicates that the RPYFMM-SLDM method is essentially
a linear algorithm for computing

√
Dv. The timing results

presented in Tables I and II clearly demonstrate of linear
scaling of the RPYFMM and RPYFMM-SLDM methods.

Finally, we would like to remark here that recent develop-
ments in the fast multipole methods and fast direct solvers also
enable a linear algorithm for computing the determinant of a
matrix with certain hierarchical low-rank structure [23–25]. By
incorporating all these fast methods into our current numerical
scheme, we obtain a numerical algorithm which is stable even
for relatively large time-step size and scales linearly with
respect to the number of particles (or beads) in the system.

Figures 7 and 8 are simulation snapshots of many
DNA in an oscillatory shear flow. Similar to the previous
work [26] we define the background oscillatory shear as
U0 = [γ̇ sin(2πωt)y,0,0] (on the x−y plane in each panel),
where ω = (20000�t)−1, �t = 0.00128, and γ̇ = 1.0 is the
shear rate for simulations. For this simulation we include 25
DNA molecules, each of which has a rest contour length of
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FIG. 9. (Color online) Numerical simulations for 25 DNA
molecules in an oscillatory shear flow. Blue trajectories are fractional
extensions of each molecule, dashed green curve is the magnitude of
periodic shear flow and solid red curve is the assemble average.

150 μm. The parameter set of 150 μm long DNA (29 beads)
is used (total number of beads is 725). In the simulation, each
molecule has the same initial extension. Figure 9 illustrates
the correlation between mean molecule extension and the
oscillating shear flow magnitude. Figure 10 shows that the
spring energy dominates the total energy during the first period
(t = 25.6) since the DNA molecules stretch under shear flow.
After one period of time, DNA molecules turn to coiled states
and EV potential energy is dominant due to molecule-molecule
interactions.

Finally, the timing result for one time step �t including
forcing calculations and matrix-vector multiplications with the
use of RPYFMM and RPYFMM-SLDM is ∼0.3 s. However,
it takes ∼98.0 s at each time step for direct calculations
involving construction of RPY tensor and direct factorization
using Cholesky decomposition. This result shows that one can
reduce much computational cost by using the O(N )-operation
algorithms when N is large.

VI. CONCLUSION AND DISCUSSION

We have extended the Metropolis integrator in [19] to study
BD simulations with HIs in linear flows. The method utilizes
the integrating factor to absorb the effect of the linear flow
and permits much larger time step sizes for BD simulations
with HIs in linear flows. We have applied our method to study
the fractional stretch and the mean stretch of a single λ-DNA
molecule in planar linear flows. Our numerical results agree
very well with experimental data [2,11] and other simulation
results [7] in the literature.

FIG. 10. (Color online) Energies versus time t for 25 DNA
molecules in an oscillatory shear flow. Total energy (top) is the sum
of WLC spring energy (middle) and EV potential energy (bottom).
Red dotted vertical lines represent half period of flow oscillation.

We have also discussed the extension of our method to large
systems in Sec. V. By incorporating the RPYFMM and other
fast algorithms into the scheme, the resulting algorithm admits
large time step sizes and has nearly optimal complexity [i.e.,
O(N ) or O(N log N )] in the number of particles in the system.
Thus, even though many of these fast algorithms have a large
prefactor (say, C � 1000) in front of N , the combination of our
fast algorithm with modern computers makes long-time large-
scale BD simulations with HIs within practical reach. We are
currently incorporating these fast algorithms into the modified
Metropolis integrator and applying the resulting algorithm to
study the lipid bilayer membrane of the red blood cells in
the blood flow. Results from these ongoing work are being
analyzed now and will be reported in a timely fashion.
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