
A Slightly Deformable Darcy Drop in Linear Flows

Y.-N. Young1, Yoichiro Mori2 and Michael J. Miksis3

1Department of Mathematical Sciences,

New Jersey Institute of Technology, Newark, New Jersey, 07102, USA
2Department of Mathematics, University of Minnesota,

Minneapolis, Minnesota, 55455, USA
3Department of Engineering Sciences and Applied Mathematics,

Northwestern University, Evanston, Illinois, 60208, USA

(Dated: October 22, 2018)

Abstract
The small-deformation of a poroelastic drop due to an external linear flow field in the suspending

medium is investigated. A two-phase flow model is developed to study the small-deformation of

such a poroelastic drop under linear flows. Inside the drop a deformable porous network with a

bending rigidity and a viscosity is fully immersed in a viscous fluid. When the viscous dissipation of

the interior fluid phase is negligible (compared to the friction between the fluid and the skeleton),

the two-phase flow is reduced to a poroelastic Darcy fluid with a deformable porous network. At

the interface between the poroelastic drop and the exterior Stokesian fluid, a novel set of boundary

conditions are derived by the free energy dissipation principle. Both slip and permeability are

taken into account and the permeating flow induces dissipation that depends on the elastic stress

of the interior solid. Assuming that the porous network is slightly deformed from its original

spherical shape due to its large bending rigidity, a small-deformation analysis is conducted. A

steady equilibrium is computed for two different linear flows: a uniaxial extensional flow and a

planar shear flow. By exploring the interfacial slip, permeability and network elasticity various flow

patterns are found at equilibrium of these slightly deformed poroelastic drops. Linear dynamics

of the small-amplitude deviation of the poroelastic drop from the spherical shape is governed by a

nonlinear eigenvalue problem, and the eigenvalues are determined numerically, and asymptotically

in certain limits. These results lay the foundation for studying the rheology of a suspension

of poroelastic spherical particles, and give insight to possible flow patterns of a system of self-

propelling swimmers with porous flow (such as intracellular cytosol) inside.

PACS numbers: Valid PACS appear here
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I. INTRODUCTION

Flow in porous media is of significant relevance to many research areas that range from

turbulent transport through porous media in geophysics, filtration in hydrology, to cell and

tissue mechanics in bio-mechanical engineering. A great deal of effort has been devoted to

the modeling of pressure-driven fluid flow, thermal convection and propagation of sound

waves in porous media, and the fluid pressure in water-filled connective tissues such as the

cornea. Depending on the specific applications, the porous structures may be treated either

as rigid and non-deformable in hydrology of filtration, or they may deform as their dynamics

is coupled to the fluid flow around them in tissue mechanics.

When the porous medium consists of a rigid skeleton of a fixed shape and distribution,

the steady flow of the surrounding viscous fluid has been modeled as an incompressible

Stokes flow between solid particles randomly distributed at fixed locations. When the rigid

skeleton occupies most of the volume and the characteristic pore size is much smaller than

the characteristic length scale in the fluid flow driven by a pressure jump, the incompressible

Darcy’s equations are found to describe such porous medium flow1. Nonlinear drag between

the fluid flow and the solid structures has been incorporated to account for the inertia effects

at high Reynolds number. Brinkman suggested modifying Darcy’s equations to incorporate

the dissipation in the fluid phase via an effective fluid viscosity but did not provide a detailed

derivation. When the fluid flow occupies most of the volume and the porous structures

occupies less than 5% of the total volume, rigorous homogenization does give rise to the

incompressible Brinkman equations with the effective viscosity of Brinkman fluid identical

to the Stokesian fluid viscosity1.

The motion of a spherical porous particle freely suspended in a Stokes flow has been

investigated2–5. The surface tension, essential for a spherical (or nearly spherical) viscous

drop under linear flows, is replaced by the rigidity of the interior skeleton that is sufficiently

strong to maintain a spherical shape with permeability on the interface. With the rigid

skeleton fully hydrated the drag coefficient and total force are computed as a function of the

interior porosity in various flowing conditions such as a streaming flow, uniaxial extensional

flow, and a planar shear flow. In addition the migration of a spherical porous drop in a

planar shear flow or near a flat fluid interface has also been investigated4.

A steady equilibrium of a nearly spherical viscous drop with surface tension can be found

in the small-deformation theory6. For a slightly deformable porous drop the interior skeleton

sustains the initial spherical shape that evolves under a linear flow. It is not clear if a

deformable porous drop will evolve towards a stable steady equilibrium shape under general

linear flows, and the main focus of our work is to formulate the fully hydrated skeleton inside

the drop as a biphasic fluid drop immersed in a viscous Stokesian fluid.

Mathematical analyses on the behavior and properties of a fully hydrated poro-elastic or

poro-viscous-elastic network focus on either the Biot system where the inertia of the poro-

elastic or poro-visco-elastic skeleton is important7,8, or a similar Darcy poroelastic fluid but

without the friction between the fluid phase and the solid phase9–11. In this work we focus

on regimes where the skeleton inertia is negligible and yet the skeleton undergoes elastic

displacement, such as connective tissues or intracellular cytosols in many biological appli-
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cations. Such a scenario has been considered without the interaction between an exterior

fluid flow9,12 When the porous structures are deformable and fully hydrated by a Stoke-

sian viscous fluid, compressing the porous material will decrease the volume of the pore

space, driving fluid out. Similarly, injecting fluid into a deformable porous material can

expand the pore space, distorting the underlying skeleton. Multi-phase models have been

derived to described the coupled dynamics between the deformable porous structures and

the surrounding viscous fluid flow.

MacMinn et al. investigated the effects of nonlinear elasticity of the porous skeleton

on the interior Darcy flow12. In the presence of an external pressure jump, MacMinn et

al. focused on the coupling between the interior fluid flow and the deformation of the

elastic porous structures and reported both small and large deformations of the poro-elastic

structures using various elastic models. In particular they studied the one-dimensional

dynamic evolution from an initial configuration towards a steady equilibrium.

While the pressure-driven Darcy flow inside a poroelastic skeleton is of great relevance in

geophysics, biological poromechanical flows often involve the coupling between an exterior

viscous fluid flow and an interior poroelastic flow, see work by Lai et al.13. In these models,

the viscous dissipation in the fluid phase may be comparable to the pressure gradient, and

this poromechanical coupling is further complicated by ion transport in the porous medium

flow, see work by Pinsky et al.14–16. Cogan and Keener developed a two-phase flow model

for cellular cytosol, with a dominant viscous dissipation of a deformable skeleton (that

depends on the rate of strain) and no elastic energy (that depends on the strain)17. The

dynamic coupling between mechanical and electrochemical effects of polyelectrolyte gels has

been formulated by Mori et al.18. Focusing on the variational derivation of the governing

equations in the mean-field framework, their dynamical model consists of many parameters

that are related to the underlying microscopic physics and transport in the transition region

around the domain boundary.

In addition to the complexity of structures and transport inside a deformable porous

media, additional modeling issues arise at the interface between regions. Finding effective

boundary conditions near the surface of such heterogeneous materials is a very difficult

problem. This difficulty can be seen by the transition from a Darcy flow in the bulk region

to a Brinkman flow in the transition region around the boundary between a porous medium

and a viscous fluid flow. As a result, the standard techniques of homogenization break

down close to the boundaries. To better understand the interface region, experiments and

numerical simulations have been used to characterize velocity fields at different scales of the

interfacial region between a fluid and a porous layer. For example, measurement techniques

(such as particle image velocimetry, PIV) have provided velocity profiles and estimation of

the size of the interfacial layer for granular and fibrous porous media19. Pore-scale numerical

simulations also lead to local representations in the interfacial region.

When the thickness of the interfacial transition region is very small compared to the

macroscopic length scale, Angot, Goyeau and Ochoa-Tapia’s asymptotic analysis on the

transition layer between a Stokes fluid and a Darcy-Brinkman fluid leads to an algebraic

jump boundary conditions at a fictive dividing interface between the homogeneous fluid and

porous regions20. Using the ratio of pore size to the macroscopic length scale as a small
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FIG. 1. Sketch of a poroelastic drop in ΩP immersed in a Stokesian fluid in ΩS . Inside the drop

there is a fluid phase (subscript ‘f ’) and a skeleton phase (subscript ‘s’) which is bounded by the

deformable interface Γt. n̂ is the outward normal, β is the slip coefficient, and η is the permeability

on the interface.

parameter, the dominant jump conditions are found at the first order, and the generality of

such asymptotic analysis allows them to make direct comparison with several pre-existing

models such as the pioneering slip model by Beavers and Joseph21. It is worth mentioning

that the approach adopted by Angot et al.22–24 was suggested by Worster et al.25,26, where

the empirical formula for the jump boundary conditions is similar to those used and/or

derived in many other works27–37.

In this work we focus on the hydrodynamics of a poroelastic material enclosed in a drop

suspended in a viscous Stokes flow under two flowing conditions: a uniform flow and an

uniaxial extensional flow. We derive the boundary conditions on the drop by free energy

dissipation principle. Using these boundary conditions, we investigate how a poroelastic drop

deforms when it is immersed in a uniaxial extensional flow and a planar shear flow. The hy-

drodynamics of a viscous drop in these two flows has been extensively studied as paradigms

in fluid mechanics and microfluidic engineering. Focusing on the small-deformation dynam-

ics and steady equilibria, we calculate the flow pattern and examine how the boundary

conditions and poroelasticity affects the flow in and around the drop.

II. FORMULATION

Our problem is to study the dynamics of a poroelastic drop immersed in a Stokesian fluid

acted upon by an applied flow. Let ΩP represent the region of the drop, ΩS the region of the
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exterior Stokes fluid, and Γt the interface between the poroelastic drop and the Stokesian

fluid that evolves with time t, see Figure 1. Inside the poroelastic drop there are two phases:

a skeleton phase (subscript ‘s’) and a fluid phase (subscript ‘f ’). The skeleton phase is

confined within ΩP , while the fluid may permeate in or out of the boundary Γt. Cartesian

coordinates centered at the initial drop center will be denoted by (x, y, z), and spherical

coordinates by (r, θ, φ).

A. Two-phase flow model

We start by assuming that a soft poro-elastic drop is freely suspended in a Newtonian

viscous fluid with the velocity U and pressure P satisfying the incompressible Stokes equa-

tions

µe∇2U−∇P ≡ ∇ · (2µeE)−∇P = 0, (1)

∇ ·U = 0, (2)

where µe is the viscosity of the exterior fluid and E ≡
(
∇U + (∇U)T

)
/2 is the strain rate

tensor of the exterior fluid. Inside the drop an elastic skeleton is fully hydrated, filled with

the same viscous fluid as the outside. The mixture of the elastic skeleton and the interior

viscous fluid is coarse-grained into a two-phase flow, with the skeleton phase of volume

fraction φs the fluid phase of volume fraction φf , and φf + φs = 1. Conservation of fluid

phase and skeleton phase inside the drop gives

∂φf
∂t

+∇ · (φfuf ) = 0, (3)

∂φs
∂t

+∇ · (φsus) = 0, (4)

with uf the fluid velocity and us = dvs/dt the skeleton velocity, computed from taking the

time derivative of the displacement field vs of the skeleton. In addition, from Equations (3)

and (4) we define an average local velocity q ≡ φfuf + (1− φf ) us that is incompressible:

∇ · q = ∇ · (φfuf + (1− φf ) us) = 0. (5)

Denoting the stress tensor of the skeleton phase as σs and the strain rate tensor of the

interior fluid phase as ef , the governing equations for the mixture of viscous fluid and

poroelastic skeleton within the drop are

∇ · (φf (2µief ))− φf∇p+ F s→f = 0, (6)

∇ · (φsσs)− φs∇p+ Ff→s = 0, (7)

where ef ≡ (1/2)
(
∇uf + (∇uf )

T
)

is the symmetric velocity gradient tensor for the interior

fluid. Here µi is the effective viscosity of the fluid in the poroelastic drop. In general, µi 6= µe,

but for small φs, they should be approximately equal1. The forces from the skeleton on the

fluid are anti-forces to forces from the fluid on the skeleton: F s→f = −Ff→s. Assuming

5



that the friction between the interior fluid and the elastic skeleton is dominant over other

interaction forces, in this work these two forces take the following form

F s→f = −ξφfφs (uf − us) = −F s→f , (8)

where ξ is the drag coefficient assumed to be constant.

The most general skeleton stress tensor σs consists of both a viscous stress σv (that

depends on the gradient of the rate of strain us) and an elastic stress σe (that depends on

the gradient of the displacement vs of the elastic skeleton): σs = σv(∇us) + σe(∇vs). The

viscous stress of the skeleton depends on the rate of strain us as

σv ≡ µs
[
∇us + (∇us)

T
]
− µ̃s∇ · us, (9)

where the compressible component on the righthand side is assumed to be negligible for

small deformations. We adopt the Hencky elasticity and write the elastic stress as

σe(∇vs) ≡ Λtr(H)I + (M−Λ)H, H ≡ 1

2
ln
(
FFT

)
, (10)

where the p-wave modulus M = K + 4
3
G and Lamé’s first parameter Λ = K − 2

3
G are

combinations of the bulk (K) and shear (G) moduli. Note that in general M > Λ and the

Poisson ratio of the elastic skeleton is ν ≡ Λ/ (M+ Λ). The deformation gradient tensor

F is defined as

F = (∇X)−1 = (I−∇vs)
−1 . (11)

When the strain of the poroelastic skeleton is small the volume fraction φf can be approxi-

mated as
φf − φ0

1− φ0

≈ ∇ · vs ∼ ε� 1, (12)

where φ0 is the uniform fluid volume fraction distribution prior to the perturbation. In the

small-strain limit, linear elasticity applies and we have

σe = Λtr(ε)I + (M−Λ)ε, ε =
1

2

[
∇vs + (∇vs)

T
]
. (13)

In the following we focus on slightly deformable poroelastic structures with both an elastic

stress and a viscous stress.

B. Boundary Conditions

The boundary conditions at the interface between two homogeneous phases are usually

derived by enforcing the conservation of mass and continuity of stress across the interface.

This will be done here but these conditions are not sufficient for our multiphase drop. The

difficulty is because we are connecting a single phase region with a two-phase region and we

are considering only on the macroscopic scale of the drop, i.e., the pore scale dynamics is

coare-grained in the biphasic model. The principal of free energy dissipation will be used to

derive the additional boundary conditions.
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Ignoring the surface tension and assuming that the same viscous fluid is in both ΩS and

ΩP , the “interface” Γt here is the boundary that encloses all the elastic skeleton in ΩP .

Defined as such, the boundary Γt moves with velocity vΓ determined only by the skeleton

phase of the interior since the fluid phase is permeable to the boundary. Thus, instead

of the usual kinematic boundary condition where the time derivative of Γt is equal to the

normal component of the fluid velocity evaluated on Γt, our first boundary condition is the

kinematic condition for a permeable interface with a skeleton inside:

us

∣∣∣∣
Γt

· n̂ = vΓt . (14)

Conservation of fluid mass at the interface Γt demands that the mass of fluid leaving

the poroelastic drop in the normal direction from ΩP balance the mass of fluid entering the

region ΩS. Since the fluids are incompressible and the same in both regions we find that,

(U− us)

∣∣∣∣
Γt

· n̂ = φf (uf − us)

∣∣∣∣
Γt

· n̂. (15)

Continuity of stress at the interface requires that the total stress of the Stokes flow side of

the interface Γt be balanced by the total stress on the poroelastic side. The result is,

(−2µeE + P I + φf (2µief ) + φsσs − pI)

∣∣∣∣
Γt

· n̂ = 0. (16)

Equations (15)-(16) are not sufficient to find a unique solution to the problem.

In order to find the additional boundary conditions we begin by integrating the product

of U, uf and us = dv/dt with equations (1), (6), and (7), respectively, over the whole region

Ω = ΩS + ΩP . Use (2), (3), (4) and apply the divergence theorem to find:

0 =

∫
ΩS

U · [∇(2µeE)−∇P ] d3x (17)

+

∫
ΩP

uf · [∇(φf (2µief ))− φf∇p− ξφfφs(uf − us)] d
3x

+

∫
ΩP

us · [∇ · (φsσs)− φs∇p+ ξφfφs(uf − us)] d
3x

=

∫
Γt

−U · (2µeE− P I) · n̂ds+

∫
Γt

uf · (φf (2µief )− φfpI)n̂ds (18)

+

∫
Γt

us · (φsσs − φspI)n̂ds− IΩS
− IΩP

− IE,

where

IΩS
=

∫
ΩS

2µeE : ∇Ud3x (19)

IΩP
=

∫
ΩP

φf (2µief ) : ∇uf + ξφfφs ‖uf − us‖2 d3x+

∫
ΩP

φsσv (∇us) : ∇usd
3x, (20)

IE =

∫
ΩP

φsσe (∇vs) : ∇usd
3x. (21)
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Here we have assumed that the surface integrals along the outer boundary of ΩS are zero.

This would be true for an applied flow where at this outer boundary the pressure balances the

applied strain or for a flow where U tends to zero. After integration by parts, equation (18)

shows that the sum of the two surface integrals on Γt and the two volume integrals IΩS
and

IΩP
must equal to the volume integral IE, which has been shown to be equal to the rate of

change of an elastic free energy Eelas
18:

IE =
dEelas
dt

=

∫
Γt

−U · (2µeE− P I) · n̂ds+

∫
Γt

uf · (φf (2µief )− φfpI)n̂ds

+

∫
Γt

us · (φsσs − φspI)n̂ds− IΩS
− IΩP

, (22)

where

Eelas =

∫
ΩP

φsWelas(F)d3x, with σe(vs) =
∂Welas(F)

∂F
FT , (23)

where φsWelas is elastic energy per unit volume. Clearly the volume integrals are positive

definite, thus one way to ensure dEelas/dt < 0 is to choose boundary conditions such that

the righthand side of Equation (22) is negative. We will use this observation to derive the

boundary conditions.

Focusing on the surface integrals, denote the velocities relative to the skeleton velocity

us with a bar as

U = U− us, uf = φf (uf − us), (24)

the surface integrals in Equation (22) are thus recast as∫
Γt

−(U + us)(2µeE− P I)n̂ +

(
uf
φf

+ us

)
(φf (2µief )− φfpI)n̂ + us (φsσs − φspI) n̂ds

=

∫
Γt

us · (−2µeE + P I + φf (2µief ) + φsσs − pI)n̂ds+ (25)∫
Γt

−U · (2µeE− P I)n̂ + uf · (2µief − pI)n̂ds. (26)

Using the stress boundary condition Equation (16) we find that Equation (25) is zero. We

note that when the drop interior is a single fluid phase (φf = 1 and φs = 0), the integral

in Equation (26) vanishes because of velocity continuity U = uf . In the more general cases

φf ∈ (0, 1) and the drop interior consists of two phases, more boundary conditions are to be

derived from the integral in Equation (26).

To proceed further, we decompose U and uf into the parallel (subscript ‘‖’) and perpen-

dicular (subscript ‘⊥’) to the interface Γt as

U = U⊥ + U‖, uf = uf⊥ + uf‖. (27)

Conservation of fluid mass from Equation (15) gives U⊥ = uf⊥. To make the normal velocity

component of (26) negative definite, a simple choice is to choose η > 0 such that

U⊥ = η

{
n̂ · (2µeE− P I− 2µief + pI)

∣∣∣∣
Γt

· n̂
}

n̂. (28)
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For the tangential component, choices for U‖ and uf‖ must be made based on the condi-

tion that the integral in Equation (26) must be semi-negative definite. Onsager reciprocal

principle dictates the following symmetric choices(
uf‖
U‖

)
=

(
α β

β γ

)(
(µeE|Γt · n̂)‖
− (µief |Γt · n̂)‖

)
, (29)

where α, β, and γ are chosen so that the contribution from the tangential components in

Equation (26) is negative definite. Here we set α = γ = 0 and β > 0 as a simple choice

to ensure that Equation (22) is negative definite. We remark that when α = γ = 0 and

β > 0 the two boundary conditions for the tangential component of the relative velocities

are simplified to

U‖ = β

(
µeE

∣∣∣∣
Γt

· n̂
)
‖
, (30)

uf‖ = −β
(
µief

∣∣∣∣
Γt

· n̂
)
‖
. (31)

Furthermore, when the interior fluid is a Darcy fluid with a deformable skeleton the

tangential component of the integrand in Equation (26) involves only the exterior velocity

parallel to Γt. This is because when µi = 0, uf‖(−pI · n̂)‖ = 0, consequently there is one less

tangential boundary condition for a Darcy drop. Interior slip in Equation (31) disappears

naturally when µi = 0.

In summary the boundary conditions for U, uf and us are given by (15), (16), (28), and

(30). For future reference these can be collected here as:

[(U− us)− φf (uf − us)] · n̂ = 0, (32)

(U− us) |Γt · n̂ = ηn̂ · [(2µeE− P I)− (2µief − pI)] · n̂, (33)

(U− us) |Γt · t̂ = βn̂ · µeE|Γt · t̂, (34)

φf (uf − us) |Γt · t̂ = −βn̂ · µief |Γt · t̂, (35)

n̂ · [(2µeE− P I)− (φsσs + φf (2µief )− pI)] · n̂ = 0, (36)

t̂ · [2µeE− (φsσs + φf (2µief ))] · n̂ = 0, (37)

where σs = σe+σv, η > 0 is a drag coefficient, and β > 0 is a slip coefficient. Equations (34)-

(35) are consistent with the slip boundary condition derived by Angot et al. 20 , and it is

shown to be compatible with models previously derived for different configurations20. For

a permeable moving boundary, the normal component of the total stress is from the fluid

pressure and the shear component must vanish; this implies that both the normal and shear

components of the effective stress must vanish. Equations (36)-(37) are for the stress balance

at the boundary (more general than either permeable or impermeable boundaries) between

a two-phase flow and a viscous Stokes flow. These are similar to the stress balance at the

boundary between a polyelectrolyte gel and a Stokes flow in Mori et al.18.
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C. External linear flow field

We will apply the two-phase model to a slightly deformable porous drop in an axi-

symmetric configuration with no dependence on the azimuthal angle φ. Recall that for

axi-symmetric incompressible flows around a fluid drop there exists a stream function ψe for

the exterior fluid flow

Ur = − 1

r2 sin θ

∂ψe
∂θ

, Uθ =
1

r sin θ

∂ψe
∂r

, Uφ = 0. (38)

Here we will compare the flow around a viscous drop and a Darcy drop in either a planar

shear flow or a uniaxial extensional flow. For a uniaxial extensional flow the far-field fluid

velocity is

U→ −G (x, y,−2z) as r →∞, (39)

where G is the extension rate. For a planar shear flow the far-field fluid velocity is

U→ G(y, 0, 0) as r →∞, (40)

where now G is the shear rate of the background planar shear flow.

D. Non-dimensionalization

In our two-phase flow model the pore size is assumed to be much smaller than the drop

size l0, which is used to scale length in the nondimensionalization. Assume that over the

length scale of l0, there is a characteristic velocity U0. For the two flows we will consider, we

can select U0 = l0G. In this work we will focus on the Darcy flow regime whereM� µiU0/l0
and ξU0l0/M ∼ O(1), and both the elastic and friction forces dominate the viscous stress

in equation (6). Thus the pressure is scaled by M and the dimensionless parameters are

ξ̄ = ξU0l0/M, Λ̄ = Λ/M, ᾱe = µeU0/Ml0, ᾱv = µsU0/Ml0, slip coefficient β̄ = βµe/l0 =

ᾱeβM/U0, and permeability η̄ = ηM/U0. For the Darcy-Stokes system, the dimensionless

equations are in their appropriate regions (and dropping the bar)

αe∇2U−∇P = 0, (41)

∇ ·U = 0, (42)

−φf∇p− ξφfφs (uf − us) = 0, (43)

∇ · (φs (σe + αvσv))− φs∇p+ ξφsφf (uf − us) = 0, (44)

∂φf
∂t

+∇ · (φfuf ) = 0, (45)

φf + φs = 1, ∇ · (φfuf + φsus) = 0. (46)
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The corresponding dimensionless boundary conditions on the interface Γt are

[(U− us)− φf (uf − us)] · n̂ = 0, (47)

(U− us) |Γt · n̂ = ηn̂ · [(2αeE− P I)− (−pI)] · n̂, (48)

(U− us) |Γt · t̂ = βn̂ · E|Γt · t̂, (49)

n̂ · [(2αeE− P I)− (φs (σe + αvσv)− pI)] · n̂ = 0, (50)

t̂ · [2αeE− (φs (σe + αvσv))] · n̂ = 0. (51)

E. Slip, permeability and surface tension at the boundary

The slip at the boundary between a Stokesian fluid and a Darcy medium arises from

the uneven boundary (characterized by an average pore size a0) that the viscous fluid flow

has to go around. It is experimentally measured21 to be of the order of the characteristic

pore size divided by the viscosity of the external fluid: β ∼ a0/µe. Thus the dimensionless

slip coefficient β̄ = a0/l0 � 1 because the ratio of the average pore size to the size of the

drop is assumed to be small at the preset of the coarse-grained formulation. The interfacial

permeability η is found to be of the same order as β by Haber and Mauri 38 . For the following

results we vary η and β over a wide range to elucidate their effects on the small deformation

of a poroelastic drop in linear flows. Large slip coefficient β at the Stokes-Darcy boundary

is possible by coating the skeleton with special polymers39. Thus a wide range of β (and η)

corresponds to a poroelastic skeleton treated chemically.

The surface tension is negligible at the boundary between a viscous Stokeian fluid and

a Darcy medium. A viscous drop in linear flows (such as a planar shear flow and a uni-

axial extensional flow) relies on a strong surface tension (small capillary number) to stay

nearly spherical. The dynamic evolution from a spherical to a slightly deformed shape is

governed by a exponential asymptote to equilibrium for any value of the viscosity ratio,

which is the only physical parameter for a slightly-deformable viscous drop in linear flows

(equation (8.81) in §8.3.C of Leal 6 .) For a poroelastic drop, large bending moduli keep the

drop shape close to spherical under linear flows. In this work we neglect the surface tension

and focus on the Darcy regime, where a deformable Darcy drop is freely suspended in (1)

a uniaxial extensional flow and (2) a planar shear flow. We focus on the physical regime

where the elastic skeleton deforms slightly to contribute to the shape deviation of the drop

from a sphere.

In such small-deformation limit the volume fraction of the elastic skeleton deviates very

little from the original distribution. To elucidate the salient features of slip and permeability

effects on the hydrodynamics of a soft poroelastic drop, we conduct a small-deformation

analysis on a poroelastic drop of (nearly) an initially uniform porosity φ0, and the nearly

spherical drop shape is supported by a skeleton of large bending stiffness. The effects of

non-uniform volume fraction (porosity) on the dynamics of an elastic poroelastic skeleton in

one-dimension is the main focus of the work by MacMinn et al.12. It is a non-trivial extension

to incorporate the non-uniform porosity into the small-deformation analysis. Based on

results from MacMinn et al. 12 we expect to rely on numerical computations as analytical
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solutions may not be readily available for a system of boundary value problems with variable

coefficients.

Finally we remark that in the limit of infinitely large network elastic moduliM≈ Λ� 1,

the network becomes rigid (non-deformable) and both the displacement and the rate of strain

vanish. Consequently less boundary conditions are needed in this non-deformable limit, and

early works have focused on the balance of normal stress and continuity of the normal

component of the fluid velocity5,30,40.

III. SMALL-DEFORMATION OF A POROELASTIC DARCY DROP

In this section we investigate the flow around a poroelastic drop with large bending moduli

such that the elastic skeleton (and hence the drop interface) undergoes small deformation

from the initial spherical shape. On the interface Γt

r = 1 + δr(t, θ, φ) = 1 + vs · r̂, |δr| = |vs · r̂| � 1. (52)

In the small-deformation limit, the linear Stokes equations for the exterior fluid are coupled

to the interior poroelastic fluid via the boundary conditions evaluated at the unperturbed

spherical interface. This way the governing equations are a linear system that can still

be solved using the separation of variables. In our small-deformation approximation, the

volume fractions φf and φs are assumed to be initially homogeneous. The deviation from

the initial homogeneous distribution is related to the divergence of the displacement field in

Equation 12, and the rate of strain field

us =
dvs
dt

=
∂vs
∂t

+ us · ∇vs ≈
∂vs
∂t

. (53)

In the small-deformation framework the volume fraction perturbation is approximated by

the divergence of the strain in Equation (12).

We solve Equations (41)-(45) linearized around the spherical shape. The linearized Darcy

equations and the governing equations for stress balance in the solid phase are

−φ0∇p− ξφ0(1− φ0)

(
uf −

∂vs
∂t

)
= 0, (54)

∇ · ((1− φ0) (σe(vs) + αvσv(us)))−∇p = 0, (55)

∇ · (φ0uf + (1− φ0)us) = 0. (56)

The general solution for the above linear equations take the following form uf
vs
p

 =

 ûf
v̂s
p̂

+ eωt

 uf,1
vs,1
p1

 , (57)

where the hat symbol ·̂ denotes the steady equilibrium solution, and the subscripts “1”

denotes the exponential components that vary with time at an exponential rate ω. In the

following we will solve for both the steady equilibrium and the eigenvalue ω. Note that in

the small-deformation limit us ∼ ∂vs/∂t = ωeωtvs,1.

12



A. Steady Equilibrium

Within the small-deformation regime, a viscous drop with a large surface tension (small

capillary number) reaches a steady shape under linear flows. Similarly for a nearly spherical

poroelastic drop with a large network rigidity, we assume that it reaches a steady shape

under linear flows. At steady equilibrium the normal component of the skeleton velocity us
evaluated at the steady drop interface is zero.

The tangential components of the network velocity, on the other hand, depends on the

exterior flow condition: Under a uniaxial extensional flow the tangential network velocity is

zero at steady equilibrium, while under a planar shear flow the tangential network velocity

is a rigid-body rotation due to the rotational component of the far-field shear flow. For

the uniaxial extensional flow, the viscous dissipation of the network phase is zero at the

steady equilibrium because us = dvs/dt = 0. Thus the steady equilibrium solution does

not depend on the network viscosity µs. For the linear shear flow, the network rotates due

to the vorticity in the shear flow. This network rotation is a rigid-body rotation that does

not cause any viscous dissipation. Thus we also do not expect the equilibrium solution to

depend on µs for the shear flow case.

B. Uniaxial extensional flow

First we identify the steady equilibrium solution for a Darcy drop under a uniaxial ex-

tensional flow specified by Equation (39). At steady equilibrium, the general solutions for

the drop interior take the form

p̂ = −21

10
(1− φ0)(1− Λ)d1r

2 (1 + 3 cos(2θ)) , (58)

v̂s · r̂ =

(
−3(5− 2Λ)

25
d1r

3 − d2r −
2Λ

7 + 3Λ
d3r

3

)
(1 + 3 cos(2θ)) , (59)

v̂s · θ̂ =

(
3(6− Λ)

25
d1r

3 + d2r +
1

3
d3r

3

)
sin(2θ), (60)

and ûs = 0 in the case of a uniaxial extensional flow. Here r̂ and θ̂ are unit vectors in the r

and θ directions. The solution for the exterior Stokes flow is

ψ̂e =

(
r3 − A1

2
− A2

2r2

)
cos θ sin2 θ, (61)

P̂e = − αe
2r3

A1 (1 + 3 cos(2θ)) , (62)

where ψe is the stream function and Pe is the pressure for the external fluid. Altogether there

are five coefficients (A1, A2, d1, d2, d3) to be determined by the five boundary conditions

in Equations (47)-(51). We focus on parameter combinations that pertain to the small-

deformation assumption. The expression for the five coefficients are given in Appendix A.

Figure 2 shows equilibrium radial displacement evaluated at the unperturbed radius r =

1 and its dependence on the interfacial slip β for different values of permeability η with

13



FIG. 2. Radial displacement (v̂s · r̂) evaluated at r = 1 with Λ = 1/3, and φ0 = 0.5. (a) ξ = 10−5.

(b) ξ = 10−1.

FIG. 3. Effect of permeability on the streamlines with Λ = 1/3, ξ = 10−4 and β = 0. (a) η = 0,

(b) η = 0.01, (c) η = 0.05, (d) η = 0.1, (e) η = 0.5, and (f) η = 1.

Λ = 1/3, and φ0 = 0.5. The drag coefficient ξ = 10−5 for panel (a) and ξ = 10−1 for panel

(b). For these parameter values, the radial displacement appears to only weakly depend on

ξ. Note how the displacement asymptotes to an equilibrium value with increasing β. Note

also how increasing the permeability η decreases the displacement.

Figures 3 show the effects of the permeability on the streamlines at equilibrium with

Λ = 1/3, ξ = 10−4 and β = 0. As the permeability increases with no interfacial slip

β = 0, more flow goes through the slightly deformed poroelastic drop under the uniaxial

extensional flow. The streamlines in Figure 3(a) (no permeability and no interfacial slip,

η = β = 0) are similar to those for a viscous drop under an extensional flow that goes around

14



FIG. 4. Effect of interfacial slip on the streamlines with Λ = 1/3, ξ = 10−4 and η = 0.75. (a)

β = 0, (b) β = 0.01, (c) β = 0.05, (d) β = 0.1, (e) β = 0.5, and (f) β = 1.

the drop interface. As the permeability increases with β = 0, more flow goes through the

drop interface as shown in the subsequent panels. At steady equilibrium under a uniaxial

extensional flow, the displacement field velocity is zero and consequently the exterior flow

goes through the drop surface along the inward normal direction. The interior flow, on the

other hand, has a similar spatial pattern. In addition, we observe that the fluid flow can be

discontinuous across the drop interface as expected from Equation (48).

Figure 4 shows the effects of the interfacial slip on the streamlines at equilibrium with

Λ = 1/3, ξ = 10−4 and η = 0.75. As the interfacial slip increases from β = 0 to β = 1, the

discontinuity in the tangential flow decreases and the uniaxial extensional flow goes through

the drop interface. There are less variations in the streamlines as β increases, consistent

with the changes in the displacement field with increasing β shown in Figure 2.

Figure (5) shows the inflow in the first quadrant defined as

inflow in first quadrant =
1

2

∫ 2π

0

∫ π/2

0

|U|Γt · r̂| sin θdθdφ, (63)

where the integral without the absolute sign would vanish due to symmetry of the pertur-

bation, and hence the combination of factor 1/2 and the absolute value sign gives the net

inflow, which is exactly equal to the out-flow in the first quadrant. We observe that the net

inflow increases with both slip and permeability.
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FIG. 5. Inflow as a function of η (panel (a)) and β (panel (b)). Λ = 1/3 and ξ = 10−4.

C. Planar shear flow

For a poroelastic drop in a planar shear flow the interior equilibrium solution takes the

form

p̂ =
1

2
d1r

2 sin2 θ sin(2φ), (64)

v̂s · r̂ =

(
1

7(1− Λ)(1− φ0)
d1r

3 + d3r +
2Λ

7 + 3Λ
d4r

3

)
sin2 θ sin (2φ) , (65)

v̂s · θ̂ =

(
5

21(1− Λ)(1− φ0)
d1r

3 + d3r +
1

3
d4r

3

)
sin θ cos θ sin (2φ) , (66)

v̂s · φ̂ =

(
−r

2
t+

(
5

21(1− Λ)(1− φ0)
d1r

3 + d3r +
1

3
d4r

3

)
cos (2φ)

)
sin θ. (67)

r̂, θ̂ and φ̂ are the unit vectors in the r, θ, and φ directions, respectively. The term −r
2
t

in the φ-component of v̂s (Equation (67)) is the rotation of the deformable elastic network

induced by the external planar shear flow under the small-deformation framework. This

rotation is also present in a viscous drop under a planar shear flow. The corresponding

network rotation velocity at equilibrium is ûs = −r/2 sin θφ̂, which is a rigid body rotation

and does not cause any viscous dissipation.

The exterior Stokes flow takes the form

Û · r̂ =
1

20r4

(
6C3 + 5C1r

2 + 10r5
)

sin2 θ sin(2φ), (68)

Û · θ̂ =
1

20r4

(
−2C3 + 5r5

)
sin(2θ) sin(2φ), (69)

Û · φ̂ = − 1

10r4

(
5(2C4r

2 + r5) + (2C3 − 5r5) cos(2φ)
)

sin θ, (70)

P̂ =
αe
2r3

C1 sin2 θ sin(2φ). (71)

The coefficient C4 is zero, as expected from the small deformation analysis of a viscous

drop in a planar shear flow. Altogether there are five coefficients (d1, d3, d4, C1, C3) to be
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FIG. 6. Radial displacement (v̂s · r̂) evaluated at r = 1 with Λ = 1/3, and φ0 = 0.5. (a) ξ = 10−5.

(b) ξ = 10−4.

FIG. 7. Flow inside a poroelastic drop in a planar shear flow with φ0 = 0.5 and ξ = 10−4. (a)

η = 0 and β = 0, (b) η = 100 and β = 0, and (c) η = 100 and β = 100.

determined from seven boundary conditions (Equations (47)-(51) in three dimensions), from

which there are only five linearly independent equations (similar to the small-deformation

analysis of a viscous drop). The coefficients are listed in Appendix B.

Figure 6 shows radial displacement evaluated at the unperturbed drop surface (r = 1)

as a function of slip for different values of permeability η with Λ = 1/3, and φ0 = 0.5.

ξ = 10−5 for panel (a) and ξ = 10−4 for panel (b). As in the previous extensional flow

case, the displacement asymptotes to a constant value with increasing β and decreases with

increasing η. Here we do see a stronger effect of the drag coefficient ξ.

Figure 7 shows the interior flow of a poroelastic drop in the x − y plane with (η, β) =
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FIG. 8. Inflow as a function of η (panel (a)) and β (panel (b)). Λ = 1/3 and ξ = 10−4.

(0, 0) for panel (a), (η, β) = (100, 0) for panel (b), and (η, β) = (100, 100) for panel (c).

The far-field flow is U = yx̂. At steady equilibrium the z-component of the interior flow

(Equations (64)-(67)) vanishes and we plot the interior flow in the x− y plane. For (η, β) =

(0, 0) (panel (a)) the interior flow is a simple rotation. When the interface is permeable

(non-zero permeability) the interior flow is almost like the planar shear flow outside except

around the x-axis where the rotation dominates around the equator. In addition the interior

flow develops a different pattern that depends on the interfacial slip β. When β = 100 (panel

(c)) the interior flow develops a recirculation around the y-axis, which is not found for β = 0

(panel (b)). Figure (8) shows the inflow in the first quadrant defined in Equation (63) for

the planar shear flow case. We observe that the net inflow increases with both slip and

permeability, similar to the case of uniaxial extensional flow.

D. Linear Dynamics

Similar to the case of a slightly deformable viscous drop in linear flows, the steady equi-

librium solution for a slightly deformed poroelastic drop is obtained from solving a non-

homogeneous equation. For a viscous drop in linear flows, the kinematic boundary condi-

tion gives rise to a first-order differential equation for the deformation amplitude that decays

exponentially to the steady equilibrium. The exponential decay rate depends only on the

viscosity ratio between internal and external viscous fluids.

This is not the case for a poroelastic drop where the kinematic boundary condition is

not sufficient for determining the linear dynamics characterized by a linear growth rate ω.

Instead, because of the network viscous dissipation, the homogeneous component of the

general solution in Equation (57) amounts to a nonlinear eigenvalue problem for ω.

The time dependent linear solutions for a poroelastic drop in a uniaxial extensional flow

and a planar shear flow are given in Appendix C and Appendix D, respectively. The two

functions g1 and g2 in Equations (C4)-(C5) for the uniaxial flow are identical to the g1 and

g2 in Equations (D5)-(D6) for the planar shear flow. Both g1 and g2 are power series that
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depend on ω:

g1(r) = r5 +
2ω̄

99
r7 +

5ω̄2

20592
r9 +

ω̄3

514800
r11 + · · · , (72)

g2(r) =
28

ω̄
r3 − 1

3
r5 − ω̄

198
r7 − ω̄2

20592
r9 − ω̄3

3088800
r11 + · · · , (73)

where

ω̄ ≡ ωξ

(1 + ωαv)φ0

. (74)

For the uniaxial extensional flow case, the coefficients (a1, a2) in Equations (C6)-(C7) can be

expressed in terms of (α1, α3, α5). For the planar shear flow case, the coefficients (c1, c3) in

Equations (D7)-(D10) can be eliminated as well. For both uniaxial and shear flow, the the

resultant system of linear equations for (α1, α3, α5) are thus a nonlinear eigenvalue problem

for ω:

A

 α1

α3

α5

 = ωB(ω)

 α1

α3

α5

 . (75)

Solutions of Equation (75) for ω describe the linear dynamics of a poroelastic drop in

the small-deformation limit. Identical matrixes A and B are obtained for both the uniaxial

extensional flow and the planar shear flow: This is consistent with the small-deformation

dynamics of a viscous drop in linear flows. This means that the same eigenvalues are expected

for both the uniaxial extensional flow and the planar shear flow.

The characteristic equations in matrix form are provided in supplementary material41.

In the limit of 1� αv|ω|, the eigenvalues ω can be calculated from a generalized eigenvalue

problem and equation (75) can be reduced to a linear generalized eigenvalue problem as

ωξ

(1 + ωαv)φ0

→ ξ

αvφ0

as αv|ω| � 1, A

 α1

α3

α5

 ≈ ωB0

 α1

α3

α5

 , (76)

with B0 independent of ω. The entries of matrix B0 are also provided in supplementary

material41. It is worth noting that while there are three eigenvalues from Equation (76) (as

opposed to one eigenvalue for the slightly-deformable viscous drop), the nonlinear eigenvalue

system in Equation (75) may in general admit more than three eigenvalues.

Figures (9) show the first three eigenvalues from solving the full nonlinear eigenvalue

problem in Equation (75) (solid curves) and the approximate linear eigenvalue problem in

Equation (76) (dash-dotted curves) for three cases with different combination of β and η.

For all these results, sufficient terms in the power series for g1 and g2 are used to guarantee

convergence in finding the eigenvalue ω.

In general we find very good agreement in the first two eigenvalues between the full

(solid lines) and approximated (dash-dotted lines) eigenvalue problem for volume fraction

0.1 / φ0. For φ0 < 0.1, panel (c) shows that complex eigenvalues (a complex conjugate

pair with a negative real part) are found from Equation (76) while eigenvalues remain real
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FIG. 9. Eigenvalues ω as a function of φ0 with Λ = 0.5, µs = 10−2 and ξ = 10−2. (a) β = 0 and

η = 0. (b) β = 1 and η = 0. (c) β = 0 and η = 1.

for Equation (75). We can not find any indication of complex roots for the full nonlinear

eigenvalue problem with the same parameter values. Our computation also shows that all

eigenvalues of Equation (75) are negative, implying that the steady equilibrium solutions

that we found are stable.

IV. CONCLUSIONS AND ONGOING RESEARCH

In this work we develop a two-phase flow model for a poroelastic fluid that consists of

an elasco-viscous network fully immersed in a viscous fluid. This model is equivalent to the

incompressible Brinkmann equations when the network is rigid and does not move in the

reference frame. If the viscous dissipation in the poroelastic fluid is sub-dominated by the

pressure gradient force and the friction force, our two-phase flow model is reduced to Darcy

fluid with a deformable network phase. Appropriate boundary conditions at the boundary

between the biphasic poroelastic fluid and a viscous Stokes flow are derived by the free

energy dissipation principle.

Applying this model to the small-deformation dynamics of a poroelastic drop under linear

flows, we are able to find steady equilibrium solutions and examine the effects of interfacial

slip and permeability on the flow around the drop. Under a uniaxial extensional flow, non-

zero interfacial permeability gives rise to an interior flow of similar pattern while the exterior

flow around the interface depends a lot on the interfacial slip. Under a planar shear flow,

the network rotates with the vorticity in the shear flow and such a rigid-body rotation is

the dominant interior flow at a steady equilibrium in the absence of permeability. Different

flow patterns develop around the drop due to the combination of permeability and slip.

The kinematic boundary condition for a poroelastic drop governs the interface moving

with the normal component of the network velocity at the interface. This renders the

eigenvalue problem nonlinear and we are able to compute the first three roots and compare

them with an approximated linear eigenvalue system. We find that the eigenvalues are the

same for both extensional and shear flow, and all the eigenvalues are negative. These are

similar to the small-deformation dynamics of a viscous drop in linear flows.

In the small-deformation limit we assume that the unperturbed volume fraction for the

fluid phase is homogeneous. This simplification avoids the complication of having to solve a
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linear system of variable-coefficient boundary value equations. In addition this simplification

greatly reduces the porosity dependence on the volume fraction. Based on results from

MacMinn et al.12 a nonhomogeneous initial volume fraction and a more complicated porosity

may not alter the linear dynamics and steady equilibria significantly.

Although our two-phase flow model does not capture the complexity of many biologi-

cal poroelastic fluids of interest, one expectation is that this approach can be generalized

to consider more complex situations such as the swelling and drying due to chemical re-

action, polyelectrolytic properties of the solvents in gel-like solutions, and the nonlinear

elastohydrodynamics when the displacement amplitude is large. These are all promising di-

rections that we plan to apply our model to after we validate our small-deformation results

by comparing against direct numerical simulation results. Currently we are conducting the

small-deformation analysis on a soft Brinkman drop (that may be more appropriate for low

volume fraction φs < 5%, see the derivations in Caflisch and Rubinstein 1) in linear flows.
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Appendix A: Steady Equilibrium under a Uniaxial Extensional Flow

For a poroelastic drop at the steady equilibrium under a uniaxial extensional flow, the

coefficients are

d1 =− 50(4β + 1)ηξ

7(1− Λ)(5βηξφ0 − 5βηξ − 48βηφ0 − 10βφ0 + 2ηξφ0 − 2ηξ − 24ηφ0 − 4φ0)
, (A1)

d2 =
Nd2

Dd2

, (A2)

Nd2 =15(40βηΛξφ0 − 40βηΛξ + 24βηξφ0 − 24βηξ − 72βΛφ0 − 56βφ0+

13ηΛξφ0 − 13ηΛξ − 48ηΛφ0 + 6ηξφ0 − 6ηξ − 24Λφ0 − 14φ0),

Dd2 =(1− Λ)(12Λ + 7)(φ0 − 1)(5βηξφ0 − 5βηξ − 48βηφ0 − 10βφ0+

2ηξφ0 − 2ηξ − 24ηφ0 − 4φ0),

d3 =
Nd3

Dd3

, (A3)

Nd3 =9(3Λ + 7)(−32βηΛξφ0 + 32βηΛξ − 32βηξφ0 + 32βηξ + 280βφ0−
8ηΛξφ0 + 8ηΛξ + 27ηξφ0 − 27ηξ − 560ηφ0),

Dd3 =7Dd2 ,

A1 =
10(βηξφ0 − βηξ + 16βηφ0 − 2βφ0 + ηξφ0 − ηξ − 8ηφ0 − 2φ0)

5βηξφ0 − 5βηξ − 48βηφ0 − 10βφ0 + 2ηξφ0 − 2ηξ − 24ηφ0 − 4φ0

, (A4)

A2 =− 6(16βηφ0 + ηξφ0 − ηξ − 12ηφ0 − 2φ0)

5βηξφ0 − 5βηξ − 48βηφ0 − 10βφ0 + 2ηξφ0 − 2ηξ − 24ηφ0 − 4φ0

. (A5)

Appendix B: Steady Equilibrium under a Planar Shear Flow

For a poroelastic drop at the steady equilibrium under a planar shear flow, the coefficients

are

C1 =− 10(βηξ(φ0 − 1) + 16βηφ0 − 2φ0(β + 4η) + ηξ(φ0 − 1)− 2φ0)

5βηξ(φ0 − 1)− 48βηφ0 − 2φ0(5β + 12η) + 2ηξ(φ0 − 1)− 4φ0

, (B1)

C3 =
5(16βηφ0 + ηξ(φ0 − 1)− 12ηφ0 − 2φ0)

5βηξ(φ0 − 1)− 48βηφ0 − 2φ0(5β + 12η) + 2ηξ(φ0 − 1)− 4φ0

, (B2)

d1 =
10(4β + 1)ηξ(φ0 − 1)

−5βηξ(φ0 − 1) + 48βηφ0 + 2φ0(5β + 12η)− 2ηξ(φ0 − 1) + 4φ0

, (B3)

d3 =
Nd3

Dd3

, (B4)

Nd3 =− 5(2(20βηΛξ(φ0 − 1) + 12βηξ(φ0 − 1)− 12Λφ0 − 7φ0)−
8φ0(9βΛ + 7β + 6ηΛ) + η(13Λ + 6)ξ(φ0 − 1)),

Dd3 =(1− Λ)(12Λ + 7)(φ0 − 1)(5βηξ(φ0 − 1)− 48βηφ0 − 2φ0(5β + 12η) + 2ηξ(φ0 − 1)− 4φ0),

d4 =
3(3Λ + 7)(32βη(Λ + 1)ξ(φ0 − 1)− 280φ0(β − 2η)− η(27− 8Λ)ξ(φ0 − 1))

7Dd3

. (B5)
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Appendix C: Linear solutions under a Uniaxial Extensional Flow

vs,1 · r̂ =
h0(r)

3
(1 + 3 cos(2θ)) eωt, (C1)

vs,1 · θ̂ = h1(r) sin(2θ)eωt, (C2)

p1 =
(1− φ0)

12r
[(8(1 + ωµs)h0 + 2(1 + Λ + ωµs)rh

′
0) + (C3)(

12(1 + ωµs)h1 − 2(1− Λ + ωµs)rh
′
1 − 2(1− Λ + ωµs)r

2h′′1
)]

(1 + 3 cos(2θ)) eωt,

h0 = α1r + α3r
3 + α5g1(r), (C4)

h1 = −α1r −
5

3
α3r

3 + α5g2(r), (C5)

ψe,1 =
(a1

2
− a2

2r2

)
cos θ sin2 θeωt, (C6)

P1 = − αe
2r3

a1 (1 + 3 cos(2θ)) eωt. (C7)

Appendix D: Linear solutions under a Planar Shear Flow

vs,1 · r̂ = f0(r) sin2 θ sin(2φ)eωt, (D1)

vs,1 · θ̂ =
f1(r)

2
cos(2θ) sin(2φ)eωt, (D2)

vs,1 · φ̂ = f1(r) sin θ cos(2φ)eωt, (D3)

p1 =
(1− φ0)

4r
[(8(1 + ωµs)f0 + 2(1 + Λ + ωµs)rf

′
0)− (D4)(

12(1 + ωµs)f1 − 2(1− Λ + ωµs)rf
′
1 − 2(1− Λ + ωµs)r

2f ′′1
)]

(1 + 3 cos(2θ)) eωt,

f0 = α1r + α3r
3 + α5g1(r), (D5)

f1 = α1r +
5

3
α3r

3 − α5g2(r), (D6)

U1 · r̂ =
1

20r4

(
c3 + 5c1r

2
)

sin2 θ sin(2φ)eωt, (D7)

U1 · θ̂ = − 1

10r4
c3 sin(2θ) sin(2φ)eωt, (D8)

U1 · φ̂ = − 1

10r4

(
10c4r

2 + 2c3 cos(2φ)
)

sin θeωt, (D9)

P1 =
αe
2r3

c1 sin2 θ sin(2φ)eωt. (D10)
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