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We study the effect of surface tension on the incompressible Rayleigh–Taylor instability. We modify
Goncharov’s local analysis [1] to consider the surface tension effect on the Rayleigh–Taylor bubble
velocity. The surface tension damps the linear instability and reduces the nonlinear terminal bubble
velocity. We summarize the development of a finite-volume, particle-level-set, two-phase flow solver
with an adaptive Cartesian mesh, and results from convergence and validation studies of this two-
phase flow solver are provided. We use this code to simulate the single-mode, viscous Rayleigh–
Taylor instability with surface tension, and good agreement in terminal bubble velocity is found when
compared with analytic results. We also simulate the immiscible Rayleigh–Taylor instability with
random initial perturbations. The ensuing mixing flow is characterized by the effective mixing rate
and the flow anisotropy. Surface tension tends to reduce the effective mixing rate and homogenizes
the Rayleigh–Taylor mixing flow. Finally, we provide a scaling argument for detecting the onset of
the quadratic, self-similar Rayleigh–Taylor growth.
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1. Introduction

The Rayleigh–Taylor (RT) instability is a fingering instability of fluid interface when light
fluid is accelerated against the heavy fluid. A principle focus of study on the Rayleigh–Taylor
instability is the global mixing rate as the instability evolves and develops into turbulence.
Recent simulations on miscible Rayleigh–Taylor instability show that the RT mixing rate
depends sensitively on initial conditions [2–4]. Many other factors may influence the RT
mixing, such as (numerical) mass diffusion [5, 6], surface tension [7], viscosity, compressibility
[8], time dependence of driving acceleration, shocks, geometric effects and varied forms of
heterogeneity.

Significant progress has accumulated from experiments, direct numerical simulations and
analysis on the miscible RT mixing in the Boussinesq limit, where the density contrast is
almost zero (the Atwood number A ≡ ρh−ρl

ρh+ρl → 0) and the buoyancy Ag is finite (g is the
acceleration). Experiments and simulations show that mass diffusion can reduce the RT mixing
rate by as much as a half [9–12]. Analysis on the Boussinesq RT turbulence illustrates that the
self-similar RT turbulence can be completely determined by the conditions at the onset of the
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self-similar process [13], where the mixing zone width (or amplitude) h grows quadratically
with time (h = αgAt2). This finding is consistent with the sensitive dependence of the mixing
rate α on initial perturbations [2, 4, 14], as different initial conditions may lead to different flows
at the onset of the self-similar RT growth. Once the self-similar growth is initiated, the energy
containing scale increases (l ∼ Agt2) whereas the Kolmogorov scale decreases with time
(η ∼ (A2g2/ν3)−1/4t−1/4). As time progresses, the inertial range becomes large enough for
establishing the forward cascade in the energy spectrum, and turbulence will be fully developed
in the RT mixing zone. For this miscible RT turbulence, the scaling and turbulent mixing are
described by the phenomenological model [15]. Thus, from the initial growth of the instability
to the asymptotic turbulent state, the evolution of Boussinesq miscible RT mixing can be
completely characterized by the flow conditions at the transition to self-similar growth, which
is estimated to occur at t ∼ 15tc = 15(ν/g2A2)1/3 [13]. It is unclear if the above Boussinesq
results may be directly applied to the immiscible RT mixing with finite Atwood numbers.

Motivated by these studies on Boussinesq RT mixing, in this paper we focus on character-
izing the immiscible RT instability by identifying the transition to the nonlinear evolution and
the transition to the self-similar growth. In particular, we will focus on the effects of surface
tension and finite Atwood number on transitions between different evolutionary stages.

For single-mode RT instability withA = 1, the transition from linear to nonlinear dynamics
occurs when the mode amplitude hk ∼ 1/k [16], where k is the wavenumber. As the amplitude
increases, the rising bubble will reach a constant terminal velocity. Goncharov [1] extended
potential flow models in Layzer [17] and Hecht et al. [18] to an arbitrary Atwood number. He
found the terminal bubble velocity vb to be a function of A:

vb =
√

2A
1 + A

g

Ck
, (1)

where C = 3 (1) for two (three)-dimensional geometries. Recent results from simulations of
single-mode RT instability show that Goncharov’s model gives better agreement than other
potential flow models (see [19] and references therein) and vortex sheet simulations by Sohn
[20]. We will modify the local potential flow analysis in [1] to consider the surface tension
effect on the single-mode Rayleigh–Taylor instability. Results from this analysis show that
the terminal bubble velocity is reduced by surface tension. We will also compare the analytic
prediction with direct simulation of single-mode, immiscible RT instability in section 3.

For a broadband of unstable modes, a quadratic, self-similar growth ensues after nonlinearity
takes over the initial exponential growth of the RT instability. Dimonte [14] summarized how
unstable modes grow and evolve to give rise to the self-similar RT turbulence. Assuming that
each mode reaches a terminal velocity, independent of the other growing modes, the self-
similar expansion is envisioned to be the result of a succession of dominant bubbles from
small sizes at small amplitudes to large bubbles at large amplitudes. From this model, the
self-similar quadratic growth is possible if the initial perturbation amplitudes vary inversely
with the wavenumber hk ∼ 1/k2. For the Boussinesq RT turbulence, a self-similar analysis

[13] on the averaged moment equations shows that the mixing rate α = C0
4 (1 +

√
4h0

AgC0t2 ),
where C2

0 is the variance of the density fluctuation at the center of the mixing zone. The
self-similar solution requires C0 to be a constant that is determined by the density variance at
the onset of the self-similar turbulence. The onset of the self-similar growth is estimated to
occur at t = 15tc, when the diffusive regime ends. Such an estimate may not be reasonable
for the immiscible RT instability, where there is no molecular mass diffusion. Refining the
self-similar analysis in [13], we present a scaling argument that allows us to detect the onset
of the self-similar growth without referring to the diffusion regime. With this we can estimate
the transition to self-similar growth for immiscible RT mixing with large density contrast.
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This paper is organized as follows. In section 2 we present the local potential flow analysis
for single-mode RT instability. In section 3 we summarize the problem formulation of the
viscous, immiscible RT instability and the numerics of the finite-volume, particle-level-set
(FV-PLS) flow solver. We also provide detailed code validation and convergence results. In
section 4 we present results of direct simulations of immiscible RT mixing for various values
of surface tension and density contrast. Finally, in section 5 we propose a scaling argument
for detecting the onset of the self-similar RT growth in general situations, and we also provide
some future directions.

2. Surface tension effect on single-mode RT instability

In this section we consider the effect of surface tension on the RT instability of an inviscid
(ν = 0) potential flow. These analytic results will be used to validate the incompressible
two-phase flow solver summarised in the next section.

In the analysis we assume the surface tension to be small enough for the instability to grow
and form a bubble/spike configuration. The fluids are subject to an external acceleration g
along the ŷ axis, pushing the heavy fluid toward the light fluid. The fluid interface is located
at y = η(x, t), and the velocity potential φ obeys the Laplace equation

∇2φ = (
∂2

x + ∂2
y

)
φ = 0. (2)

The governing equations for two irrotational, incompressible, inviscid fluids in two dimensions
are

∂tη + uh∂xη = vh, (3)

[v − u∂xη] = 0, (4)[
ρ

(
∂tφ + 1

2
u2 + gη

)]
+ [P] = 0, (5)

with velocity u = (u, v) = ∇φ and P is the pressure. [Q] ≡ Qh − Ql , where the superscripts
h and l denote the heavy- and light-fluid variables, respectively. The pressure jump in equation
(5) is equal to the surface tension force

[P] = Ph − Pl = −σκ, (6)

where σ is the surface tension coefficient and κ is the local curvature. We expand the bubble
shape η in x near the bubble tip:

η = η0(t) + η2(t)x2 + O(x3), (7)

with |x | � 1 and η2 is related to the bubble radius R as R = −1/(2η2). Following Goncharov’s
approach, we adopt the following velocity potentials at the bubble tip:

φh = a1(t) cos(kx)e−k(y−η0), (8)

φl = b1(t) cos(kx)ek(y−η0) + b2(t)y, (9)

where a1, b1 and b2 are amplitudes to be determined. For the parabolic bubble profile in
equation (7), the bubble curvature κ is approximated as

κ ∼ −2η2

3

√
1 + 4η2

2x2
∼ −2η2

(
1 − 6η2

2x2
)
. (10)
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Substituting equations (8)–(9) into equation (5) and expanding in x around the bubble tip, we
obtain the following equations at the zeroth order in x :

η̇2 = −η̇0
k
2 (k + 6η2), (11)

ρh

(
ȧ1 + 1

2 k2a2
1 + gη0

)
− ρl

(
ḃ1 + ḃ2η0 + 1

2 k2b2
1 + kb1b2 + 1

2 b2
2 + gη0

)
+ 2η2σ = 0.

(12)

a1, b1 and b2 can be expressed in terms of η0 and η2 after we substitute φh and φl into equations
(3)–(4):

ȧ1 = − η̈0

k
, b1 = η̇0(k + 6η2)

k(k − 6η2)
, b2 = 12η̇0η2

6η2 − k
. (13)

Substituting the above expressions into equation (12) and linearizing with respect to the base
state of a flat interface, we find the following linear equation for η0:

ρh

(
− η̈0

k
+ gη0

)
− ρl

(
η̈0

k
+ gη0

)
− k2ση0 = 0 . (14)

Assuming the form of normal mode for η0 (η0 = entη′
0), we find the linear growth rate

n =
√
Agk − k3σ

ρh + ρl
, (15)

which is identical to the linear analysis results for inviscid RT instability with surface tension
[21]. At the quadratic order in x , the evolution equation for amplitude η0 is obtained:

η̈0
k2 − 4Akη2 − 12Aη2

2

2(k − 6η2)
+ η̇2

0k2 (4A − 3)k2 + 6(3A − 5)kη2 + 36Aη2
2

2(k − 6η2)2

+Agη2 − 12ση3
2

ρh + ρl
= 0. (16)

Similar to Goncharov’s analysis without surface tension, we find that, in the limit t → ∞, the
bubble curvature η2 and the bubble velocity η̇0 approach their asymptotic values

η2(t → ∞) = −k

6
, η̇0(t → ∞) =

√
2A

1 + A
g

3k
− σk

9ρh
. (17)

For axi-symmetric RT bubbles, we obtain the following bubble curvature and terminal velocity:

η2(t → ∞) = −k

8
, η̇0(t → ∞) =

√
2A

1 + A
g

k
− 3σk

16ρh
. (18)

It can be shown that the steady states in equations (17)–(18) are linearly stable to small
perturbations.

In deriving equations (17)–(18) for the terminal bubble velocity, we have assumed a
parabolic bubble shape with a curvature −2η2. Therefore, the instability has to grow first
for the analysis to be valid, and the condition

σ ≤ σc ≡ g(ρh − ρl)

k2
(19)

must be satisfied for equations (17)–(18) and the above analysis with the surface tension to
hold. From this condition, we obtain a lower bound on the bubble terminal velocity for a given
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wavenumber and Atwood number

vb >

√
C

2A
1 + A

g

k
, (20)

where C = 2
9 in two dimensions and C = 13

16 in three dimensions.
In the next section we use results from the above analysis (equations (17)–(18)) to validate

the FV-PLS two-phase flow solver. As will be illustrated, we obtain reasonable agreement
between the analytic and the numerical results for small fluid viscosity (ν = 10−3) in the
direct simulations of single-mode immiscible RT instability.

3. Formulation, numerics and validation

We first formulate the two-fluid system in the level-set framework. We then briefly summarize
the essential numerics developed for the Cartesian adaptive grid. The key numerical develop-
ment is the treatment of immersed, continuum surface tension force in the finite-volume fluid
solver on the (homogeneously adaptive) Cartesian grid. We then present validation of using
this two-phase solver to simulate the viscous, immiscible RT instability and mixing.

3.1 Formulation and numerics

The incompressible, immiscible, viscous two-fluid system is formulated as a one-fluid system
with variations of density and viscosity only in the neighborhood of the interface. The fluid
interface is described by a level-set function φ(x, t) = 0. With constant density and viscosity
in each phase (fluid), the total density and viscosity can be written as

ρ = ρ(φ) = ρh H (φ) + ρl(1 − H (φ)), µ = µ(φ) = µh H (φ) + µl(1 − H (φ)), (21)

where ρh,l and µh,l are constant density and viscosity of the heavy or light fluid, respectively,
and H (φ) is the Heaviside function: H (φ) = 1 if φ > 0 and H (φ) = 0 if φ < 0. Formulated
as such, the continuity equation can be decomposed into the the following equations:

∂φ

∂t
+ u · ∇φ = 0

∣∣∣∣
φ=0

, ∇ · u = 0, (22)

where u is the fluid velocity. Our numerical flow solver deals with the collocated velocities as
the primitive variables; thus, the Navier–Stokes equations take the following form:

ρ
∂u
∂t

+ ρ∇(uu) = −∇ p + ∇(µ∇u) − ρgk̂ + σκδ(d)n̂, (23)

where p is the pressure, g is the gravitational acceleration, σ is the surface tension coefficient,
κ is the local surface curvature, δ(d) is the delta function based on the normal distance d to
the surface and n̂ is the outward unit normal vector at the free surface. Equations (21)–(23)
comprise the governing equations for the two-fluid system. It is important that we choose an
accurate and efficient numerical scheme for evolving the level set to mitigate the numerical
error in conserving mass and momentum. We solve equations (22)–(23) on a Cartesian adaptive
grid. The grid arrangement and adaptation are described in [22], and here we only discuss
details pertaining to the simulation of the two-phase flow.

All variables are stored at the control volume (CV) centers (with the exception of a face-
normal velocity located at the face centers) and are used to enforce the divergence-free con-
straint at each time step. The variables are staggered in time for convenience in the time
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advancement scheme; the velocities are located at time levels tn and tn+1; and pressure, den-
sity, viscosity and the level set at time levels tn−1/2 and tn+1/2. The semi-discretization of the
governing equations at each time step is then as follows.

Step 1. Advance and reinitialize the level set

φn+1/2 − φn−1/2


t
+ un

j

1

2

∂

∂x j
(φn−1/2 + φn+1/2) = 0. (24)

The spatial derivatives in the level-set equation (equation (24)) are approximated by a
fifth-order WENO scheme [23]. Uniform, homogeneous grid refinement is enforced within a
band around the zero level-set. For updating the level-set function, we use an implicit Crank–
Nicholson scheme which requires an iterative method. In practice, the hyperbolic system is not
stiff and can be quickly converged by a simple iterative scheme such as the Gauss–Seidel itera-
tion. We note that in the present time-staggering scheme, equation (24) is decoupled from other
equations and is advanced based on un to the next time level. The following reinitialization
step is performed every step to ensure that the level set is a signed distance function

∂φ

∂τ
= sgn(φ)(1 − |∇φ|). (25)

The spatial derivatives in reinitialization are once again approximated using the fifth-order
WENO scheme. We use an explicit third-order TVD Runge–Kutta method for time
integration. In practice, five iterations with a pseudo-time step of 
τ = 
x/4 are sufficient.

In addition, we have utilized particles to improve the level set. Markers help minimize the
movement of the level set during the reinitialization step, and reduce unnecessary merging
of the level set due to numerical discretization/diffusion. This formulation is based on the
hybrid-particle-level-set method [24]. Recent results show that the particle-level-set method
is accurate and comparable to the most accurate front-tracking schemes. In standard tests such
as the Zalesek disk and the time-reversal vortex flow, the particle-level-set method outperforms
the usual level-set methods by reducing numerical diffusion [24, 25] in the level-set framework.

Step 2. Update the density and viscosity at tn+1/2. With the level set advanced, fluid properties
are calculated based on the level set at the mid-point of the time interval:

ρn+1/2 = ρh H (φn+1/2) + ρl(1 − H (φn+1/2)),

µn+1/2 = µh H (φn+1/2) + µl(1 − H (φn+1/2)). (26)

In the present investigation, we use a smoothed property variation in the region of the zero
level set as described by Sussman et al. [26]. This smoothed variation leads to a surface tension
force that is of the C2 class in the categorization for the immersed (continuous) delta function
[27].

Step 3. Update the incompressible velocities at tn+1. The procedures used to update the
incompressible velocities are a variant of the collocated fractional step method [28]. We pay
special attention to the discrete form of force terms that have rapid spatial variation around
the interface, such as the surface tension forces in the momentum equation. First, a projected
velocity field ûi is calculated:

ûi − un
i


t
= − 1

ρn+1/2

(
∂p

∂xi

n−1/2

+ Rn+1/2
i

)
, (27)

where Ri contains all other terms in the momentum equation. We discretize both the convective
and viscous terms implicitly using second-order symmetric discretizations. The surface tension
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is treated explicitly based on φn+1/2 (the level set at the midpoint of the current time step).
We then subtract the old pressure gradient and interpolate the velocity field to the faces. In the
interpolation step, a critical difference between our formulation and the formulation of Kim
and Choi [28] is in the calculation of the face-normal velocities. Kim and Choi assume

Ri
n+1/2

ρn+1/2

f

≈ Rn+1/2
f

ρ
n+1/2
f

, (28)

where ()
f

is a second-order interpolation operator that yields a face-normal component from
two CV-centered vectors. This is an O(
x2) approximation, seemingly consistent with the
overall accuracy of the method, and significantly simplifies the calculation of the Poisson
equation source term. However, when surface tension forces are introduced we find that this
approximation can lead to large non-physical oscillations in the CV-centered velocity field. To
solve this problem, the surface tension forces must be calculated at the faces and then averaged
to the CV centers, i.e.

Rσ
i

ρ
≡ Rσ

f

ρ f

xi

. (29)

With this calculation of the surface tension force, we have to include the additional terms in
the calculation of the source term in the Poisson equation for the pressure.

3.2 Code validation

First, we illustrate the importance of a proper handling of the surface tension force. Figure 1(a)
compares the calculated pressure along the horizontal center line: the dashed line is from us-
ing Kim and Choi’s formulation for the surface tension force, and the solid line is from using
equation (29). Clearly, our formulation results in a better pressure with a small amplitude
of the velocity field (figure 1(b)) that should be exactly zero. These ‘parasitic currents’ have
been reported by other investigators ([29], for example), and in our formulation the maxi-
mum parasitic velocity is on the order of 0.001σ/µ for an equivalent uniform grid spacing

x = 1

64 and the Ohnesorge number Oh ≡ (µ2/aρσ )0.5 = 2.1. This is consistent with the
observations of others using staggered structured codes. Figure 1(c) shows a comparison be-
tween the linear analysis results and the computed periodicity of capillary wave on a spherical
drop, with generally good agreement, and the error in the capillary frequency is less than
1%.

Next, we present validation of using the FV-PLS two-phase flow solver to simulate the
Rayleigh–Taylor instability. For these convergence tests, the computation domain size is 1 ×
1 × 8, and the originally flat interface is placed at z = 4. Periodic boundary conditions are
adopted in the horizontal directions, and wall boundary conditions are used in the gravitational
direction. We perturb the interface with a sinusoidal perturbation a0(cos(kx) + cos(ky)), where
the wavenumber k = 2π and the amplitude a0 = 0.01. The grid spacing for the velocity away
from the interface is fixed at 
x f = 0.2, and we vary the minimum grid spacing around the
interface 
xs from 0.2 to 0.025.

The results in figure 2(a) are for the Atwood number A = 0.1 and the kinetic viscosity
νh = νl = 10−3. As shown in figure 2(a), the bubble height (hb) converges as we decrease 
xs .
Similar convergence is also found for the down-welling spikes in these A = 0.1 simulations.
For the Atwood number A ∼ 1, the spikes of the heavy fluid are (almost) free-falling into the
light fluid [30], whereas the bubbles of the light fluid reach a terminal velocity [1]. Due to
such asymmetry between bubble and spike, more resolution is necessary to resolve the pointy
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Figure 1. (a) A comparison of pressure for two different formulations of the surface tension force. The dashed
line is from Kim and Choi’s formulation and the solid line is from our formulation of the surface tension force.
(b) Parasitic currents around a circular drop. The amplitude of the parasitic flow is ∼0.001σ/µ. (c) A comparison
between computed and theoretical oscillation periods for a spherical drop.

spikes at large A. Figure 2(b) shows the convergence of spike depth hs as we decrease 
xs

from 0.2 to 0.0125. In figure 2(c) we show the order of convergence for results in panels
(a) and (b). The second-order convergence for spikes with A = 0.9 (solid line) is due to the
fact that the error in the velocity field around the spike dominates the error in capturing the
interface; thus, the order of convergence is that of the flow solver, which is of the second order
[22]. However, for bubbles with A = 0.1 (dashed line) the numerical error is dominated by
that in capturing the interface; thus it is slightly larger than order 1.

Figure 3(a) demonstrates that, for a single-mode perturbation with k = 2π , σ = 0 and fluid
viscosity νh = νl = 10−3, the code reproduces the growth rate from linear analysis for Atwood
numbers from 0.1 to 0.9 [21]. The sinusoidal perturbation grows exponentially and eventually
saturates. During the nonlinear evolution, the bubble reaches a terminal velocity as shown
in figure 3(b), where we plot the bubble velocity (scaled by equation (1)) versus the bubble
height hb. In figure 3(c) we plot the terminal bubble velocity from our simulations using two
minimum grid spacings 
x f . The solid line is the terminal bubble velocity from equation
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Figure 2. (a) Convergence test for bubble height for A = 0.1. (b) Convergence test for spike depth for A = 0.9.
(c) L1-error versus 
xs . The squares are for spike depth with A = 0.9 and the diamonds are for bubble height with
A = 0.1. The solid line is proportional to (
xs )2 and the dashed line is proportional to (
xs )1.2.

(1). A comparison between numerical simulations of single-mode RT instability with several
(inviscid) potential flow models shows that Goncharov’s model gives the best agreement with
simulation results for all values of the Atwood number [19]. In addition, the largest deviation
between simulation results and Goncharov’s model is found for the Atwood number A ∼ 0.6
[19], similar to our results in figure 3(c).

For small Atwood numbers in figure 3(b), the bubble velocity overshoots and decreases
briefly before a second acceleration ensues. Similar late-time behavior is also found in two-
dimensional RT single-mode. This second acceleration is first reported in [31]. Recently,
Ramaprabhu and collaborators have reinvestigated this “second wind” in detail [32]. Their
results show that the late-time acceleration is related to roll-up of vorticity around the bubble
neck. The competition between form drag and skin friction governs the onset of the second
acceleration. Thus, it is physically reasonable that the second acceleration may be delayed or
even never occur for Atwood numbers close to unity. This conclusion is consistent with the
trend we observe in figure 3(b).

We repeat simulations of the single-mode RT instability with surface tension coefficient
σ = 0.002, 
x f = 0.05 and 
xs = 0.0125. Other parameters are the same as in previous
simulations. Based on the convergence results in figure 2, we are confident that such spatial
resolution is more than enough for numerically convergent simulations of the rising RT bubble
with σ = 0.002. We simulate both two- and three-dimensional RT instability for two Atwood
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Figure 3. Code validation. (a) A comparison of the linear growth rate with analytic results. (b) Evolution of velocity
of the Rayleigh–Taylor bubble from simulations. (c) A comparison of the terminal bubble velocity between simulations
(symbols) and the nonlinear analysis (solid line).

numbers,A = 0.1 andA = 0.99. Figure 4 shows the evolution of the bubble velocity versus the
bubble height. We scale the bubble velocity by the inviscid results in equations (17)–(18) with
σ = 0.002. For A = 0.1 the bubble velocity overshoots in both two- and three-dimensional
cases, while for A = 0.99 the bubble velocity uniformly approaches the analytical results.

(a) (b)

Figure 4. (a) Bubble velocity (scaled by equation (17)) for two-dimensional single-mode RT instability. (b) Bubble
velocity (scaled by equation (18)) for three-dimensional single-mode RT instability.
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4. Evolution of RT instability with random perturbation

Having validated the numerical code in both linear and weakly nonlinear regimes, in this
section we focus on the consequence of perturbing the interface with a spatially random
disturbance. For simulation results presented in the first half of this section (sections 4.1 and
4.2), the initial disturbance imposed at the interface is a white-noise random perturbation (with
an amplitude 0.02). In section 4.1, we fix the Atwood number A = 0.3 and vary the surface
tension to investigate the effect of surface tension on RT mixing. We fix the surface tension
coefficient σ = 0.002 and vary the Atwood number in section 4.2. In section 4.3 we focus
on the evolution of turbulent RT mixing from random perturbations with smaller dominant
wavelengths. We focus on how the RT mixing rate changes due to the surface tension. We also
investigate how the surface tension force alters the anisotropy of the RT mixing flow.

In the numerical code, we adopt convenient non-dimensionalization so that the acceleration
coefficient g = 1 and ρh = 1. Accordingly, the time is scaled by T0 = √

L/g with L the
horizontal domain size, and the dimensionless surface tension is σ = σ0/(gρL2) where σ0

is the dimensional surface tension coefficient and ρ is the dimensional density of the heavy
fluid. Based on the characteristic bubble size λ and the density difference (
ρ) between
the two fluids, a similar non-dimensional surface tension coefficient can be defined as σ ′ =
σ0/(g
ρλ2) [7]. The relationship between the two dimensionless surface tension coefficients
are

σ ′ = σ
ρ


ρ

(
L

λ

)2

. (30)

In the following presentation and discussion, σ is used instead of σ ′ because as the random per-
turbation grows, the characteristic bubble diameter increases with time until it reaches the do-
main size L . Furthermore, from linear analysis, the initial characteristic bubble size depends on
surface tension; the larger the surface tension, the larger the wavelength (λ) for the most unsta-
ble mode. As a result, σ is more convenient for quantifying the strength of the surface tension.

In all the following presentations, the time is reported in unit of
√

L/g, which is about
0.175 s for a container of horizontal size L = 30 cm and g = 980 cm s−2.

4.1 A = 0.3

For the following simulation results, the computation domain is 2 × 2 × 4, viscosity ν = µ

ρ
=

10−3 for both fluids, 
x f = 0.05 and 
xs = 0.0125. Four values of the surface tension σ are
used: σ = 2 × 10−6, 0.001, 0.002 and 0.004.

Figure 5 shows the evolution of the bubble amplitude hb as a function of time for four
different values of σ . The solid lines are from simulation data and the dashed lines are fits
to the linear growth. For σ = 2 × 10−6 the linear growth starts after an initial transient, and
the nonlinearity becomes “important”* at tnl ∼ 2.7 when the bubble height hnl ∼ 0.10. As
the surface tension is small, we expect this case to be close to the miscible RT mixing with
finite density contrast. For miscible, Boussinesq RT turbulence [13], the self-similar quadratic
growth is estimated to start at t = ts ≡ 15tc = 15(ν/g2A2)1/3, which is ts ∼ 3.35 in our time
unit for A = 0.3. Assuming that the self-similar growth also starts at ts for miscible RT
mixing with finite density contrast (A = 0.3), our estimate for tnl ∼ 2.7 is consistent with
the estimated ts ∼ 3.35 because nonlinearity has to take over the linear regime before the
self-similar growth. In section 5 we will discuss an alternative way to estimate the initiation of

* This is when the increase in bubble height deviates from the exponential growth by 5%.
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Figure 5. Bubble height versus time for four values of σ on a log-linear plot. A = 0.3.

self-similar growth in immiscible RT mixing. We will also show that our estimate is in good
agreement with the estimated 15tc = 15(ν/g2A2)1/3 in [13].

As surface tension increases, the random perturbations decay first and undergo a long
transient before they start to grow exponentially at a reduced growth rate (due to the surface
tension, equation (15)). For large surface tension, nonlinearity becomes important later in
time when the bubble amplitude is large. Therefore, both hnl and tnl increase with surface
tension σ . These results are summarized in table 1. Also included in table 1 are the growth
rate (slope of the dashed lines in figure 5), the wavenumber k0 computed based on the growth
rate n (measured from simulation data) and the inviscid dispersion relation (equation (15)),
and the product k0hnl. Figure 6 illustrates the fluid interface at t = tnl for both σ = 2 × 10−6

and σ = 1 × 10−3. From the peak in the spectrum of the fluid interface at tnl, we determine
the dominant wavenumber k (in 2π ). In this unit, the value listed in table 1 corresponds to the
ratio L/λ in the computation domain.

Figure 7(a) shows the effective (or instantaneous) RT mixing rate αeff ≡ h/Agt2 versus
time. Figure 7(b) plots αeff versus the mixing zone width h. In table 1 we list the maximum
effective mixing rate and the time when the maximum is reached. Also listed in table 1 is the
duration
t = tmax − tnl. This duration appears to be independent of the surface tensionσ . In all

these simulations, the Reynolds number is Re =
√

ga3

µ/ρ
= 103 in our non-dimensionalization.

This value may be too low for the instability to reach the asymptotic limit where the mixing

Table 1. Summary for A = 0.3 simulations. n is the growth rate (slope of the dashed lines in figure 5). Since
ν = 10−3, we use equation (15) to approximate the most unstable wavenumber from the computed growth rate n

and denote this approximation by k0.

σ k (2π ) n k0 hnl k0 × hnl tnl max (αeff) tmax h (tmax) 
t = tmax − tnl

2 × 10−6 6 1.3 5.64 0.1 0.56 2.7 0.074 7.3 1.19 4.6
1 × 10−3 4 1.13 4.5 0.15 0.68 5.0 0.057 9.8 1.65 4.8
2 × 10−3 3 1.1 4.4 0.2 0.88 6.0 0.054 10.8 1.90 4.8
4 × 10−3 1 0.9 2.9 0.3 0.87 7.5 0.042 12.2 1.81 4.7
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Figure 6. Fluid interface at the onset of nonlinear evolution t = tnl for A = 0.3 and (a) σ = 2 × 10−6, (b) σ =
1 × 10−3.

rate α stays constant in the RT turbulence. In addition, the finite computation domain also
prevents α reaching the asymptotic value.

In the Boussinesq miscible RT mixing [11, 13], the dominant longitudinal (parallel to
the acceleration) component contains more than 66% of the total kinetic energy throughout
the evolution. A similar anisotropic partition of kinetic energy is found in the immiscible
simulations, and figure 8 illustrates how such anisotropic partition of kinetic energy is affected
by surface tension. These partitions of kinetic energy are related to the non-dimensional
Reynolds stress anisotropy tensor [13]

bi j = 〈ui u j 〉
〈ulul〉 − 1

3
δi j , (31)

(a)

Time

α e
ff

α e
ff

(b)

Bubble Height hb

Figure 7. (a) Effective mixing rate αeff ≡ h/Agt2 versus time. (b) αeff versus hb .
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Figure 8. Partition of kinetic energy and its dependence on the surface tension. (a) Vertical (longitudinal) component
of the kinetic energy versus time. (b) Total horizontal (transverse) components of the kinetic energy versus time.
σ = 2×10−6 for the solid line, σ = 10−3 for the dashed line, σ = 2×10−3 for the dash-dotted line and σ = 4×10−3

for the dash-dot-dotted line.

where summation over the repeated index l is assumed. For example, the longitudinal partitions
in figure 8(a) are b33 + 1

3 .
As in the miscible case [11], the longitudinal partition remains above 65% throughout the

simulation for σ = 2 × 10−6 (solid line in figure 8). It first increases as nonlinearity be-
comes important shortly after t ∼ tnl. It soon reaches a maximum before the effective mixing
rate reaches its maximum at tmax (in table 1). The longitudinal partition then decreases al-
most uniformly till the end of simulation. With increasing surface tension, the RT mixing
flow becomes less anisotropic (broken lines in figure 8). Similar to the small surface ten-
sion case, the longitudinal partition reaches a minimum at tnl and reaches a maximum before
tmax. However, with large surface tension the energetic content of the transverse flows is al-
most half of the total kinetic energy as the instability develops (broken lines in figure 8(b)).
This is because the surface tension force acts to minimize the surface area. As a result the
longitudinal flow, most effective in stretching the surface in RT mixing, is demoted while
the transverse flows are now promoted by the surface tension and contain more kinetic en-
ergy. We remark that this redistribution of kinetic energy is similar to situations in MHD
turbulence.

The turbulent energy dissipation rate in the RT turbulence is found to be an important
quantity in modeling the RT mixing [33]. Defined as

εi j = ν

〈
∂u j

∂xk

∂u j

∂xk

〉
, (32)

the energy dissipation rate is also a good indicator of anisotropy in turbulence. Figure 9(a) plots
the longitudinal partition of the energy dissipation rate, and the corresponding transverse parti-
tion (in the x direction) is in figure 9(b). Similar to the kinetic energy partition, surface tension
promotes the transverse components. Such a surface tension effect is more pronounced in the
energy dissipation rate. For σ = 0.004, the longitudinal energy dissipation rate is comparable
with the transverse counterparts as shown in figure 9. This result implies that modification
may be needed in modeling the Rayleigh–Taylor mixing with surface tension.
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Figure 9. Partition of energy dissipation rate in RT turbulence. (a) The longitudinal partition and (b) the transverse
partition in the x direction.

4.2 σ = 0.002

Here, we focus on how immiscible RT mixing is affected by the density contrast. We present
results from simulations with σ = 0.002 and three different Atwood numbers. The results
from these simulations are summarized in table 2. Figure 10(a) shows the bubble height
versus time for all three cases. For both A = 0.6 and A = 0.3, nonlinearity takes over
at hb ∼ 0.2, while for A = 0.1, the nonlinear dominance occurs later at hb ∼ 0.25. The
maximum effective mixing rate increases with A. The larger the A, the sooner the maxi-
mum is reached (figure 10(b)). Interestingly, the mixing zone width at tmax (the time when the
effective mixing rate is maximum) is h ∼ 1.9, insensitive to the Atwood number.

Figure 11 shows the partition of kinetic energy for all three cases. The curves on the top are
for the longitudinal partitions, and the bottom three curves are partitions in the x component.
In figure 11(a) the partitions are plotted against time, while in figure 11(b) the partitions are
plotted against the mixing zone width h. In figure 11 we also find the anisotropy to decrease
with the Atwood number. For all three Atwood numbers the longitudinal component starts
increasing around tnl; it then reaches a maximum before αeff reaches the maximum at tmax.
For all three Atwood numbers, we find that the anisotropy is amplified right after nonlinearity
sets in at tnl. There is supporting evidence that the self-similar growth starts at a time between
tnl and tmax, as will be discussed in section 5. Based on the scaling argument in section 5, the
self-similar growth should start around the time when the maximum anisotropy is reached.
In addition, the longitudinal partition approaches ∼60% at late times (after tmax) for A = 0.1
and A = 0.3. The corresponding partitions of energy dissipation rate are shown in figure 12.

Table 2. Summary for σ = 0.002 simulations. n is the growth rate (dashed lines in figure 5). Again, equation (15)
is used to approximate the dominant perturbation wavenumber from the growth rate n.

A k (2π ) n k0 hnl k0 × hnl tnl max (αeff) tmax h (tmax) 
t = tmax − tnl

0.1 1 0.47 2.35 0.25 0.59 14.3 0.035 23.20 1.88 8.9
0.3 3 1.1 4.4 0.20 0.88 6.0 0.054 10.81 1.90 4.8
0.6 3 1.50 3.91 0.20 0.78 3.8 0.063 7.10 1.89 4.3
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Figure 10. (a) Bubble height versus time for different values ofA on a log-linear plot. σ = 0.002 for all simulations.
(b) The corresponding mixing rate α versus time.

4.3 σ = 4 × 10−6

It is well documented that the RT turbulence may depend on the initial conditions [14]. Such
dependence may be even more prominent if the Reynolds number is not too high (as in our
simulations) [2]. In this subsection, we change the spectrum of the initial random perturbation
so that the dominant perturbation wavelengths are smaller than those in sections 4.1 and 4.2.
For a smaller dominant perturbation wavelength, the horizontal periodic boundary conditions
have less effects on the RT turbulence mixing rate [34]. Thus, the ensuing RT turbulence may
be closer to the self-similar turbulence despite the moderate Reynolds number and the finite
domain size in our simulations. To investigate how findings in the above sections might be
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Figure 11. (a) Partition of kinetic energy: the top curves are for longitudinal partition and the bottom curves are
partition for one of the transverse components. (b) Partition of kinetic energy with respect to the mixing zone width.
The solid lines are for A = 0.1, dashed lines are for A = 0.3 and dash-dotted lines are for A = 0.6.
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Figure 12. Partition of energy dissipation rate. (a) Longitudinal partition (in the z direction) of the kinetic energy.
(b) Transverse partition (in the x direction). The solid lines are for A = 0.1, dashed lines are for A = 0.3 and
dash-dotted lines are for A = 0.6.
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Figure 13. (a) Bubble height versus time for different values of A on a log-linear plot. σ = 4 × 10−6 for all
simulations. (b) The corresponding mixing rate α versus time.
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Table 3. Summary for the third set of simulations. n is the growth rate (slope of the dashed lines in figure 13). k0
is the approximated perturbation wavenumber based on the inviscid dispersion relation (equation (15)) and the

computed growth rate n.

σ A k (2π ) n k0 hnl k0 × hnl tnl max (αeff) tmax h (tmax) 
t = tmax − tnl

4 × 10−6 0.1 8 0.78 6.13 0.04 0.24 2.70 0.063 13.10 1.08 10.40
4 × 10−6 0.3 8 1.47 7.74 0.10 0.77 2.11 0.084 5.10 0.73 2.99
4 × 10−6 0.6 8 2.30 9.25 0.11 1.02 1.40 0.105 3.50 0.77 2.1
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Figure 15. (a) Partition of kinetic energy: the top curves are for longitudinal partition and the bottom curves are
partition for one of the transverse components. (b) The same kinetic energy partition versus the mixing zone width.
The solid lines are for A = 0.1, dashed lines are for A = 0.3 and dash-dotted lines are for A = 0.6.
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Figure 16. Partition of energy dissipation rate: the top curves are for longitudinal partition and the bottom curves
are partition for one of the transverse (x) components. The solid lines are for A = 0.1, dashed lines are for A = 0.3
and dash-dotted lines are for A = 0.6.
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altered by a smaller dominant perturbation wavelength λ, we repeat some of the simula-
tions with the surface tension limited to a small value (σ = 4 × 10−6) due to the stabilizing
effects.

Figure 13 shows the bubble height and the effective mixing rate versus time, and table 3
summarizes the basic characteristics of these simulations. The dominant wavelengths for all
these four simulations are around L/8. A transition to nonlinear evolution occurs at hnl ∼ 0.04
for A = 0.1, while hnl ∼ 0.1 for both A = 0.3 and A = 0.6. Compared with the simulations
in section 4.2 with longer dominant perturbation wavelengths, we find the effective mixing
rate αeff to be larger for smaller dominant wavelengths, and the mixing zone width at tmax

slightly depends on the Atwood number. The range of αeff in this set of simulations is similar
to that in [7] with similar parameter values and range of perturbation wavelength. For example,
the A = 0.3 run in table 3 has parameter values closest to those in [7] with a corresponding
surface tension σ ′ = 6 × 10−4. From the FronTier (front-tracking) simulations, the mixing
rate αb ∼ 0.085 for σ ′ = 6 × 10−4 from figure 2 in [7], consistent with αeff = 0.073 from
our simulations. The fluid interface at tmax (when the maximum mixing rate is reached) is
illustrated in figure 14 for all three cases.

Figure 15 shows the partition of kinetic energy, similar to the results for larger dominant
perturbation wavelengths in section 4.2, the anisotropy in the RT turbulence is decreasing at
the end of the simulations. However, we observe stronger anisotropy for cases with smaller
dominant perturbation wavelengths. Such stronger anisotropy is also reflected in the energy
dissipation rate in figure 16 (cf figure 12).

5. Conclusion

In this paper, we investigate the effect of surface tension on the RT instability and the ensuing
mixing. For a single-mode RT instability, we modify the local potential flow analysis in [1]
to consider the surface tension effect on the linear stability and the nonlinear terminal bubble
velocity. The stabilizing effect of surface tension on the linear growth rate is reproduced (the
same as in [21]). The terminal bubble velocity is reduced by surface tension, and these results
are in good agreement with numerical simulations of a viscous, single-mode RT instability
with σ = 0.002.

We use the finite-volume, particle-level-set, two-phase flow solver to simulate RT mixing
with random perturbations at the interface. The homogeneous Cartesian grid refinement allows
us to accurately resolve the flow around the interface with a refined mesh. Such adaptive
capability also enables us to capture the interface dynamics efficiently without having to over-
resolve the velocity away from the interface. We validate the usage of this code to simulate the
immiscible RT instability by comparing with results from the linear and nonlinear analyses.
We also show numerical convergence in simulating the RT instability using the FV-PLS flow
solver.

We investigate the surface tension effect on the anisotropy in the RT mixing flow. Different
values of surface tension and density contrast are used in the simulations. In the RT mixing
flow, the surface tension reduces the flow anisotropy, and redistributes some of the kinetic
energy from the longitudinal component to the transverse components. For very small surface
tension (σ = 2 × 10−6), we simulate the “almost miscible” RT mixing with finite density
contrast A = 0.3. Results from this simulation are consistent with those from Boussinesq
miscible RT simulations [13]; nonlinearity sets in at tnl before the initiation of self-similar
growth, which is around 15tc = 3.35. As the self-similar process begins, the effective mixing
rate αeff first increases, reaches a maximum at tmax and then settles to an asymptotic constant
if the conditions are sufficient for turbulence to develop.
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For the Boussinesq miscible RT instability [13], the turbulence is estimated to become
fully developed in the RT mixing zone at around t ∼ 40tc after the onset of the self-similar
growth at ts = 15tc. Large density contrast (A = 0.3) gives rise to larger effective acceleration
αAg; thus, the mixing zone may reach the wall before the flow can evolve into turbulence.
Consequently for sufficiently large Reynolds number and numerical resolution, the minimum
computation domain for the RT mixing flow to develop into turbulence increases with the At-
wood number. In the “almost” miscible case (with A = 0.3 and σ = 2 × 10−6), the simulation
continues till t ∼ 50tc = 11.16 and the mixing zone has already reached the wall. Thus, the
RT mixing flow has not yet become fully turbulent in our simulations (including those with
higher surface tension). Indeed, at the end of the simulations, the Weber number (defined as
We ≡ 4(ρ1 + ρ2)h3/t2σ [35]) is in the range of We ∼ 800, considerably lower than the range
quoted in Dimonte and Schneider’s experiments [35]. In addition, the Reynolds number in our
simulations is in the range of Re ∼ 2h2/(tν) ∼ 103, also lower than that in the experiments.
Thus the RT turbulence in our simulations is not yet well into the self-similar regime, and
consequently the dependence of α on the bubble aspect ratio D/h (D is the bubble diameter)
may not be as prominent as its dependence on the Froude number. As a result, α decreases
with increasing surface tension in our simulations as opposed to the increasing trend by the
surface tension reported in experiments [35], where a surfactant has been used to control the
strength of the surface tension.

On the other hand, recent results from front-tracking direct numerical simulation of inviscid,
immiscible RT chaotic mixing report that the mixing rate α decreases with increasing σ [7].
In these simulations, the Weber number and Reynolds number are quite close to the range
in the experiments: We ∼ 3761 and Re ∼ 105 (based on the numerical viscous dissipation in
their front-tracking simulations [36]). Thus, it is possible that the trend of increasing α with
increasing surface tension in experiments may be partly due to the surfactant, which not only
reduces surface tension but also induces Marangoni stresses that alter the flow around the
fluid interface. The presence of a surfactant also causes large deformation of fluid interface
and retards pinch-off [37], which is consistent with the larger aspect ratio (self-similarity
parameter) D/h found in the experiments with surfactants. We will start an investigation on
the surfactant effects on the RT chaotic mixing and turbulence. We plan to focus on how
the surfactant may lead to increasing α. In particular, we will explore first the effects of an
insoluble surfactant, and will include surfactant solubility in the future.

From the A = 0.3 simulations we observe that, right after the nonlinearity takes over the
initial linear growth, anisotropy begins to amplify until the onset of the self-similar growth.
This is illustrated in figure 17, where we plot the ratio of transverse partition to longitudi-
nal partition of the kinetic energy. A small ratio means strong anisotropy in the flow, and
tick marks on the figure indicate tnl for different values of σ . Focusing on the solid line
in figure 17 (σ = 2 × 10−6 in this case), we find that the ratio starts to increase at t ∼ 4,
which is close to the time ts = 15tc when the self-similar growth initiates for the miscible
case (σ = 0). The increase in the partition ratio is an indication of the self-similar growth
because anisotropy decreases as turbulence develops and energy cascades from large to small
scales. Thus, the reduction in the partition ratio at t ∼ tnl can be viewed as a pre-requisite
condition for the self-similar growth. To elucidate this argument, we adopt the self-similar
analysis for the Boussinesq RT turbulence [13] with a key modification in the balancing of
terms.

In the self-similar analysis, the existence and validity of the self-similar solution hinges on
a particular balance of terms in moment equations obtained from averaging the Navier–Stokes
momentum equations. The averaging procedure, indicated by the angle brackets, is the standard
planar average 〈 f 〉 = (1/L2)

∫
f dxdy. Here we seek a suitable scaling that corresponds to

the arisotropic conditions (prior to fully developed turbulence) that still allow for the (onset
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Figure 17. Ratio of kinetic energy partition: x component to z component for A = 0.3 simulations. Solid line:
σ = 2 × 10−6, dashed line: σ = 0.001, dash-dotted line: σ = 0.002 and dash-dot-dotted line: σ = 0.004. The tick
marks indicate the onset of nonlinearity tnl from table 1.

of the) self-similar solution. To this end, we find the following scaling:

∂t → ε∂t ′ , ∂x → εm∂x ′ , ∂y → εm∂y′ , ∂z → ε2∂z′ ,

p → p′

ε2
, u → u′

εm−1
, v → v′

εm−1
, w → w′

ε
, (33)

with ε � 1 and m > 1/2. Applying the above scaling with m = 1 to the first-order and
second-order moment equations in [13], we obtain (dropping the primes)

〈w2〉z = −Pz − AgC, ∂t C + 〈wc〉z = 0, (34)

∂t 〈wc〉 + 〈w2c〉z = −〈w2〉Cz − Ag〈c2〉 − 〈cpz〉, (35)

∂t 〈c2〉 + 〈wc2〉z = −2〈wc〉Cz, (36)

∂t 〈w2〉 + 〈w3〉z = −2Ag〈wc〉 − 2〈wp〉z, (37)

−Ag〈wc〉 = 〈wp〉z, (38)

where P (mean pressure) and C (mean density) are the only non-zero first-order moments,
and w and c are fluctuations in the longitudinal velocity and density, respectively. Due to the
scaling (equation (33)) the molecular dissipative and diffusive terms in the original moment
equations (equations (2.7)–(2.10) and (2.12) in [13]) drop out at leading order in ε. Applying
the self-similar analysis in [13] to equations (34)–(38), we obtain the following self-similar
solution:

h(t ; C0, t0) = 1

4
AgC0t2

0 (τ + 1)2, t0 =
√

4h0

AgC0
(39)

and other self-similar temporal behaviors that are found in [13]. Based on the above results,
we conclude that the scaling in equation (33) implicates the strong anisotropy necessary for
“cultivating” the onset of the self-similar turbulence. However, based on the turbulence theory,
once the self-similar mixing starts the large-scale anisotropy will be reduced to small-scale
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anisotropy or completely diminished for high enough Reynolds numbers. Thus, we can rea-
sonably expect equation (33) to be a prelude to the self-similar growth in equation (39) and
we would not expect equation (33) to hold as turbulence develops. As a result, the scaling
behavior (such as w : u → 1 : ε) is an indicator for the onset of the self-similar RT turbulence.

We remark that the quadratic growth of the mixing zone h = αAgt2 may continue as long
as there exists local velocity anisotropy (described by equation (33)) near the edge of the
mixing zone. In our future work, we will verify this and find a more rigorous condition for the
detection of the self-similar turbulence growth in the RT turbulence. Abarzhi et al. suggested
specific scaling behavior for the self-similar turbulence; the vertical energy dissipation rate
scales linearly with time, and the rate of momentum loss remains constant [33]. We will
investigate these scaling behaviors in our numerical simulations of the RT turbulence, and
investigate which one is the best indicator for the onset of the self-similar RT turbulence.
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