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Electrohydrodynamic instability of a capacitive elastic
membrane
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2Department of Engineering Sciences and Applied Mathematics, Northwestern University,
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(Received 6 September 2014; accepted 27 January 2015; published online 13 February 2015)

The electrohydrodynamic instability of a leaky (weakly conducting) capacitive elastic
membrane driven by a direct current electric field, both perpendicular and parallel
to the membrane in a micro-fluidic channel, is investigated theoretically. In the
leaky dielectric framework, electric charges can accumulate on either side of the
membrane, and the effect of the accumulated surface charge depends on the ratio
of charge relaxation time in the bulk to the membrane charging time. Under a
parallel electric field, a non-conducting membrane can become unstable while under
a perpendicular electric field a non-conducting capacitive membrane is always stable
and membrane conductance is essential for the membrane instability. The effects of
membrane conductance, bending modulus, and charge relaxation time on the mem-
brane instability are elucidated for several combinations of conductivity ratio and
permittivity ratio in the bulk fluids. Regions of instability are computed for both the
parallel and perpendicular electric fields. The tangential electric field acts similarly
to the membrane tension in terms of its damping effects at small length scales (high
wave number), while either bending or membrane tension is needed to damp out the
small-scale perturbations under a perpendicular electric field. C 2015 AIP Publishing
LLC. [http://dx.doi.org/10.1063/1.4907936]

I. INTRODUCTION

Electric fields have been extensively utilized to drive a fluid interface or a lipid bilayer mem-
brane unstable for fabrication of micron-sized droplets1–4 or vesicles in microfluidic channels.5–8

For the micro-droplet formation from a fluid interface between two layers, a channel flow is often
employed to collect droplets from the electrohydrodynamic instability of the fluid interface driven
by an external electric field. In these micro-fluidic systems, the Reynolds number is very small and
hence the Stokesian regime is appropriate to describe the fluid motion. At zero Reynolds number,
the interface between two fluids under a channel Poiseuille flow is always stable when each layer is
of equal depth,9 therefore the observed electrohydrodynamic instability in Ref. 1 is most likely due
to the mismatch in electric properties and the resultant fluid interface instability under an electric
field. Linear stability on a fluid interface subject to an external electric field gives a good estimate
for the size of the droplet that ensues from the interface instability.10–13 Regions of instability have
been identified in terms of ratios of electric permittivity and conductivity between the two layers. In
particular, these unstable regions are divided into sub-regions where the normal or parallel electric
field is dominant and gives the larger growth rate.12,13

A lipid bilayer membrane consists of two layers of lipid molecules, with their hydrophilic
heads interacting with solvent molecules in the bulk (see Figure 1). The membrane thickness is
approximately 5 nm, and the lipid-lipid interaction gives rise to membrane elasticity and tension. In
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FIG. 1. A planar lipid bilayer membrane (at height z = Z (x, t)) separates two layers of leaky dielectric fluid. The bulk fluid
is characterized by permittivity (ε), conductivity (σ), and viscosity (µ). (a) The imposed electric field E is tangential to the
unperturbed, flat membrane. (b) The electric potential Φ is fixed on the top electrode (Φ= 0) and bottom electrode (Φ=Vb).

the continuum modeling framework, a lipid bilayer membrane is often modeled as an elastic sheet
with a tension that relates to the incompressibility of the membrane area.14 The Helfrich membrane
energy F =


Ω

� κb
2 H2 + γ

�
dΩ (where Ω is the membrane surface, γ is the membrane tension, κb

is the bending modulus, and H is the mean curvature) is often adopted for the computation of
membrane forces. Under an electric field, the membrane behaves like a leaky capacitor as it is
impermeable to ions unless there are pores or ion channels across the membrane. Depending on
the degree of membrane poration or membrane constituents (such as transmembrane ion channels),
there may be transmembrane currents due to a finite membrane conductance (leakage). Conse-
quently, the transmembrane potential varies over the “membrane capacitor charging” time under an
electric field, unlike the fluid interface where the electric potential is continuous (corresponding to
an infinite conductance).

For vesicle formation from a planar membrane subject to an external electric field (also referred
to as electroformation of vesicles), the relevant chemical processes (prior to the membrane insta-
bility) further complicate the physical processes of vesicle formation. For example, often multiple
planar membranes interact with each other before individual lipid membranes interact with sol-
vents and deform due to the external electric field. Recently, Young et al. conducted a long-wave
analysis on a planar lipid bilayer membrane under an electric field normal to the membrane.15

Prior to instability, the tension of the flat membrane is assumed to be negligible, and the condition
for electrohydrodynamic instability of a capacitive elastic membrane under a direct current (DC)
electric field is found to be similar to that for a fluid interface. In addition, the effect of an alternating
current (AC) normal electric field is also investigated. At low AC frequencies, the membrane can
be unstable even with zero membrane conductance. As the AC field magnitude is increased, the
nonlinear dynamics ensued from the electrohydrodynamic instability is found to exhibit three types
of motion: membrane undulation, membrane flip-flop, and a traveling wave on the membrane.15

There has been prior work investigating effects of a normal electric field on the electrohydro-
dynamic instability of a non-conducting planar membrane16 and a conducting planar membrane.17

Under a normal electric field, the non-conducting membrane is always stable while the conducting
membrane can be unstable for parameters in certain regions. To our knowledge, the effect of an
electric field tangent to the membrane has not been theoretically investigated. In this work, we
focus on the tangential (parallel) electric field case but we also present results for the normal
(perpendicular) electric field case for comparison. Before the external electric field is turned on, a
flat membrane is freely suspended in leaky dielectric fluids, and therefore the membrane tension is
very small prior to the instability. In the formulation here we keep the membrane tension, this will
allow us to investigate limits where we recover a fluid interface. Although the tension is close to
zero for a planar membrane it can be nonzero for a deformed membrane, and hence keeping it in
the formulation allows for a more general statement of the model. We will then focus on regions
of instability for a planar membrane under an electric field. The paper is organized as follows.
Section II presents the mathematical model for the electrohydrodynamic instability of a capacitive
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lipid bilayer under an electric field in a channel. Section III presents the linear stability results, and
conclusions are drawn in Sec. IV.

II. FORMULATION OF THE PHYSICAL AND MATHEMATICAL MODEL

The stability of a planar capacitive membrane immersed between two immiscible, viscous,
incompressible leaky dielectric fluids subject to an external electric field is investigated. A sche-
matic of the model is shown in Figure 1, where µ is the fluid viscosity, σ is the electrical conduc-
tivity, and ε( j) is the electrical permittivity of the fluid. The geometry for the tangential electric field
case is illustrated in Figure 1(a), while the normal electric field case is illustrated in Figure 1(b).
Note that the superscript 1(2) is associated with variables related to the top (bottom) layer, respec-
tively, in Figure 1, while the subscript “m” in the following refers to membrane variables. Without
loss of generality, we will focus mostly on σr ≡ σ(1)/σ(2) ≤ 1 for the parallel case.

The typical thickness of a lipid bilayer membrane is dm ≈ 5 nm. This thinness allows us to
model the interface on the macroscopic scale as an infinitesimally thin membrane (see Figure 1)
with a bending modulus κb ≈ 21kBT . For a lipid-bilayer membrane, lipid-lipid interactions are so
strong that the membrane is usually assumed to be incompressible, i.e., there is local conserva-
tion of surface area.14 With this assumption, the tension needs to be a variable chosen to force
this constraint.14 We will consider this incompressible membrane (IM) case here but we will also
consider the case where the tension is a constant and the surface incompressibility condition is not
enforced. There have been several investigations using both of these models18 and here we would
like to give a better understanding of the differences between them. We will refer to a membrane
where the surface incompressibility is not enforced as simply an elastic sheet (ES).

Ions are mostly impermeable to the lipid bilayer membrane except through trans-membrane
ion channels or pores. Therefore, a bilayer membrane acts as a capacitor under an electric field
with a capacitance Cm = εm/dm ≈ 0.01 F/m2 and a conductance Gm = σm/dm ≈ 10−3 − 106 S/m2,
depending on the degree of electric leakage. As dm is much smaller than the characteristic length
of the system, the lipid bilayer membrane is often modeled as a capacitive elastic sheet with an
effective capacitance Cm and the membrane conductance Gm.

There are several time scales involved in this system. In the leaky dielectric framework, the
bulk charge relaxes over a time t( j)c = ε( j)/σ( j) ∼ 1 µs for aqueous systems. This time scale is
much smaller than any other time scale in this system, and therefore the bulk charge is effec-
tively zero in the leaky dielectric framework. The capacitive membrane charges on a time scale19

tm =
Cmd

σ(2)
1+σr

1+gm(1+σr ) ∼ 1 ms with gm = Gmd/σ(2), and d a characteristic channel height. The bal-

ance between viscous stress and the electric shear traction gives the time scale t( j)EHD =
µ( j)

ε( j)E2
0

with

E0 a characteristic magnitude of the applied electric field. The bending resistance to changes in
membrane curvature gives another time scale t( j)κ =

µ( j)
κbQ

3 for a membrane undulation wave number
Q. Typical values for the physical parameters yield tκ ≫ tEHD and tm ≈ tEHD, but phenomena on
these time scales are retained in the model. With these parameter values, the model developed in
Refs. 15–17 for a capacitive elastic membrane is justified and will be used here.

A. Model for a capacitive elastic membrane in leaky dielectric framework

The model is formulated following Refs. 15, 17, and 19. The electric field is given by
E( j) = −∇Φ( j), where Φ is the electric potential. Within the leaky dielectric framework, the bulk
charge density is zero in the fluids, therefore Φ satisfies in the fluids the Laplace equation

∇2
Φ

( j) = 0 j = 1,2. (1)

Within each fluid, the two-dimensional fluid velocity v( j) = (u( j), w( j)) satisfies the incompressible
Stokes equations

− ∇p( j) + µ( j)∇2v( j) = 0, (2)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.235.83.190 On: Fri, 13 Feb 2015 16:05:14



022102-4 Y.-N. Young and M. J. Miksis Phys. Fluids 27, 022102 (2015)

∇ · v( j) = 0, (3)

where p( j) is pressure. On the channel walls v(1)(z = d(1)) = 0 and v(2)(z = −d(2)) = 0. Let z = Z(x, t)
denote the membrane. At the membrane, the tangential velocity is continuous: [v( j) · t̂]12 = 0 with
[ f ]12 ≡ f (1) − f (2) denoting the jump in the variable f across the membrane. The kinematic condition
at the membrane gives [v( j) − U] · n̂ = 0 with U the membrane velocity. The normal and tangential
stress balances at the membrane are


p( j) − n̂

(
e( j) + ε( j)

(
E( j)E( j) − 1

2
|E( j)|2I

))
n̂
1

2
= 2γH − 2κb∇2

sH − 4κbH3, (4)


n̂
(
e( j) + ε( j)E( j)E( j)) t̂

1

2
= ∇sγ, (5)

where e( j) ≡ µ( j)(∇v( j) + (∇v( j))T) is the viscous stress tensor, γ is the membrane tension, κb is the
membrane bending modulus, and H = Zxx/2(1 + Z2

x)1.5 is the curvature of the planar membrane.
For the lipid bilayer membrane, the tension γ arises from interactions between lipids as the mem-
brane deforms under stress. The conservation of total number of lipids in the membrane implies
that the local membrane area remains (close to) constant as the membrane is under stress and/or
deforms,14 i.e., the surface is incompressible. Therefore, the membrane tension may be spatially
non-homogeneous, and hence the Marangoni stress term on the right hand side of Eq. (5). The
tension is now determined by forcing the additional incompressibility constraint along the interface

∇s · U = 0, (6)

where ∇s is the surface divergence operator and U is the velocity along the interface. In the case of
an elastic sheet, the interface is not incompressible and the tension is a known constant, hence there
is no need for the additional Eq. (6).

Under the imposed electric field, the current across the bilayer membrane can be considered as
follows. First, we consider the conservation of normal current density across the membrane facing
the top fluid (superscript “1”) and then facing the bottom fluid (superscript “2”), respectively. Here,
we distinguish between each of the monolayers along the bilayer for the sake of this derivation but
within our continuum model the bilayer lipid membrane interface has zero thickness and is located
at z = 0 before any perturbation. This results in the two conservation equations along the membrane

n · (J(1) − Jm) = −∂q(1)

∂t
− ∇s · (Uq(1)) facing fluid “1,” (7)

n · (Jm − J(2)) = −∂q(2)

∂t
− ∇s · (Uq(2)) facing fluid “2.” (8)

Here, J(i) = σ(i)E(i) represents current density, q(i) denotes the electric charge density along each
side, Jm = σmEm is the ohmic current density crossing the membrane, and Em is the electric field
within the membrane. The current leaking through the membrane n · Jm will be approximated
by the voltage jump across the membrane times the membrane conductivity, i.e., n · Jm = GmVm,
where Vm = Φ

(2) − Φ(1) is the transmembrane potential. The right hand side of both (7) and (8)
represents the rate of change of charge along the monolayer of the moving interface. The sur-
face charge density along the top of the membrane is given by q(1) = ε(1)n · E(1) − εmn · Em =

ε(1)n · E(1) − CmVm at z = Z+, where the approximation εmn · Em = CmVm is used for a thin capaci-
tive membrane. Similarly, along the bottom side of the membrane at z = Z− we have q(2) = CmVm −
ε(2)n · E(2). Note that this implies that the total charge is q = q(1) + q(2) = ε(1)n · E(1) − ε(2)n · E(2).
Rearranging Eqs. (7) and (8), we obtain the governing equation for the transmembrane potential Vm

along z = Z as

Cm
dVm

dt
+ GmVm = σ(1)n · E(1) + ε(1)

d
�
n · E(1)�

dt
= σ(2)n · E(2) + ε(2)

d
�
n · E(2)�

dt
, (9)

where d
dt

denotes the material derivative. For the electric potential, two boundary conditions at the
membrane are given in Eq. (9). Two other boundary conditions for the electric potential Φ are on
the channel walls: ∂Φ( j)

∂z
= 0 on the walls for an external electric field parallel to the flat membrane;
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while Φ(1) = 0 at z = d(1), and Φ(2) = Vb at z = −d(2) for an external electric field normal to the flat
membrane.

The physical parameters with superscripts are defined in Figure 1 and the caption. The gov-
erning equations are rendered dimensionless by the following scalings: d(2), d(2)/U0, U0 (=σ(2)/Cm),
Vb, µ(2)U0/d(2), and Vb/d(2) for length, time, velocity, voltage, pressure, and charge density, respec-
tively. The applied electric voltage is Vb ≡ E0d(2). The resultant dimensionless parameters are dr

= d(1)/d(2), εr = ε(1)/ε(2), σr = σ(1)/σ(2), µr = µ(1)/µ(2), Ca = µ(2)U0/γ0, Eb = ε(2)V 2
b
/(µ(2)U0d(2)),

κ = κbCm/(µ(2)σ(2)d(2)2), S = d(2)σ(2)/(U0ε
(2)) = εm

ε(2)
d(2)
dm

, and gm = Gmd(2)/σ(2). Typical physical
parameter values for a lipid bilayer membrane are for the conductivity σm ≈ 10−9 − 10−3 S m−1,
εm ≈ 5 × 10−11 F m−1, κb ≈ 10−19 J, d(2) ≈ 10−3 − 1 mm, σ ≈ 10−6 − 10−3 S m−1, and µ ≈ 0.1
− 1 Pa s. The membrane tension for an unstressed planar membrane is as low as 10−9 N m−1.
These units imply that the dimensionless bending rigidity can vary as 10−12 ≤ κ ≤ 10−6, while the
Capillary number can vary as 104 ≤ Ca ≤ 107. The Capillary number for an ES is also very large as
the tension of a flat elastic sheet is small.20 However, the Capillary number is kept in the following
formulation to help elucidate the various effects on the electrohydrodynamic instability of an IM (or
ES) under an electric field.

Our aim is to investigate the linear stability of a membrane governed by Eqs. (1)–(9). Both the
IM and ES cases will be considered. Prior to the perturbation, the base state is a flat membrane acted
on by a uniform tangential electric field E = E0x, or a steady normal electric field defined by the
potentials along the two parallel electrodes at z = d(1) and z = −d(2) plus the capacitive boundary
conditions (9) along the flat membrane.

B. The base state and the linearized equations

For a capacitive membrane under an electric field parallel to the membrane (Figure 1(a)), the
base state for the flat membrane, z = Z0 = 0, is given by

v( j)
0 = 0,

∂Φ
( j)
0

∂x
= −1, q0 = 0, and Vm0 = 0, (10)

where the superscript j = 1 (2) is for the upper (lower) fluid, and subscript “0” denotes the base
state. For the case where the electric field is normal to the flat membrane, the base state is

Φ
(1)
0 =

gm
gm(dr + σr) + σr

(−z + dr), Φ(2)
0 =

1
gm(dr + σr) + σr

(−gmσr z + drgm + σr) , (11)

q0 =
gm (εr − σr)

gm(dr + σr) + σr
, and Vm0 =

σr

gm(dr + σr) + σr
, (12)

for −1 ≤ z ≤ dr .
Perturbations to the base state are assumed periodic in x in the form f1(z)eik x+ωt + c.c. with

k the dimensionless wave number and ω the dimensionless growth rate of the perturbation. Note
that variables with a subscript 1 are the amplitudes of the perturbation to the basic state. After
substituting these perturbations into the evolution Eqs. (1)–(3), the governing linearized equations
are

−ikp( j)1 + µr *
,

d2u( j)
1

dz2 − k2u( j)
1
+
-
= 0, (13)

−
dp( j)

1

dz
+ µr *

,

d2w
( j)
1

dz2 − k2w
( j)
1
+
-
= 0, (14)

iku( j)
1 +

dw( j)
1

dz
= 0, (15)

d2Φ
( j)
1

dz2 − k2
Φ

( j)
1 = 0. (16)

 This article is copyrighted as indicated in the article. Reuse of AIP content is subject to the terms at: http://scitation.aip.org/termsconditions. Downloaded

to  IP:  128.235.83.190 On: Fri, 13 Feb 2015 16:05:14



022102-6 Y.-N. Young and M. J. Miksis Phys. Fluids 27, 022102 (2015)

Equations (13), (14), and (15) can be combined into a fourth order equation for w
( j)
1 , and the

solutions w( j)
1 and Φ( j) can be expressed as

w
( j)
1 = A( j)ekz + B( j)e−kz + a( j)zekz + b( j)ze−kz, (17)

Φ
( j)
1 = C( j) cosh(kz) + D( j) sinh(kz). (18)

The twelve coefficients ( j = 1,2), along with the growth rate ω, are determined from the boundary
conditions.

For an elastic incompressible membrane, the surface-incompressibility (Eq. (6)) dictates that
(at the linear order) the tangential component of the velocity vanishes on either side of the mem-
brane, i.e., u( j) = 0 along z = 0. Thus, the boundary conditions for the perturbed velocity follow
from the equations in Sec. II A and are given by

u( j)
1 = 0 = w

( j)
1 on the channel walls, (19a)

w
( j)
1 = ωZ1 on z = 0, (19b)

where Z1eik x+ωt is the perturbed membrane profile. Along z = 0, the membrane incompressibility
condition Eq. (6) for the IM case gives at linear order

u(1) = u(2) = 0, (20)

while the continuity of the tangential velocity for the ES case gives

u( j)1

2
= 0. (21)

Other boundary conditions depend on the direction of the external electric field. For a parallel
electric field, they are

dΦ( j)
1

dz
= 0 on channel walls, (22)


σ

( j)
r

*
,
ik Z1 +

dΦ( j)
1

dz
+
-



1

2

=
1
S
ωq1, (23)

(ω + gm)Vm1 =

(
1 +

ω

S

)
n · E(2)

1 , (24)


µ
( j)
r
*
,

du( j)
1

dz
+ ikw( j)

1
+
-
+ ε

( j)
r Eb

*
,

dΦ( j)
1

dz
+ ik Z1+

-



1

2

= ikγ1, (25)


p( j)1 − 2µ( j)r

dw( j)
1

dz
+ ε

( j)
r EbikΦ( j)

1



1

2

= − k2

Ca
Z1 − κk4Z1, (26)

where µ
(1)
r ≡ µr , σ

(1)
r ≡ σr , ε

(1)
r ≡ εr , µ

(2)
r = 1, σ(2)

r = 1, ε(2)r = 1, n · E(2)
1 = −ik Z1 −

dΦ
(2)
1

dz
, and

q1 =


ε
( j)
r
*
,
−ik Z1 −

dΦ( j)
1

dz
+
-



1

2

. (27)

For a normal electric field, the boundary conditions become

Φ
( j)
1 = 0 on channel walls, (28)


σ

( j)
r

*
,

dΦ( j)
1

dz
+
-



1

2

=
1
S

(
ωq1 + iku(2)

1 q0

)
, (29)

(ω + gm)Vm1 =

(
1 +

ω

S

)
n · E(2)

1 , (30)
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
µ
( j)
r
*
,

du( j)
1

dz
+ ikw( j)

1
+
-
+ ε

( j)
r Eb

∂Φ
( j)
0

∂z
*
,
ikΦ( j)

1 + ik
∂Φ

( j)
0

∂z
Z1+
-



1

2

= ikγ1, (31)


p( j)1 − 2µ( j)r

dw( j)
1

dz
− ε( j)r Eb

dΦ( j)
0

dz
Φ

( j)
1

dz



1

2

= − k2

Ca
Z1 − κk4Z1, (32)

where n · E(2)
1 = −

dΦ
(2)
1

dz
|z=0,

q1 =


ε
( j)
r
*
,
−

dΦ( j)
1

dz
+
-



1

2

, (33)

and Vm1 = Φ
(2)
0 − Φ

(1)
0 + Z1

(
dΦ

(2)
0

dz
− Φ

(1)
0
dz

)
. Equations (22) and (28) are the boundary conditions for

the electric potential (one for each layer) on the channel walls, and all the other boundary conditions
are evaluated along the unperturbed flat interface.

The linearized system consists of Eqs. (13)–(21) and (22)–(26) for the parallel electric field
case. For the normal electric field case, the governing linear equations are Eqs. (13)–(21) and
(28)–(32). It is straightforward to solve each of these systems of equations for the growth rate ω.
The result will be a cubic equation for ω which depends on wave number k and all the physical
parameters. For the special case of 1/S = 0, i.e., the charge convection along the interface is negli-
gible, the equation becomes a quadratic equation in ω (see, e.g., Ref. 17 for the normal electric field
case). In the Appendix, we present this quadratic equation explicitly for the case of an incompress-
ible membrane subject to a parallel electric field with negligible charge convection (1/S = 0) and
dr = 1. Computational results are presented for all other cases. These computations were done by
first using Mathematica to identify the growth rate as a function of all physical parameters and wave
number, and then using MatLab to plot the dispersion curve.

It should be noted that in the IM case, the tension perturbation γ1 only appears in Eq. (25) for
the parallel field case and in Eq. (31) for the normal electric field case. This means that in the IM
case, the linear stability is independent of these tangential stress conditions and we do not have to
consider these equations further in our analysis. The reason for this is that the zero tangential ve-
locity constraint on the membrane has introduced an additional condition allowing us to determine
the stability. Note that in the ES case, we only have that the continuity in the tangential velocity:
one less condition than the incompressible case. Hence the tension must be considered a known,
in particular a constant, and the tangential stress conditions (25) and (31) are needed to determine
stability in general.

It is interesting to note that the parameter S is very large in general and several investiga-
tions10,12,13,15,17,19 have used this to simplify the capacitive system by setting to zero the right hand
side of (23) and (29). The dimensionless parameter S is the ratio of the membrane charging time to
the bulk charge relaxation time S = tm/t

(2)
c , which is the product of the two ratios εm

ε(2)
d(2)
dm

. For a lipid
bilayer membrane d(2)/dm ∼ O(103), εm/ε(2) ∼ 0.01–0.1, hence S ∼ 10 − 100 for a micro-fluidic
channel filled with leaky dielectric fluids separated by a planar lipid bilayer membrane. In Secs. III
B and III C, we will demonstrate that the limit S ≫ 1 is asymptotically reached as long as S is of the
order of several hundreds.

As noted earlier, the tension of a flat membrane freely suspended in a fluid is often very small
prior to significant membrane deformations. Hence, the terms containing the capillary number could
be neglected in this linear analysis but we will retain it here, and unless otherwise noted, we set
Ca = 105. In the following, we also only focus on stability results for small to moderate bending
modulus, which are limits closer to what could be expected in a physical system. We begin by inves-
tigating the small-wave number behavior of the linear stability in Sec. III A. We then investigate the
linear electrohydrodynamic instability of a membrane with matching fluid viscosity and equal layer
thickness: µr = 1 and dr = 1 in Sec. III B for a parallel electric field and Sec. III C for a normal
electric field. We then study the effects of viscosity ratio in Sec. III D (with dr = 1), and the effect of
layer thickness ratio in Sec. III E (with µr = 1).
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III. RESULTS

In the following, when a comparison is made with a fluid interface under an electric field, the
membrane charging time is used to scale time in the fluid interface problem to be consistent with
the formulation we have presented here for the capacitive IM/ES cases. For a capacitive elastic sheet
with a large conductance and a small bending modulus (gm ≫ 1 and κ ≪ 1), we expect the ES case
to reduce to the problem of a fluid interface between two layers of leaky dielectric fluids. Therefore,
we expect that the linear stability results for a capacitive ES with both gm ≫ 1 and κ ≪ 1 to
coincide with that for a fluid interface under an electric field. However, the electrohydrodynamic
instability of a capacitive IM may be different due to the membrane incompressibility.

A. Small wave number behavior

Here, we investigate the growth rate in the small wave number (long wavelength) limit for both
the parallel and normal electric field cases. For a capacitive IM under a parallel electric field, the
growth rate can be computed by expanding in small k the quadratic equation (A1) given in the
Appendix. Recall that in deriving this equation we neglected charge convection (1/S → 0) and set
dr = 1. We find that one of the roots is always negative and is given by

ω ≈ −gm −
(

5
12

gm +
σr

1 + σr

)
k2 + · · ·. (34)

The second root can either imply stability or instability and is given by

ω ≈ Eb(1 − σr)(εr − 1)
12(1 + σr)(1 + µr) k2 �1 + mk2 + · · ·

�
, (35)

where the coefficient m of the quartic term is given by

m =
2
5
− 2σr(σr + εr)
gm(1 + σr)(1 − σr)(1 − εr) −

1
Ca

1 + σr

Eb(1 − σr)(1 − εr) . (36)

Hence, a sufficient condition for instability of the IM case is (1 − σr)(εr − 1) > 0 (so that the
leading order term is positive). When µr = 1, the growth rate for the IM and ES cases is identical
and given by the formula in the Appendix. The above instability condition for a capacitive IM
is identical to that for a fluid interface under a parallel electric field.10–13 This is an interesting
observation since it implies that the instability is driven by the electrical properties of the liquid and
not by the properties of the membrane. Equation (35) shows that the growth rate ω is independent of
Ca at the leading order O(k2).

In deriving the above two growth rates, it was assumed that gm , 0. Suppose now that the
conductivity is zero, i.e., gm = 0. A similar expansion in small k of Eq. (A1) can be found and at
leading order the two roots are proportional to k2 and given by

ω ≈ k2 �bc + dk2 + · · ·
�
, (37)

where the coefficient b is real and given by

b = − σr

2 (1 + σr) +
Eb(1 − σr)(εr − 1)
24(1 + σr)(1 + µr) , (38)

and the coefficient c is complex in general and given by

c = 1 ±

1 − Ebσr(εr + 1)

12(1 + σr)(1 + µr)b2

1/2

. (39)

In the limit of Ca ≫ 1, at leading order O(Ca−1) both b and c are independent of Ca while the
coefficient d depends on Ca as

d =
Eb(1 − σr)(εr − 1)

180(1 + σr)(1 + µr) +
σr

6(1 + σr) −
1

24(1 + µr)Ca
± 1

(1 + µr)(1 + σr)
(

f
180
+

g

24Ca

)
, (40)
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where f and g are lengthy and complicated (and thus deferred to the Appendix). For the cases
considered here, c will be complex and a sufficient condition for instability will be determined
by the sign of b, i.e., b > 0 implies long-wave instability. It is interesting to note that, unlike the
nonzero conductivity case, the long-wave stability now depends on the magnitude of the initial
tangential field and its relationship to the electrical properties of the liquids. In particular, this result
implies that a zero membrane conductance (gm = 0) can always be driven unstable (b > 0) at small
wave numbers for a sufficiently strong tangential electric field and for (1 − σr)(εr − 1) > 0, which
is the instability condition for a conducting membrane (gm > 0) under a parallel electric field. Thus,
the long-wave expansions imply that it is possible for the condition of instability for a conducting
membrane to be met, and for a non-conducting membrane to still be stable. This suggests a more
careful investigation of the effect of gm on instability is warranted, and will be provided in Sec. III B
(Figure 7).

For a capacitive IM under a normal electric field, the membrane conductance is essential to
the electrohydrodynamic instability as the condition for instability is gm(σr − 1)(σ2

r − εr) > 0 (see
Refs. 15, 17, and 19). In the long-wave (k → 0) limit, the real part of the linear growth rate for a flat
membrane under a normal electric field is found to be15

ℜ(ω) ≈ Ebg
3
m(σr − 1) �σ2

r − εr
�

96(1 + µr)[1 + (σr + 1)gm/2]3
k2 − κ

96(1 + µr) k6, (41)

consistent with the above noted instability condition. This instability condition is identical to that
for a fluid interface under a background Poiseuille flow,10–13 but the details of the dispersion relation
are different.11 Hence, as with the parallel electric field case, instability depends on the electrical
properties of the liquids (assuming gm , 0), but unlike the parallel field case, the membrane is stable
if gm = 0.16

B. Parallel electric field with dr = 1 and µr = 1

As noted earlier, the growth rate is identical for both IM and ES for 1/S → 0, dr = 1, and
µr = 1. Hence we will not discuss the ES case, and will focus on IM with S ≪ 1. As suggested in
Eq. (41), the bending force is always stabilizing in the linear regime. Therefore, we begin by first
focusing on the κ = 10−6 case for a capacitive IM under a parallel electric field. In Figure 2, we
show the growth rate as a function of wave number k for the two sets of parameters with σr ≤ 1
from Figure 3 in Ref. 13 to make comparison and connection to the case of a fluid interface under
an electric field. The dashed curves in Figure 2 are for a fluid interface. For a non-conducting
membrane (gm = 0), the membrane is stable in panel (a) where εr = 2 and σr = 0.5, while for panel
(b) where εr = 2 and σr = 0.2 the non-conducting membrane is unstable. This is consistent with
Eq. (37) with c complex and b = −7/3 < 0 (stable) for Figure 2(a) while b = 16/15 > 0 (unstable)

FIG. 2. Comparison of the growth rate magnitude for the parallel electric field. Eb = 10, Ca = 105, S = 106, and κ = 10−6.
(a) εr = 2, σr = 0.5. (b) εr = 2, σr = 0.2. Dashed curves are for the fluid interface (gm→ ∞). Solid lines are for the
capacitive membrane for five values of gm: 0, 1, 5, 10, and 40.
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FIG. 3. Maximum growth rate ℜ(ω) and kmax versus the membrane conductance gm for the parallel electric field cases in
Figure 2 with gm > 0. The dashed curves correspond to values for a fluid interface with the same physical parameters in the
bulk.

for Figure 2(b). As noted earlier, this means that an electric field tangent to a capacitive mem-
brane can destabilize the membrane with zero conductance and that the dominant unstable mode is
oscillatory for gm = 0 (ω has a non-zero imaginary part). As indicated in the figure, this dominant
oscillatory mode for gm = 0 is replaced by a steady mode for gm > 0. Figure 2(b) also illustrates
that, for gm > 5, the dominant steady mode moves to higher kmax as membrane conductance gm
increases and eventually the growth rate approaches that of the fluid interface as gm → ∞. This
is further illustrated in Figure 3, where the maximum growth rate and maximum wave number
are plotted for the cases in Figure 2 as a function of gm. These results show that gm ∼ O(100) is
sufficient to reach the values for a conducting fluid interface. The limiting unstable growth rate as
gm → ∞ can be explicitly found from Eq. (A1) and is given by

ω =
(k2 − sinh2k)

2(1 + µr)


k sinh k(1 + σr)( 1
Ca
+ κk2) + Eb cosh k(1 − σr)(1 − εr)

(1 + σr) sinh k(k + sinh k cosh k)

. (42)

Note that sending gm to infinity does not change the instability criterion which is given by the term
containing Eb in Eq. (42). Comparing this linear growth rate to those from Eq. (51) in Ref. 13,
we find agreement with their growth rates in their Figure (3) provided that A2p in their Eq. (50) is
divided by k.

In Figure 4, we examine the effects of the membrane bending modulus κ. As expected, κ is
stabilizing, in that the growth rate should decrease as κ increases. This is illustrated for both of the
cases in Figure 2 in that the growth rate and the maximum wave number decrease with κ.

The effects of S and Ca on the growth rate for parameters in Figure 2(b) are plotted in Figure 5
for gm = 0. It should be noted that both ES/IM are solved for parameters in Figure 5 and the results
are indistinguishable. Therefore, we do not distinguish these two cases in the following discussion.

FIG. 4. Maximum growth rate ℜ(ω) and kmax versus the membrane bending modulus κ for the parallel electric field cases
in Figure 2 with gm = 200.
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FIG. 5. Effects of S with gm = 0, Ca = 103, κ = 10−6, εr = 2, and σr = 0.2. (a) Growth rate at different values of S.
(b) Maximum growth rate versus S. (c) Maximum wave number versus S.

Figure 5(a) shows the growth rate at different values of S with small surface tension (Ca ≫ 1).
As S increases from 1 to 500, the maximum growth rate increases and reaches the maximum value
at S → ∞. Figure 5(b) explicitly plots the maximum value of the growth rate versus S showing
the monotonic increase and similarly in Figure 5(c), the monotonic increase in the maximum wave
number with S is plotted. Figure 6 shows the dependence of capillary number Ca with S = 500, and
it is clear that both the maximum growth rate and the maximum wave number plateau for Ca ≥ 100.

Figure 6(a) shows that for large Ca, the growth rate at small wave numbers is insensitive to
Ca, which can be explained by Eq. (35) where the leading order growth rate is independent of Ca
at small wave numbers. As Ca increases, the critical cutoff wave number kc for instability plateaus
around 9, also independent of Ca as we concluded in the paragraph right below Eq. (35) in Sec.
III A. The expected values of both Ca and S are large in problems of biological interest and these
plots illustrate that a reasonable approximation is to neglect the effect of S and Ca in discussing the
instability of the membrane.

Neglecting the effect of charge convection on the membrane (by setting S ≫ 1 such that
1/S → 0) allows us to identify a sufficient condition for instability directly from the small k expan-
sions. As noted earlier, for a conducting membrane if (1 − σr)(εr − 1) > 0, then the membrane
is unstable. For a nonconducting membrane (gm = 0), we find from Eqs. (37) and (38) that the
interface is stable for k ≪ 1 if εr < 1 and σr < 1. For εr > 1, the long-wave instability can occur
when

σr <
Eb (εr − 1)

48/(1 + µr) + Eb(εr − 1) ≡ σl
r . (43)

Note this implies that the stability boundary starts at σr = 0 for εr = 1 and then monotonically
increases to 1 as εr increases. Our computations show a similar behavior for finite values of S.

Equation (43) is a sufficient (but not necessary) condition for instability. Computations show
that, if σr > σl

r , the instability can still occur at a finite-wave number even though the growth rate
is negative around k = 0. Figures 7(a) and 7(b) show that, for gm = 0 and σr = 0.41 (> σl

r = 0.29
for parameters provided in Figure 7), the growth rate is negative at small wave number and yet a
positive growth rate is found for a window around k ∼ 2.3. For gm = 0 the growth rate is a complex
pair along the dashed curves in (a) and (b). For gm > 0, a local maximum (corresponding to a real
growth rate) emerges from small k, and the two real growth rates (at small wave numbers) collide

FIG. 6. Effects of Ca with gm = 0, S = 500, κ = 10−6, εr = 2, and σr = 0.2. (a) Growth rate at different values of Ca.
(b) Maximum growth rate versus Ca. (c) Maximum wave number versus Ca.
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FIG. 7. Growth rate forσr >σl
r (defined in Eq. (43)).Ca = 105, S = 105, κ = 10−6, Eb = 10, εr = 2,σr = 0.41 >σl

r = 0.29.
(a) Growth rate for small membrane conductance: gm = 0.01, 0.02, 0.04, and 0.08 for curves a, b, c, and d, respectively.
(b) Growth rate for moderate membrane conductance: gm = 0.1, 0.2, 0.4, 0.8, 1.6, and 3.2 for curves 1 to 6, respectively.

to a complex pair as shown in Figure 7. We also observe that, as gm increases, the real part of the
complex pair around k ∼ 2.3 decreases and the maximum growth rate becomes real for gm ≥ 0.1,
replacing the complex maximum growth rate for gm ≤ 0.08. From the computations, we find the
conducting membrane is always unstable for (1 − σr)(εr − 1) > 0, consistent with the long-wave
analysis. For the non-conducting membrane, the instability boundary depends on both S and Eb

(see Eq. (43) for 1/S = 0). Figure 8 shows the instability boundary for a non-conducting (gm = 0)
capacitive IM for S = 100 (dash-dotted curves) and 1/S = 0 for negligible charge convection (solid
curves) at different values of electric field strength Eb: Eb = 62.5, 250, and 1000 for curves 1, 2, and
3. Values of σr greater than 1 are plotted in Figure 8 even though we earlier stated that because of
the symmetry of the parallel field case we would only consider σr < 1. This is done to illustrate that
in our dimensionless scaling (based on fluid 2), the stability boundaries are asymmetric between the
two unstable quadrants in Figure 8.

C. Normal electric field with dr = 1 and µr = 1

In electroformation experiments, both AC and DC electric fields perpendicular to the planar
membrane are employed to drive the membrane unstable to form vesicles. A Floquet linear analysis
for a tensionless membrane under an AC electric field in an infinite domain shows that an elastic
capacitive membrane (with or without membrane conductance) can be unstable for small wave

FIG. 8. Boundary of instability in the (εr,σr) plane for a capacitive membrane under a parallel electric field. The dashed
(blue) curves are the stability boundaries εr = 1 and σr = 1 for gm > 0. For gm = 0, the stability boundary depends on S

and Eb: Eb = 62.5, 250, and 1000 for curves 1 (black), 2 (red), and 3 (green) with Ca = 105, and κ = 10−6. S = 100 for the
dash-dotted curves. Solid curves are for negligible charge convection (1/S = 0).
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FIG. 9. Comparison of the growth rate magnitude for the normal electric field. S = 106, Ca = 105, κ = 10−6, and Eb = 10.
(a) εr = 0.5, σr = 2. (b) εr = 0.5, σr = 5. (c) εr = 2, σr = 0.5. (d) εr = 2, σr = 0.2. Dashed curves are for the fluid interface
(gm→ ∞). Solid (blue) lines are for the capacitive membrane with κ = 10−6 and three values of gm: 0, 1, and 10. Thin (red)
curves are from Figure 2.

numbers at small-to-moderate AC field frequencies.19 A long-wave analysis for a membrane under a
normal electric field in a finite domain was conducted in Ref. 15, and the linear stability of a planar
membrane in a DC normal electric field was investigated in Refs. 16 and 17. Here, we focus on a
DC electric field perpendicular to a flat planar membrane in a finite channel without the long-wave
assumption. As in the parallel field case, both the incompressible membrane and the elastic sheet
give the same linear stability results when dr = 1 and µr = 1.

Results from our calculations confirm that the capacitive IM under a normal electric field is
stable when the membrane conductance gm = 0.16 Figure 9 shows the dependence of the growth
rate on membrane conductance with κ = 10−6. Figures 9(a) and 9(b) are for σr > 1, and (c) and (d)
are for the parameters from Figure 2. For comparison, the results for the parallel cases in Figure 2
are also included in 9(c) and 9(d) (thin dashed lines and dash-dotted lines). Unlike in the parallel
electric field case, the membrane conductance has to be positive for a capacitive IM/ES to be

FIG. 10. Maximum growth rate ℜ(ω) and kmax versus the membrane conductance gm for the four normal electric field
cases (as labeled) in Figure 9. The dashed curves in (a) correspond to values for a fluid interface with the same physical
parameters in the bulk. S = 106, Ca = 105, κ = 10−6, and Eb = 10. For the four curves labeled a, b, c, d, (εr,σr)= (0.5,2),
(0.5,5), (2,0.5), and (2,0.2), respectively.
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FIG. 11. Maximum growth rate ℜ(ω) and kmax versus the membrane bending modulus κ for the four normal electric field
cases (as labeled) in Figure 9. S = 106, Ca = 105, κ = 10−6, Eb = 10, and gm = 200. For the four curves labeled a, b, c, d,
(εr,σr)= (0.5,2), (0.5,5), (2,0.5), and (2,0.2), respectively.

unstable under a normal electric field. For all four cases in Figure 9, the growth rate approaches that
for a fluid interface (blue dashed curves) as gm → ∞. For membrane conductance, gm = 0, 1, and 10
in Figure 9(c), the maximum wave number kmax for the parallel cases is smaller than for the normal
cases. Figure 9(d) shows that, except for gm = 0, the normal electric field (thick curves) is more
destabilizing than the parallel electric field (thin curves): For gm ≥ 1, the growth rates for a normal
electric field are larger than for a parallel electric field. Interestingly, in (c) the parallel electric field
gives larger growth rates for the fluid interface case (gm → ∞) while for conducting IM the normal
electric field again gives larger growth rates.

Figure 10 shows the gm-dependence of the maximum growth rate and kmax for Figure 9. We
find that the maximum growth rate is always positive for gm > 0. The dashed curves correspond to
the values of the maximum growth rate for a fluid interface (gm → ∞). Similar to the results for
the parallel electric field case in Figure 3, the maximum growth rate plateaus around gm ≥ 100 in
these parameter ranges. Figure 11 shows the dependence of the maximum growth rate and kmax on
the membrane bending modulus. The maximum growth rate is almost independent of κ for cases (a)
and (c) in Figure 11(a), while kmax decreases slightly with κ for these two cases in Figure 11(b).

For a capacitive IM perpendicular to the electric field, the growth rate from Eq. (41) shows
that either membrane tension or the bending force is needed to stabilize the membrane at high
wave numbers. Figure 12(a) shows the growth rate for various values of the capillary number with
κ = 10−6, which gives rise to damping at large wave numbers and consequently a large critical wave
number. As Ca increases from 1 to 100, the maximum growth rate plateaus around Ca ∼ 100 as
shown in Figure 12(b) while kmax in Figure 12(c) increases gradually with Ca.

Figure 13(a) shows the dependence of the growth rate on S with gm = 200 and Ca = 103 under
a normal electric field. Results in (a) show that the growth rate plateaus to the maximum value
at large wave number because Ca = 103 ≫ 1. Compared against the parallel case in Figure 5(a),
we observe that the perturbation at k ≫ 1 is hardly damped under a normal electric field with
Ca = 103, while for a parallel electric field the perturbation at large k is stable. For this set of
parameters, the maximum growth rate increases with S for both parallel and normal electric fields.

FIG. 12. Effects of Ca with S = 500, gm = 200, κ = 10−6, εr = 2 and σr = 0.2 with a normal electric field. (a) Growth rate
at different values of Ca. (b) Maximum growth rate versus Ca. (c) kmax versus Ca.
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FIG. 13. Effects of S with Ca = 103, gm = 200, κ = 10−6, εr = 2, and σr = 0.2 with a normal electric field. (a) Growth rate
at different values of S. (b) Critical wave number versus S.

Figure 14 shows the regions of instability for Ca = 103 ≫1, gm= 1, and κ = 10−3. Figure 14(a)
illustrates the dependence of instability boundary on S with Eb = 1: For S ≥ 0.1, the stability
boundaries are σr = 1 and σr =

√
εr , denoted by the solid curves. For S = 0.01, the stability region

shrinks. For example, for Eb = 1, the stable region is bounded by σr = 1, σr =
√
ϵ r , and the curve

1. The inset shows the stability boundary for Eb = 16, 32, and 64 (curves 5, 6, and 7, respectively).
Note that as in Figure 8, because of the characteristic scaling based on fluid 2, symmetry about the
lines σr = 1 and ϵ r = 1 cannot be expected if σr and ϵ r are replaced by their inverses.

In the (εr , σr) plane where both parallel and normal electric fields can destabilize a fluid inter-
face, sub-regions of instability dominated by either parallel or normal field are identified in Refs. 12
and 13 for a fluid interface. For a capacitive IM, this dominance is dependent on the membrane
conductance. Consider the case where, with gm = 0, a parallel electric field can drive an IM unstable
in regions of the quadrant σr < 1 and εr > 1 as shown in Figure 8. But a normal electric field
cannot destabilize a non-conducting membrane as shown in Figures 9 and 10, where the growth rate
is zero when gm = 0. From Figure 9(d), we see that the reverse is true when gm ≥ 1, where a larger
growth rate is found for the normal electric field.

D. Effect of viscosity ratio µr with dr = 1

For matching fluid viscosity (µr = 1) and layer thickness (dr = 1), we found that the stability of
IM and ES is identical. This is no longer the case when µr , 1. An analytical formula for the growth
rate in the parallel field IM case (with arbitrary µr) is given in the Appendix but only computational
results will be presented for all other cases. To illustrate the effect of viscosity contrast, here we
fix µr = 2 and compare the maximum growth rate between a capacitive IM (solid curves) and a
capacitive ES (dashed curves) in Figure 15 for a parallel electric field. In Figure 15, we plot the

FIG. 14. Boundary of instability in the (εr,σr) plane for a capacitive IM under a normal electric field forCa = 103, κ = 10−3,
and gm = 1. Solid curves are σr = 1 and σr =

√
εr , the stability boundaries for S ≥ 0.1, independent of electric field strength

Eb. (a) Dependence on S with Eb = 1. (b) Dependence on Eb with S = 0.01. Eb = 1, 2, 4, 8, and 16 for curves 1, 2, 3, 4,
and 5, respectively. In the inset, Eb = 16, 32, and 64 for curves 5, 6, and 7, respectively.
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FIG. 15. Maximum growth rate (panel (a)) and wave number (panel (b)) versus gm for a parallel electric field with S = 106,
Ca = 105, and κ = 10−6. Solid curves are for an IM and dashed curves are for an ES. (c) εr = 2, σr = 0.5. (d) εr = 2, σr = 0.2.

maximum growth rate in panel (a) and kmax in panel (b) for the two cases in Figure 2 under a parallel
electric field. Smaller growth rates are found for the capacitive IM (solid curves), while larger kmax
is found in panel (b). Figure 16 shows the comparison for a capacitive IM/ES under a normal
electric field with parameters for the four cases in Figure 9. Except for case (a), we find that the
maximum growth rate and kmax behave similarly between an IM and an ES under a normal electric
field. From these results, we observe that dynamics of the IM/ES cases can differ more significantly
with µr under a parallel electric field than a normal electric field.

E. Effect of layer thickness ratio dr with µr = 1

The linear stability of a planar shear flow in a two-layer system depends on the ratio of layer
thickness.9,21 Here, we illustrate that dr also affects the electrohydrodynamic instability shown in
Secs. III B and III C. Figure 17 shows how the maximum growth rate for a capacitive IM varies
with dr for the two cases in Figure 2. Under a parallel electric field, a non-conducting (gm = 0)
membrane is stable in panel (a) while the membrane can become unstable (dash-dotted curve) in
Figure 2(b). In panel (a), the maximum growth rate increases with both gm and dr , while in panel
(b) we find that a conducting membrane with an intermediate membrane conductance (gm = 2) can
become linearly stable for large values of dr (dr > 1.25). At large membrane conductance, however,
the membrane is unstable for 0.4 ≤ dr ≤ 1.5 in both panels.

Figure 18 shows the effects of dr for a capacitive IM under a normal electric field, where
membrane conductance is essential for the electrohydrodynamic instability. For gm = 1, an optimal
layer thickness ratio is found to be in the range 0.5 ≤ dr ≤ 1. Apparently, such optimal layer
thickness ratio for instability depends on the mismatch in electric permittivity and conductivity. As
the membrane conductance increases to gm = 10 the optimal layer thickness ratio decreases. For
gm ≥ 100, we find that the maximum growth rate decreases with dr in both panels.

FIG. 16. Maximum growth rate (panel (a)) and wave number (panel (b)) versus gm for a perpendicular electric field with
S = 106, Ca = 105 and κ = 10−6. Solid curves are for an incompressible membrane and dashed curves are for an elastic sheet.
(a) εr = 0.5, σr = 2. (b) εr = 0.5, σr = 5. (c) εr = 2, σr = 0.5. (d) εr = 2, σr = 0.2.
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FIG. 17. Maximum growth rate versus dr for a parallel electric field with S = 106, Ca = 105, κ = 10−6, and different values
of membrane conductance as labeled. (a) εr = 2, σr = 0.5. (b) εr = 2, σr = 0.2.

FIG. 18. Maximum growth rate versus dr for a normal electric field with S = 106, Ca = 105, κ = 10−6, and different values
of membrane conductance as labeled. (a) εr = 0.5, σr = 2. (b) εr = 0.5, σr = 5.

IV. CONCLUSION

In this work, the electrohydrodynamic instability of an elastic capacitive membrane immersed
in leaky dielectric fluids in a channel is investigated, with focuses on physically relevant parameters:
Ca ≫ 1, κ ≪ 1, and S ≫ 1. Although this investigation was done in two-dimensions, experimental
results for the electrohydrodynamic instability of a fluid interface under shear flow1 suggest that
the two-dimensional linear dynamics is the dominant initial instability. This observation lends
support to our investigation. When the membrane is parallel to the electric field, it is found that
the parallel electric field stabilizes the high wave number perturbations. At low wave numbers, a
non-conducting capacitive membrane may be unstable according to Eq. (43), which is a sufficient
condition for instability. Interestingly, we find that a capacitive IM under a parallel electric field
can be unstable in a window about a finite wave number while stable about k = 0 (Figure 7).
Furthermore, we show how the stability boundary depends on the electric field strength Eb for a
non-conducting IM under a parallel electric field in Figure 8. When the imposed electric field is
normal to the membrane, regions of linear instability are found to depend on the charge relaxation
time (Figure 14): Smaller regions for linear stability are found for S < 0.1, while for S ≥ 1 the
regions of linear instability are identical to those for a fluid interface under a normal electric field.

In addition, effects of the membrane conductance (gm), tension (Ca), and membrane bending
forces (κ) on the electrohydrodynamic instability are quantified in this work. The effect of charge
convection, S, (the ratio of bulk charging time to membrane charging time) is also explored. It is
found that the membrane is more unstable for large S (small charge convection) under a parallel
electric field, while S tends to stabilize the membrane under a perpendicular electric field.

The effects of viscosity ratio (µr) and layer thickness ratio (dr) on the electrohydrodynamic
instability are investigated for a few cases. These results illustrate that an incompressible lipid
bilayer membrane behaves as an ES under an electric field (both parallel and normal) when µr = 1
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and dr = 1. In addition, for the few cases that we discuss in Sec. III E, there exists an optimal layer
thickness ratio for the instability of an elastic membrane under a normal electric field.

Normal electric fields are employed more often in experiments because they are easier to set-up
compared to tangential fields. Yet, our results here imply that in certain circumstances, an electric
field parallel to the interface might be more beneficial. Both AC and EC normal electric fields have
been extensively studied theoretically, and a long-wave investigation on a fluid interface under a
normal AC field showed pillar formation as a nonlinear consequence of the linear instability.22,23

From electroformation experiments it is speculated that the linear electrohydrodynamic instability
of a membrane under a normal electric field may lead to vesicle formation, and yet a long-wave
investigation of this system shows evidence that more physics is required to fully understand the
electroformation experiments. Results from this work lay the foundation for incorporating more
physics such as ionic solvents to replace the leaky dielectric fluids. For example, the pH values
of the solvents are known to affect the lipid membrane stability.24 We are now investigating how
the electrohydrodynamic instability reported in this work might be affected by the pH values of
solvents.
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APPENDIX: GROWTH RATE FOR AN INCOMPRESSIBLE MEMBRANE IN A PARALLEL
ELECTRIC FIELD WITH 1/S = 0

The growth rate ω for a capacitive IM in a parallel electric field with zero charge convection
along the interface (1/S = 0) and dr = 1 satisfies the following (dimensionless) quadratic equation:

A2ω
2 + A1ω + A0 = 0. (A1)

The variables A0, A1, and A2 depend on all the electrical properties and are given by

A2 = −2(1 + µr)(1 + σr)k cosh k (k + cosh k sinh k) ,
A1 = gmA2 − B1 − 2k2σr(1 + µr) sinh k (k + cosh k sinh k) ,

A0 = −gmB1 − k2σr

�
sinh2 k − k2�


Eb (εr + 1) cosh k + k sinh k

(
1

Ca
+ κk2

)
,

B1 = k cosh k
�
sinh2 k − k2�


Eb(1 − σr)(1 − ϵ r) coth k + k(1 + σr)

(
1

Ca
+ κk2

)
.

It is interesting to note that when viscosity ratio is one, i.e., µr = 1, the growth rate for the incom-
pressible membrane and the elastic sheet problem is identical in a parallel electric field.

The expressions for f and g in Sec. III A are

f =
E2
b
(1 − σr)2(εr − 1)2 − 360(1 + µr)2σ2

r + 18Eb(1 + µr)σr(1 + 3σr + εr(3 + σr))
−48Eb(1 + µr)(εr + 1)σr(1 + σr) + (Eb(εr − 1)(−1 + σr) + 12(1 + µr)σr)2

, (A2)

g =
(1 + σr)(Eb(εr − 1)(−1 + σr) − 12(1 + µr)σr)

E2
b
(εr − 1)2(−1 + σr)2 + 144(1 + µr)2σ2

r − 24Eb(1 + µr)σr(1 + 3σr + εr(3 + σr))
. (A3)
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