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Abstract An exciting biological advancement over the
past few years is the use of microarray technologies to
measure simultaneously the expression levels of thou-
sands of genes. The bottleneck now is how to extract
useful information from the resulting large amounts of
data. An important and common task in analyzing
microarray data is to identify genes with altered expres-
sion under two experimental conditions. We propose a
nonparametric statistical approach, called the mixture
model method (MMM), to handle the problem when there
are a small number of replicates under each experimental
condition. Specifically, we propose estimating the distri-
butions of a t -type test statistic and its null statistic using
finite normal mixture models. A comparison of these two
distributions by means of a likelihood ratio test, or simply
using the tail distribution of the null statistic, can identify
genes with significantly changed expression. Several
methods are proposed to effectively control the false
positives. The methodology is applied to a data set
containing expression levels of 1,176 genes of rats with
and without pneumococcal middle ear infection.

Keywords Likelihood ratio · Permutation · Normal
mixtures · SAM

Introduction

Microarray technologies make it possible for the first time
to simultaneously measure the expression levels of
thousands of genes in a biological sample. They have

been widely used over the past few years and have the
potential to help advance our biological knowledge
tremendously at a genomic scale (Botstein and Brown
1999; Lander 1999; Nguyen et al. 2002). However, one
remaining challenge is how to analyze and interpret the
resulting large amounts of data. A common task in such
analyses is to detect genes with differential expression
under two experimental conditions, which may refer to
samples drawn from two types of tissues, tumors or cell
lines, or at two time points during important biological
processes. It has been known that simply using fold
changes is unreliable and inefficient (Chen et al. 1997).
Many statistical approaches have been proposed that aim
to model some of the distributional properties of gene
expression levels (e.g. Allison et al. 2002; Baggerly et al.
2001; Baldi and Long 2001; Broet et al. 2002; Chen et al.
1997; Dudoit et al. 2002; Efron et al. 2001; Guo et al.
2003; Huber et al. 2002; Ibrahim et al. 2002; Ideker et al.
2000; Kendziorski et al. 2002; Kerr et al. 2000; Kooper-
berg et al. 2002; Lee et al. 2002; Li and Wong 2001; Li et
al. 2002; Lin et al. 2001; Newton et al. 2001, 2003; Rocke
and Durbin 2001; Smyth et al. 2002; Strand et al. 2002;
Thomas et al. 2001; Troyanskaya et al. 2002; Tusher et al.
2001). These approaches can be roughly classified into
two categories. The first handles data from a single
microarray containing only one spot for each gene, and
has to depend on possibly too strong parametric assump-
tions. On the other hand, the second category of
approaches takes advantage of the existence of multiple
microarrays (or one array containing multiple spots for
each gene) under each experimental condition. It has been
found that due to high noise-signal ratio, a single
microarray may not provide enough information to be
reliably extracted in analysis (Lee et al. 2000). More
importantly, multiple microarrays make it possible to
assess possibly different variability of various genes.
Some studies have found evidence that the variance of
gene expression levels may be related with mean
expression levels, hence leading to differential variability
for various genes (Chen et al. 1997; Ideker et al. 2000;
Newton et al. 2001; Huang and Pan 2002). In addition, an
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emerging novel idea is that with replicates of microarrays,
one can estimate the distribution of random errors without
strong parametric assumptions, making it possible to
distinguish genuinely altered gene expression from noises
with high confidence. This idea was first suggested in an
empirical Bayes (EB) method of Efron et al. (2000, 2001)
and a statistical method called the significance analysis of
microarrays (SAM) of Tusher et al. (2001); we follow the
same line in this work. In particular, we propose a mixture
model method (MMM) that uses a mixture of Normal
distributions as a flexible and powerful tool to estimate
each of the two distributions of the test statistics and the
null statistics, based on which we can use a likelihood
ratio test (LRT) or the tail distribution of the null statistics
to determine genes with differential expression. An
advantage of this mixture model approach is that it
enables us to control the number of false positives
effectively. We apply the methodology to a data set
containing the expression of 1,176 genes of normal rats
and of those with pneumococcal middle ear infection. The
results appear to be interesting and useful. We also
discuss some results of using SAM.

Materials and methods

Test statistic and null statistic

We consider a generic situation that for each gene i, i =1, 2,..., N,
we have expression levels X1i,...,Xmi from m microarrays under
condition 1, and Y1i,...,Yni from n arrays under condition 2. The
expression level can be based on a summary measure of relative red
to green channel intensities in a fluorescence-labeled cDNA array,
a radioactive intensity of a radiolabeled cDNA array, or a summary
difference of the perfect match (PM) and mis-match (MM) scores
from an oligonucleotide array. The proposed method is not
restricted to any specific microarray technology. Usually, the total
number of genes N is large (>1,000) whereas the number of
replicates of microarrays, m and n, are small (typically <30).

The goal here is to identify genes whose mean expression levels
are different under the two conditions. Thus, it appears to be a usual
two-sample comparison problem for each gene. However, some
unique features of microarray data, such as the small m and n and
the large N, render the traditional statistical tests, such as the t-test
or rank-based nonparametric tests, ineffective (Thomas et al. 2001;
Pan 2002). An alternative is to draw statistical inference based on
the distributions of quantities related to {X1i,...,Xmi} or {Y1i,...,Yni},
for 1� i � N, to take advantage of the large N.

Following Efron et al. (2000, 2001) and Tusher et al. (2001), we
use a t-type score as the test statistic:

Zi ¼
�XXi � �YYi

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vð1Þ;i=mþ vð2Þ;i=n
p

þ a0
ð1Þ

for gene i. �XXi ¼
Pm

j¼1 Xji=m and �YYi ¼
Pn

j¼1 Yji=n are the sample
means. v(1),i and v(2),i are the sample variances:

vð1Þ;i ¼
X

m

j¼1

Xji � �XXi

� �2
= m� 1ð Þ; vð2Þ;i ¼

X

n

j¼1
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The constant a0 serves to stabilize the denominator of Zi. Here
we follow the recipe given in Efron et al. (2000) to take a0 as the
90th percentile of

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

vð1Þ;i=mþ vð2Þ;i=n
p

: i ¼ 1; . . . ; N
� �

. A more
sophisticated method for choosing a0 is used in SAM, and a
Bayesian interpretation can be given (Baldi and Long 2001;
Lonnstedt and Speed 2002).

The null distribution of a test statistic is defined as the
distribution of the test statistic when the null hypothesis is true.
Here the hypothesis is that the corresponding gene does not have
differential expression. To estimate the null distribution of Zi, one
can use a permutation test. We first randomly permute the sample
label, then apply the same t-type score to obtain a null score zi for
gene i. In practice, we can permute data B times, leading to B sets
of null scores {z(b)

i:i =1,...,N} for b =1,...,B.
Suppose that the distribution of all the Zis is f, and that of all the

zis is f0. Using the data zis and Zis, we can estimate f0 and f directly.
A key idea is that for those genes with no differential expression,
the distribution of their Zis is also f0. If we assume that the
distribution of Zis for genes with altered expression is f1, f can be
expressed as a mixture of f0 and f1,

f ¼ p0f0 þ p1f1;

where p1 is the proportion of the genes with altered expression and
p0 =1–p1. Lee et al. (2000) and Newton et al. (2001) considered
parametric approaches by assuming Normal or Gamma distribu-
tions for f0 and f1 respectively. As Efron et al. (2000) pointed out,
without parametric assumptions, the parameters p0, f0 and f1 are
non-identifiable.

Here, we consider a nonparametric frequentist approach by
estimating f0 and f directly. With a large sample size N, it seems
unnecessary to take a parametric approach due to its possibly too
strong distributional assumption. Rather, we propose estimating the
density functions f0 and f using finite mixture models, which
provide a flexible and powerful tool to model various random
phenomena (e.g. Titterington et al. 1985; McLachlan and Peel
2000). For continuous data, such as gene expression data, the use of
Normal components in a mixture distribution is natural. Note that a
Normal mixture model is essentially a nonparametric density
estimator. Compared to other popular nonparametric density
estimators (such as the kernel estimator and the local likelihood
estimator), a Normal mixture model also provides more stable
estimates of tail probabilities; tail probabilities play a critical role in
declaring statistical significance for a statistical test. It also
facilitates determining the rejection region for a likelihood ratio
test and a simplified test we propose to detect differential gene
expression.

With a Normal mixture model, it is assumed that

f0 z; Fg0

� �

¼
X

g0

i¼1

pif z; mi; Við Þ;

where f(y;�i,Vi) denotes the normal density function with mean �i
and variance Vi, and pis are mixing proportions. We use Fg0 to
represent all unknown parameters {(pi,�i,Vi):i =1,...g0} in a g0-
component mixture model. The number of components g0 can be
selected based on the data. Similarly, a normal mixture model can
be fitted to estimate f. Next we describe how to fit an Normal
mixture model.

Model fitting

The mixture model is typically fitted by maximum likelihood using
the expectation-maximization (EM) algorithm (Dempster et al.
1977). For completeness, we briefly review how to fit a Normal
mixture model to estimate f0 (McLachlan and Basford 1988;
Titterington et al. 1985). Given N observations z1,..., zN, we want to
maximize the log-likelihood

log L Fg0

� �

¼
X

N

j¼1

log f0 zj; Fg0

� �

to obtain the maximum likelihood estimate F̂Fg0 . The EM algorithm
computes F̂Fg0 by iterating the following steps.

Suppose that at the kth iteration, the parameter estimates are
p(k)

is, �(k)
is and V(k)

is. Then in the (k +1)th iteration, the estimates
are updated by
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for i=1,..., g0, where

tðkÞij ¼
pðkÞi fðzj; mðkÞi ; V ðkÞi Þ

f0 zj; FðkÞg0

� �

is the posterior probability that zj belongs to the ith component of
the mixture, using the current parameter estimate FðkÞg0 for Fg0, for
i=1,..., g0 and j=1,..., N.

At convergence, we obtain F̂Fg0 =F(1)
g0 as the maximum

likelihood estimate. Since local maxima can be found by the EM
algorithm, it is desirable to run the algorithm multiple times with
various starting values and choose the final estimate as the one
resulting in the largest log-likelihood.

One interesting but difficult problem is to determine the number
of components g0. This can be accomplished through using various
model selection criteria, of which the most well known are the
Akaike Information Criterion (AIC; Akaike 1973) and the Bayesian
Information Criterion (BIC; Schwartz 1978):

AIC ¼ �2 log LðF̂Fg0Þ þ 2ng0 ;

BIC ¼ �2 log LðF̂Fg0Þþng0 logðNÞ;
where ng0 is the number of independent parameters in Fg0. In using
the AIC or BIC, one first fits a series of models with various values
of g0, then picks up the g0 corresponding to the first local minimum
of AIC or BIC (Fraley and Raftery 1998). Some other criteria have
been studied but it does not appear that there exists a clear winner
(Biernacki and Govaert 1999). Some empirical studies seem to
favor the use of BIC (Fraley and Raftery 1998).

A different approach to selecting g is through hypothesis
testing. This could be done through the use of the likelihood ratio
test (LRT) to test for the null hypothesis H0: g = g0 against the
alternative H1: g = g0+1 for any given positive integer g0. The LRT
statistic is 2logL(F̂Fg0þ1)–2logL(F̂Fg0 ), which, however, does not
have the usual asymptotically chi-squared distribution due to the
violation of required regularity conditions (e.g. the maximum
likelihood estimate may lie in the boundary of its parameter space).
McLachlan (1987) proposed using the bootstrap to approximate the
distribution of the LRT statistic under the null hypothesis. Based on
the resulting P-value, one can decide whether to reject H0.

In the current context, we did not find selecting the number of
components so critical. The reason is that our goal here is to
estimate the distribution function, not g0. In our experience, when
the results of selecting g0 based on AIC and BIC do not agree with
each other, it often means that several models are reasonable and
that no one can dominate the others. Based on the earlier studies
(Fraley and Raftery 1998) and for simplicity, we lean to use BIC in
the current context. Furthermore, we can compare a fitted mixture
model with the empirical distribution (i.e. histogram) to have a
visual check.

Determining statistical significance

As discussed in Efron et al. (2000), for a given Z, if we want to test
for the null hypothesis H0 that Z is from f0, we can construct a
likelihood ratio test (LRT) based on the following statistic:

LRðZÞ ¼ f0ðZÞ=f ðZÞ:
A large value of LR(Z) gives no evidence against H0, whereas a too
small value of LR(Z) leads to rejecting H0. With the Normal
mixture model, it is possible to numerically determine the rejection
region. For any given false positive rate a, we can use the bisection
method (Press et al. 1992, p 353) to solve the equation

a ¼
Z

LRðzÞ<s
f0ðzÞdz:

to obtain a suitable s = s(a). Then the rejection region is RR(a) =
{Z:LR(Z)<s}. We call the method of using the LRT in MMM as
MMM-LRT.

The LRT has certain optimal properties (Lehmann 1986).
However, its use is somewhat complicated. Based on our experi-
ence (see Results), a simplification can be made. We can simply
choose the rejection region as the two tails of f0 for a two-sided test
(or obviously, one tail of f0 for a one-sided test): RR(a) = {Z:|Z|>t}
such that a cut-off point t = t(a) is determined by solving the
following equation:

a ¼
Z

jZj>t
f0ðzÞdz:

Again, the bisection method or other numerical methods can be
used to solve the above equation. We call the resulting method
MMM-tail.

For cases where the expression levels from an array are possibly
correlated across the genes, or for simplicity, following the spirit of
SAM (Tusher et al. 2001), we can estimate the numbers of false
positives (FP) and total positives (TP) directly. In MMM-LRT, for
any given s, we have:

FPðsÞ ¼ 1
B

X

B

b¼1

#fi : LRðzðbÞi Þ < sg; TPðsÞ ¼ #fi : LRðZiÞ < sg:

Similarly, in MMM-tail we can use:

FPðtÞ ¼ 1
B

X

B

b¼1

#fi : jzðbÞi j > tg; TPðtÞ ¼ #fi : jZij > tg:

In estimating FP, one can also use median, rather than mean, FP
over permuted data. Based on the estimated FP and TP, one can
also calculate the false discovery rate as FDR = FP/TP (Benjamini
and Hochberg 1995; Storey 2001; Tusher et al. 2001).

Results

Data

Pneumococcal otitis media is one of the most common
disease in children. Almost every child in the United
States experiences at least one episode of acute otitis
media by the age of 5 years. To understand the
pathogenesis of otitis media, it is important to identify
genes involved in response to pneumococcal middle ear
infection and to study their roles in otitis media. A study
was recently conducted, applying radioactively labeled
DNA microarrays (Friemert et al. 1998) to the mRNA
analysis of 1,176 genes in middle ear mucosa of rats with
and without subacute pneumococcal middle ear infection
(Pan et al. 2002a). It consisted of eight experiments: two
DNA microarrays were run with controls while six were
run with pneumococcal middle ear infection. A more
detailed description of the experiments and on how to
obtain the data has been provided in Pan et al. (2002a).
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We first take a natural logarithm transformation for all the
observed gene expression levels (i.e. radioactive intensi-
ties) so that the resulting distributions are less skewed.
Then, for each microarray, we standardize the trans-
formed gene expression levels by subtracting their mean
and dividing by their standard deviation. Some scatter
plots showing between-experiment comparisons are pre-
sented in Fig. 1. It can be seen that, in general, there is a
good agreement as well as some variation between two
arrays under the same condition, either for the control
group or infected group. Also it appears that expression
levels of some genes are altered with pneumococcal

infection. The goal here is to identify those genes with a
statistically significant expression change.

Identifying significant genes

We generated all B =28 sets of the null scores from all the
possible permutations. Five mixture models were fitted
to estimate f0 with g0 ranging from 1 to 5. Based on
BIC, g0=3 was selected. The parameter estimates are
p̂p=(.836, .159, .003), m̂m=(–0.0090, 0.0403, –0.4773), and
V̂V=(0.1462, 0.4891, 6.4069). Figure 2a presents the

Fig. 1a–c Comparison of be-
tween-array agreement and be-
tween-condition discrepancy. a
Gene expression levels from the
two arrays in the pneumococcal
infection group. b Gene ex-
pression levels from the first
two two arrays in the control
group. c The average gene ex-
pression levels in the pneumo-
coccal infection group vs those
in the control group

Fig. 2a, b Histograms and es-
timated distributions. a Histo-
gram of zis and estimated f0. b
Histogram of Zis, estimated f
(solid line) and estimated f0
(dotted line)
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histogram of zis and the fitted f0, which do not indicate
strong discrepancy.

Next, we fitted five mixture models for f with g =1,...,
5. A two-component mixture model was selected using
BIC. The resulting mixture model has maximum likeli-
hood estimates p̂p=(0.893, 0.107), m̂m=(0.0712, –0.6476)
and V̂V=(0.2627, 5.0873). The histogram of Zis and the
fitted mixture model agree well (Fig. 2b).

The constructed LR statistics are plotted in Fig. 3. It is
not surprising to see that as Z moves away from 0, LR(Z)
decreases. It also indicates that the rejection region of the
LRT will be in the two tails of f0, which motivated our use
of MMM-tail. Table 1 presents the number of significant
genes (TP) and estimated FP using various cut-off points s
in the LRT. As a comparison, we also used the MMM-tail
with various a = FP/1176 where FP are the same as the
mean FP in MMM-LRT. It can be seen that the results
from the two implementations are close, though there may
be a slight loss of power (i.e. reduced TP) in using MMM-
tail as compared to the LRT. The reason is that the LRT
takes advantage of the available information on f.

It is interesting to note that in Table 1, Na for various a
are always very close to the observed numbers of false
positives; that is, FP � Na. Hence, it lends support to the
(approximate) independence among the gene-specific
scores. This is related to the controversy about the use

of the Bonferroni method to adjust multiple tests for
microarray data. A popular view on the conservativeness
of the Bonferroni adjustment may not be applicable here
because, if the gene-specific scores are independent, the
Bonferroni adjustment is almost exact. Specifically, if the
N gene-specific scores are independent, using the gene-
specific significance level a/N in the Bonferroni method
leads to a genome-wide (or family-wise) significance
level 1–(1–a/N)N, whose first-order Taylor approximation
is a, the specified genome-wide significance level. Thus
the Bonferroni method should work well for a large N,
which is typically the case with microarray data.

Discussion on some significant genes

Many of the top 90 significant genes are of interest. First,
the genes selected include those engaged in inflammatory
reactions such as tumor necrosis factor receptor 1, acute
phase reaction such as acute phase response factor,
molecular switches or transcription factors for cellular
growth and growth-arrest such as Id3 and Gax, mitogenic
signaling such as rac-beta serine/threonine kinase, hyper-
secretion activity such as Von Ebner’s gland protein,
cellular protection reaction such as heat shock proteins,
water transport such as water channel aquaporin 3,
mitogenic response such as platelet-derived growth factor
alpha receptor, and anti-proliferation activity such as
transforming growth factor beta 3. These genes are
important in pneumococcal middle ear infection because
they contribute to the development of otitis media with
effusion. Detailed information regarding these genes’
functions refers to the GenBank references in the third
column of Table 2. The rest of the genes are not listed
because most are not specifically related to pneumococcal
middle ear infection. These genes encode basic cellular
proteins or house-keeping molecules whose functions are
for the survival of cells, production of energy, synthesis of
proteins, and maintenance of cellular structure. They are
responsive not only to pneumococcal middle ear infection
but also to other non-inflammatory stimuli such as
immune reactions.

Comparison with SAM

Tusher et al. (2001) proposed a novel method called
Significance Analysis of Microarray (SAM). We applied

Fig. 3 Likelihood ratio statistic as a function of Z value

Table 1 Estimated numbers of
total positives (TP) and false
positives (FP) in two imple-
mentations of the mixture
model method (MMM): MMM-
LRT and MMM-tail

MMM-LRT MMM-tail

s Median FP Mean FP TP a Median FP Mean FP TP

0.15 1.00 2.75 44 2.75/1,176 1.00 3.18 43
0.30 2.00 5.04 58 5.04/1,176 2.00 5.36 58
0.35 4.00 6.04 61 6.04/1,176 3.00 6.36 63
0.40 14.50 20.75 90 20.75/1,176 18.50 21.04 100
0.45 24.50 32.79 119 32.79/1,176 30.00 32.43 120
0.60 70.50 75.18 204 75.18/1,176 68.50 76.14 195
0.70 101.00 111.90 269 111.90/1,176 103.00 112.4 253
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the SAM software version 1.21 (Chu et al. 2003) to the
data, and the results are listed in Table 3. SAM outputs
the median FP and the 90th percentile of FP, but not the
mean FP; in the following, as usual, we will use the
median FP as the estimate of the true FP. The tuning
parameter D serves to control the FP in SAM. It can be
seen that when the TP is small, the results of SAM are
similar to that of MMM. However, when the detected TP
is large, the estimated FP from SAM tends to be much
smaller than that from MMM. On the other hand, the 90th
percentile of FP given in SAM is in general in better
agreement with the mean/median FP in MMM. This is
probably related to a new formula used in SAM to
estimate an FP: an estimated FP based on zis is multiplied
by an estimated proportion of genes with no expression
change (Chu et al. 2003, p 20).

Discussion

We have proposed estimating the distributions of a test
statistic and a null statistic using Normal mixture models.
With fitted mixture models, we can declare statistical
significance using the LRT or with the tail distribution of
the null statistic detect genes with differential expression.
The methodology can effectively control the false posi-

tive rate or false discovery rate. Its application to real data
yields interesting and useful results.

Here we only considered use of permuting class labels
to generate null scores as used in SAM (Tusher et al.
2001) and EB (Efron et al. 2000, 2001). This permutation
method is both simple and general. However, it can lead
to too conservative inference (Pan 2003). Thus, other
methods of permuting the data have been proposed (Pan
2002, 2003; Zhao and Pan 2003); they can be equally
applied to MMM, as well as to SAM and EB. Among
these alternative methods, the one proposed in Pan (2002)
can lead to too liberal inference (Zhao and Pan 2003), and
the others have their own limitations, such as requiring
that the number of replicates under each condition be no
smaller than 4, which does not hold for our middle ear
infection data.

The Normal mixture model can be considered as a
nonparametric estimator of a distribution function. In
addition to its flexibility and closed form solution, it is
particularly desirable here for the stability of its tail
probabilities, which play an important role in assessing
statistical significance. Zhao and Pan (2003) did some
simulation studies to show its good performance.

In spirit, our proposed MMM is similar to SAM.
However, there are some potential advantages with
MMM. First, with an estimated null distribution f0, we
can identify a significance/rejection region for any given
Type I error rate a. In SAM, because FP is estimated by a
finite number of simulated null scores, it may not be able
to estimate some small FP well. Second, it is possible to
do sample size/power calculations for microarray exper-
iments in the framework of MMM (Pan et al. 2002b),
whereas it is still unclear how to do so in SAM.

We did not elaborate on data preprocessing, such as
summary statistics of gene expression levels and data
normalization. These are important topics many authors
have addressed (e.g. Bolstad et al. 2003; Dudoit et al.
2002; Efron et al. 2000; Irizarry et al. 2003; Li and Wong
2001; Kerr et al. 2000; Naef et al. 2003; Quackenbush
2002; Yang et al. 2002a, 2002b; Zhou and Abagyan

Table 2 Some of the genes
with altered expression follow-
ing pneumococcal ear infection

GenBank
accession no.

Gene/Protein name Function

M63122 Tumor necrosis factor receptor 1 Inflammatory reaction
X91810 Stat3, signal transducer and activator

of transcription 3
Acute phase response factor

Z17223 Gax, growth-arrest-specific protein Transcription factor,
growth arrest

D10864 Id3, DNA-binding protein inhibitor Cell cycle progression, growth
X74806 Von Ebner’s gland protein Middle ear gland protein
D30041 rac-beta serine/threonine kinase (rac-PK-beta);

AKT2
Mitogenic signaling

D30040 rac-alpha serine/threonine kinase (rac-PK-alpha);
protein kinase B

Mitogenic signaling

M86389 Heat shock 27-kDa protein (HSP27) Cellular protection
Z27118 Heat shock 70-kDa protein (HSP70) Cellular protection
D17695 Water channel aquaporin 3 (AQP3) Water transportation
M63837 Platelet-derived growth factor alpha receptor

(PDGFRa)
Proliferation

U03491 Transforming growth factor beta 3 (TGF-beta3) Anti-proliferation

Table 3 Estimated numbers of total positives (TP) and false
positives (FP; i.e. median FP and 90th percentile FP) in SAM
(significance analysis of microarrays; version 1.21)

D Median FP 90% FP TP

1.500 0.69 3.46 41
1.350 1.38 4.15 45
1.143 2.77 9.69 60
0.933 5.54 17.30 86
0.862 7.61 23.53 94
0.760 13.15 35.99 121
0.592 35.30 78.91 207
0.473 65.76 116.29 274
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2002). We also did not touch on other important issues
(Chuaqui et al. 2002), such as experimental design (Kerr
and Churchill 2001; Churchill 2002), gene network
inference (Halfon and Michelson 2002) and pattern
recognition (Valafar 2002) with microarray data. In
general, we believe that there are many open and
interesting questions to be tackled with microarray data,
which provide exciting and tremendous opportunities for
statistics to play an important role.
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