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On Differential Variability of Expression Ratios:
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ABSTRACT

We consider the problem of inferring fold changes in gene expression from cDNA microarray
data. Standard procedures focus on the ratio of measured � uorescent intensities at each spot
on the microarray, but to do so is to ignore the fact that the variation of such ratios is
not constant. Estimates of gene expression changes are derived within a simple hierarchical
model that accounts for measurement error and � uctuations in absolute gene expression
levels. Signi� cant gene expression changes are identi� ed by deriving the posterior odds of
change within a similar model. The methods are tested via simulation and are applied to a
panel of Escherichia coli microarrays.
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1. INTRODUCTION

Technology is now becoming widespread for measuring the simultaneous expression levels of
thousands to tens of thousands of genes in a given cell type. There is mounting evidence that such

data can yield signi� cant insights into the underlying biology of the cell (e.g., Brown and Botstein, 1999;
Lander, 1999). Coordinated expression patterns provide clues about gene function and shed light on com-
plex biomolecular pathways; transcriptional pro� les can characterize different cell types, thus potentially
enabling improved cancer diagnosis and therapy, for example.

All high-throughpu t methods interrogate the population of mRNAs transcribed during gene expression
in sampled cells, and they basically attempt to measure the abundance of each unique transcript. The
methods rely on the highly speci� c process of hybridization to separate the complex pool of mRNA
molecules. On a complementary DNA (cDNA) microarray, unique cDNA molecules are localized on a
glass slide to act as probes against two different transcript samples. The two mRNA samples are prepared,
separately labeled with distinct � uorescent dyes, and then cohybridized to the microarray. Fluorescence
signal intensity in both channels is captured with a confocal microscope, and after some image analysis
to localize each probe, expression levels are derived for each spot on the microarray within each original
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sample. Following convention, we use red to indicate the sample tagged with the Cy5 dye and green to
indicate the Cy3 dye. Duggan et al. (1999) or Cheung et al. (1999), for example, provide further details
on how to obtain cDNA microarray data. Similar expression data are obtained on oligonucleotide arrays
(Lipshutz et al., 1999), though we focus on the cDNA microarrays in the present development. There is
reason to expect that the statistical methodology described here will apply in both domains.

To account for intrinsic differences between the hybridizing samples, intensity measurements are nor-
malized in some fashion. One way is to compare signals at a set of house-keeping genes, i.e., genes thought
to not present signi� cant changes in expression between samples. Richmond et al. (1999) used a simple
method on the E. coli microarrays reconsidered here; they normalized by the total signal intensity from all
spots. Other possibilities include spiking the prepared sample with known concentrations of speci� c genes
or combining measurements taken in both orientations of the dyes.

A component of each intensity measurement at a given spot is background � uorescence. An estimate of
this component can be obtained from pixels near the spot, and the reported intensity is then the original
measurement minus the background measurement. In what follows we consider the measurements to be
normalized and to be adjusted for background intensity.

It is typical that inference about differential gene expression between two cell types is based on the
ratio of measured expression levels. A basic statistical problem is to know when the measured differential
expression is likely to re� ect a real biological shift in gene expression. This depends on the amount of
variation in the system, so it is dif� cult to justify a � xed rule, such as to focus on genes exhibiting more
than a 3-fold shift, say. Certainly replication will be critical in applications; as more and more microarrays
are measured, some con� dence in the expression pro� les will undoubtedly emerge. Our immediate concern
is with data from a single microarray; we see some room for improvement in the initial signal processing
which may have bearing on downstream tasks such as clustering or other forms of data analysis (e.g.,
Eisen et al., 1998; Bassett et al., 1999).

A given fold change in measured expression may have a different interpretation for a gene whose
absolute expression is low as compared to a gene that is bright in both � uorescent channels (noted in
Bassett et al. [1999] for example). We argue that any procedure which uses the raw intensity ratios alone
to infer differential expression may be inef� cient and thus may lead to excessive errors. Indeed, sources of
variation are expected to be such that the absolute expression levels provide information on the variation
of intensity ratios. This information is ignored in the standard treatment.

One solution is to ignore any genes whose transcripts are present at a low total abundance. We may
have con� dence about the differential expression of remaining genes, but at the price of throwing away
potentially valuable data. In any case, the choice of a cutoff may be arbitrary. A gene may be deemed
below the detection level in one channel but not in the other. Furthermore, the transcript abundance of
many interesting genes may be very low, and so the strategy seems far from optimal.

The solution we describe is based on hierarchical models of measured expression levels in which we
account for two obvious sources of variation. The � rst we call measurement error. In hypothetical repetitions
of the experiment, the measured � uorescence signal will � uctuate around some mean value which is itself
a property of the cell type, the particular gene, and other factors. These � uctuations are due to multiple
sources of variation that arise in producing the measurement, such as variation in the preparation of
the mRNA samples and in the incorporation of � uorescent tags, optical noise, and cross hybridization.
Importantly, this variation may include, but is above and beyond, the background noise mentioned above.
The second main source of variation we consider is due to the different genes spotted onto the microarray.
The mean � uorescence value around which measured expression � uctuates changes from gene to gene and
will serve as a random effect in our proposed model. The population of mRNAs from a given sample is
composed of many distinct molecules, but the partition is not uniform; some mRNAs are abundant and
others are rare.

As we see in Sections 3 and 4, by formally combining the two sources of variation we can readily
obtain probabilistic statements about actual differential expression. We � nd that the observed ratios are
not optimal estimators; we � nd that focusing on fold changes alone is insuf� cient and that con� dence
statements about differential expression depend on transcript abundance.

Perhaps the � rst statistical treatment of microarray data analysis is contained in Chen et al. (1997). These
authors make the interesting argument that, although expected expression levels do � uctuate from gene to
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gene across the microarray, the measurements are linked by having a constant coef� cient of variation c,
say. Then, the observed differential expression, say, Tk D Rk=Gk (ratio of red to green intensity at gene
k), has a sampling distribution dependent only on c under the null hypothesis that Rk and Gk have the
same expectation, i.e., that there is no real differential expression, and computation is under a Gaussian
model for both measurements. Using a set of house-keeping genes, which are thought to not present real
differential expression, the maximum likelihood estimate of c is derived and “con� dence intervals” for
actual differential expression are computed from percentiles of the estimated null distribution of Tk . The
intervals are easy to compute and are responsive to the intrinsic variation of data on the microarray because
they use a data-dependent value of c. (By contrast, the procedure to call signi� cant any gene presenting,
say, a 3-fold or greater expression differential is not responsive to such variation.) The method has ignored
ancillary information; Rk £ Gk contains information about the variation of Tk . In other words, Tk is not
independent of Rk £ Gk . There is the minor technical point, too, that Rk and Gk are modeled as Gaussian
when in fact they must be positive. We consider a sampling model for measured intensities in Section 2.

One can view the Chen et al. (1997) method as producing a set of hypothesis tests, one for each gene on
the microarray, in which the null hypothesis is that the expectation of both intensity signals is equal and the
alternative is that they are unequal. When an observed Tk falls in the tails of the null sampling distribution,
we reject the null and declare signi� cant differential expression. As in other domains of application, we
know that some bene� t can be attained if the thousands of parameters are considered simultaneously, rather
than in isolation (Efron and Morris, 1973, 1977; Carlin and Louis, 1996). The calculations presented here
attempt to demonstrate the utility of treating the gene-speci� c parameters themselves as members of an
array-speci� c population.

In Section 3 we consider the problem of estimating and possibly forming a con� dence interval for the
actual differential expression of a given gene. This involves calculations in a two-layer hierarchical model
to produce a posterior probability distribution for the actual differential expression and an empirical Bayes
estimate of the same. We illustrate with a panel of four E. coli microarrays, highlighting distinctions between
the empirical Bayes estimates and the naive estimates. A simulation study shows that total estimation error
can be reduced by using this procedure. The problem of testing for signi� cant differential expression is
the focus of Section 4, and here a third layer is added to the hierarchical model. We derive a function
which gives the odds of actual differential expression as a function of measured intensities. This provides
an effective summary, a sort of quality number, for each gene. To simplify our development, we focus on
data from a single microarray, and we suppose that there is one spot for each gene. We address the issue of
model validation in Section 5, where predictions from our hierarchical models are compared with features
in the available data. Possible model extensions are also discussed.

2. A SAMPLING MODEL FOR MEASURED EXPRESSION

Measured intensity levels R (red) and G (green) approximate target mean values ¹r and ¹g at a given
spot on the microarray. (We avoid using subscripts for distinguishing spots unless it is absolutely necessary.)
The goal is to estimate ½ D ¹r=¹g . The standard (naive) estimator is O½N D R=G.

Measurement error depends on signal strength (Chen et al., 1997). To account for this explicitly, R and
G are modeled as independent samples from distinct distributions with a common coef� cient of variation.
We � nd it convenient to work with Gamma distributions having a constant shape parameter. They exhibit
constant coef� cient of variation, they are Gaussian-like, they are supported on the positive line, and they are
easy to manipulate. The Gamma model has a long history in statistical ecology (e.g., Fisher et al., 1943), not
only for analytical convenience but also because it may possess a deeper biological interpretation. Dennis
and Patil (1984) showed that the Gamma is the approximate stationary distribution for the abundance of
a population � uctuating around a stable equilibrium. In Section 6 we comment on the sensitivity of our
results to the Gamma model assumption. The probability density of a Gamma variable R with scale µr

and shape parameter a is

p.rjµr ; a/ D
µa

r ra 1 exp. rµr /

0.a/
for r > 0 (1)
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where 0.a/ D
R 1

0 xa 1e x dx. We denote this density by Gamma(a; µr ). Similarly, we model the measured
intensity G as Gamma(a; µg), and we assume that R and G are independent. The expectations of R and
G are a=µr and a=µg , respectively, and thus the target differential expression ½ D ¹r=¹g D µg=µr . Both
R and G have the same coef� cient of variation c D 1=

p
a even though they may have different scales.

By integrating the joint distribution of R and G, we can derive the sampling distribution of the measured
differential expression T D R=G,

p.tjµr ; µg; a/ D
0.2a/

02.a/

³
1

½

´
.t=½/a 1

.1 C t=½/2a
(2)

for t > 0 where again ½ D ¹r=¹g is the parameter of interest. The tail of this distribution is asymptotic
to 1=taC1, so we restrict a > 1 to ensure a � rst moment. The form of this sampling distribution is well
known; it is a scale multiple of a Beta distribution of the second kind (Kendall and Stuart, 1969, p. 151).
At this point we could follow the development in Chen et al. (1997) using this Gamma model instead
of the normal model used in that work. For instance, we see that when ½ D 1, i.e., no real differential
expression, the distribution of T depends on the coef� cient of variation 1=

p
a only. A problem with this

approach is that we lose information when using the ratio T alone to assess differential expression. To
see why, consider the conditional sampling distribution of T D R=G given S D RG within the Gamma
model. The case of no actual differential expression, ½ D 1, is most simple. Denoting by µ the common
value of µr and µg , we have

p.tjs; µ; a/ /
1
t

expf µ
p

s.
p

t C 1=
p

t/g: (3)

On the multiplicative scale of intensity measurements, S acts like total abundance from both channels.
Inspection shows that the scale of this conditional distribution depends on S; i.e., the variation in T is
smaller for larger S. The variability of differential expression is not constant, and so ignoring these changes
can lead to inef� cient statistical procedures. One way to modify the procedure from Chen et al. (1997),
for example, would be to use something like (3) as a reference distribution instead of the analog to (1). We
instead take a hierarchical modeling approach which enables direct parameter estimation and hypothesis
testing.

3. ESTIMATING DIFFERENTIAL EXPRESSION

Except for test microarrays or house-keeping genes, we certainly expect real differences in gene expres-
sion between cell types; and clearly different genes can exhibit differences in actual expression within a
given cell type. A key distinction of the present approach from earlier efforts is the formulation of a speci� c
probability model to characterize these � uctuations. Among the range of possible speci� cations, we � rst
consider a simple Gamma model for the scale parameters µr and µg. This form is conjugate to the Gamma
sampling model and thus permits a detailed analysis. It entails independence among all the scale parameters
on the microarray and assumes that they follow the common Gamma distribution Gamma(a0; º). Model
� t can be improved slightly if we allow different scale parameters, say, ºg and ºr for the two dyes, but
we take a common parameter in the present development. This model is reasonably � exible, skewed right,
and presents increasing variation with increasing mean. It represents prior uncertainty in actual expression
levels. An extension which allows correlation is described in Section 5.

Our main reasons for choosing a Gamma distribution to govern the latent scale parameters µr and µg are
analytical tractability and model � exibility. We note in passing, however, that some theoretical justi� cation
may also exist. The target expression levels ¹r / 1=µr and ¹g / 1=µg each represent some kind of true
abundance of the given transcript in the two mRNA pools. As such, their distribution concerns relative
frequencies of frequencies and the size–frequency relation characteristic of the Zipf-Pareto law may obtain
(Johnson et al., 1994). If so, the relative frequency of genes with transcript abundance ¹ is proportional
to 1=¹a0C1 for some power a0. The reciprocal Gamma distribution has essentially the same density for
moderate to large values ¹.



ON DIFFERENTIAL VARIABILITY OF EXPRESSION RATIOS 41

With the two model components in place, we can derive some interesting consequences. Notably, we
can compute the posterior distribution of the true differential expression at a given spot

p.½jR; G; ´/ / ½ .aCa0C1/

»
1
½

C
.G C º/

.R C º/

¼ 2.aCa0/

(4)

where ´ D .a; a0; º/ denotes the additional parameters yet to be speci� ed. This is the distribution of
the ratio of two independent Gamma variables, and it can be derived in the same way as the sampling
distribution (2). Uncertainty about the true differential expression at a given spot is characterized by this
distribution, and so, depending on our loss function, the Bayes estimate of ½ is some measure of its center.
We note the mode and mean of this right-skewed distribution are

mode D
³

R C º

G C º

´ ³
a C a0 1

a C a0 C 1

´
and mean D

³
R C º

G C º

´ ³
a C a0

a C a0 1

´
:

As it is in between these two values, and is somewhat simpler, we take as the Bayes estimate of differential
expression

O½B D
R C º

G C º
: (5)

This has the classic form of a shrinkage estimator. For strong signals, O½B will be quite close to the naive
estimator O½N D R=G, but there is attenuation of the Bayes estimate, especially when the overall signal
intensity is low. Thus, the Bayes estimate naturally accounts for the decreased variation in differential
expression with increasing signal.

The amount of attenuation is governed by the parameter º, which is yet to be speci� ed. Being the scale
parameter of the expression model component, we can represent it in more familiar terms. Consider the
marginal expectation of signal intensity in the red channel, say, obtained by integrating uncertainty in µr ,

E.R/ D E[E.Rjµr /] D E.a=µr / D aº=.a0 1/

and so º D .a0 1/E.R/=a. This simple formulation contains three key quantities. The coef� cient of
variation in the measurement error is controlled by a; the coef� cient of variation describing � uctuations of
actual expression among genes is controlled by a0; and E.R/ is the overall average intensity measurement
in the red channel. (We are assuming the data are normalized, and our model asserts that R and G have
identical marginal distributions, so we could use G above instead of R.)

A pragmatic approach to dealing with the unknown parameters ´ D .a; a0; º/ is to estimate them by
marginal maximum likelihood. That is, by integrating uncertainty in both µr and µg we obtain the predictive
probability density of each measurement pair (R; G) as

pA.r; g/ D
»

0.a C a0/

0.a/0.a0/

¼ 2 .º/2a0 .rg/a 1

[.r C º/.g C º/]aCa0
: (6)

Due to the independence assumption, this joint distribution is the product of the marginal distribution of
R and the marginal distribution of G. Each margin is a scale mixture of Gamma distributions and hence is
a compound Gamma distribution belonging to Type VI of Pearson’s system (Johnson et al., 1994, p. 381).
The marginal loglikelihood l.a;a0; º/ is the sum of contributions from all spots on the microarray

l.a; a0; º/ D
X

k

log pA.rk; gk/

where .rk; gk/ are observed at the kth spot. We call l.a; a0; º/ a marginal loglikelihood rather than an
ordinary loglikelihood because the gene-speci� c µ parameters have been integrated away. We optimize
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Table 1. Parameter Estimates in
Gamma-Gamma Modela

Microarray NA a a0 º

Control 37 2.06 2.10 12.84
Heat shock 82 2.12 1.61 7.13
IPTG-a 207 1.48 1.85 15.29
IPTG-b 149 1.19 1.57 14.71

aNA is the number of spots, out of 4,290, in which back-
ground is higher than spot intensity, and the remaining columns
give maximum likelihood parameter values. The scale º is for
normalization to fractions then times 105.

l.a; a0; º/ numerically using the Splus function nlminb (Statistical Sciences, 1993). In the examples
worked so far, we � nd that a is estimated to be larger than a0 1, so the estimate of º is smaller than
the mean intensity. The inference that results by estimating parameters as above is called empirical Bayes
(EB) (Efron and Morris, 1973).

Efforts at whole genome expression analysis were pioneered in E. coli K-12 (Chuang et al., 1993). Se-
quencing of the E. coli K-12 genome has enabled the fabrication of high resolution microarrays containing
the entire complement of 4,290 open reading frames in this genome (Blattner et al., 1997; Richmond et al.,
1999). To demonstrate our statistical methodology, we reanalyzed a panel of four microarrays from this E.
coli project. One of these is a control microarray, two are replicates involving treatment with isopropyl-
¯-D-thiogalactopyranoside (IPTG) in which it is known that only a few transcripts should be induced,
and one is from a heat shock treatment (HS) in which more global changes are expected. For the control
microarray, total RNA was isolated from E. coli grown in a rich medium. This single pool was split in
two, separately labeled, and then mixed and cohybridized to the microarray. In the IPTG replicates, control
RNA (labeled Cy3) was cohybridized with RNA (labeled Cy5) from E. coli treated with IPTG. Similarly
obtained was the heat shock microarray. Richmond et al. (1999) provide details. Following these authors,
we invoke a simple normalization method; on each microarray, we � rst subtract background intensity
from each spot. Then we divide each adjusted intensity by the total intensity obtained by combining all
positive adjusted measurements. We omit from the estimation process any spots where the background is
higher than the signal (column 1, Table 1). Maximum likelihood parameter estimates for the hierarchical
Gamma–Gamma model are also given in Table 1.

The EB estimates of differential expression attenuate the naive estimates, as summarized graphically
in Fig. 1. Points indicate the normalized, background-adjusted intensities in the two dyes, say, .G; R/.
Line segments run from each .G; R/ to .G C º; R C º/. Owing to the logarithmic scale, of course, this
shrinkage is most pronounced for low intensity spots. It is interesting that on the control microarray the
shrinkage constant is fairly large in comparison to the heat-shock microarray, suggesting that the method
can distinguish noise from signi� cant signal.

The attenuation inherent in the EB estimates affects the ranking of the most highly differentially ex-
pressed genes. Figure 2 illustrates the ranking changes for two of the E. coli microarrays. We consider
the top 100 most differentially expressed genes, as measured by O½N D R=G. For each n in the range 1 to
100, we ask how many of these top n genes are ranked in the top n by the EB procedure. If the methods
agree (i.e., if º is very small), then the answer is n. About one quarter of the 100 most highly differentially
expressed genes measured via O½N are not in the top 100 as measured by the EB procedure. Data analysis
methods often focus on the most differentially expressed genes, and so it is quite possible that the use of
the more ef� cient Bayes estimation procedure will have an impact on “downstream” computations using
measured differential expression.

The EB estimate .R Cº/=.GCº/ is attenuated compared to the naive estimator R=G, but is the estimate
any better? We report the results of a small simulation to address this question. Green and red intensities
were simulated for a synthetic microarray having 4,000 spots. Intensities arose from Gamma distributions
with shape parameter a D 2 and Gamma distributed scales in which a0 D 2 and º D 8. We incorporated
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FIG. 1. Shrinkage estimation, E. coli: Points are plotted at measured intensities (G; R), and line segments extend to
.G C º; R C º/. On lines parallel to the diagonal, fold change is constant.

some positive correlation between green and red scale parameters using the model described in Section
5 with · D 20. Thus the simulation model differed from the model used for � tting. By keeping track of
the simulated scales µg and µr , of course we can measure the error in estimating ½ for both the naive
procedure and the EB procedure (Fig. 3). There is a fairly signi� cant error reduction by the EB procedure
in this case. Other cases not reported showed similar error reductions.

Beyond point estimates of differential expression, we can use (4) to obtain Bayesian con� dence intervals
(credible intervals). By a change of variables, 1=.1 C ½= O½B / is distributed a posteriori as a symmetric Beta
distribution with shape parameter a Ca0, and so endpoints of a credible interval may be computed by back-
transforming quantiles from this symmetric Beta. The credible interval provides a measure of uncertainty
in ½, but we � nd that inference beyond point estimation may be more accurate in a model, such as the
one described next, in which it is recognized that there are no real changes in expression for some subset
of genes.
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FIG. 2. Effect on ranking of genes.

4. IDENTIFYING SIGNIFICANT DIFFERENTIAL EXPRESSION

We turn attention to deciding whether or not the observed differences at a given gene are suf� ciently
large to assert signi� cance. Having a third layer in the hierarchical model facilitates the calculations. The
true mean intensities of some proportion p of spots change between conditions (i.e., ¹r 6D ¹g), while
the others remain � xed .¹r D ¹g/. For spots which change, we use the previous model from Section 3.
In other words, scale parameters µr and µg are independent Gamma variates with common shape a0 and
scale º . For unchanged spots, the common scale parameter µ is deemed to arise from the same Gamma
distribution.

A problem presented by the Gamma-Gamma-Bernoulli speci� cation is that the identity of the changed
spots is unknown. The likelihood calculations (which we would use to estimate a, a0, º, and p) ap-
pear impossibly complex, since they involve summation over all 2n con� gurations of missing indica-
tors, where n is the number of spots. Fortunately, the model � ts well into the EM algorithm framework
(Dempster et al., 1977), and so we have a simple recursion to infer these parameters from the marginal
likelihood.

The � rst ingredient in the calculation is the marginal probability of data at a spot if there is no real
differential expression. This is obtained by integrating the Gamma model for the common scale µ . In
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FIG. 3. Error reduction: averagejlog. O½N =½/j D 0:88 whereas averagej log. O½B =½/j D 0:42. The empirical Bayes
estimate gives a 50% reduction in error.

contrast to (6) in which there are different scales, the marginal probability in the null case is:

p0.r; g/ D
0.2a C a0/

02.a/0.a0/

ºa0 .rg/a 1

[.r C g C º/]2aCa0
: (7)

Letting rk and gk denote the measured intensities at spot k and introducing the binary indicator variable
zk to be 0 unless there is true differential expression, the complete data loglikelihood is

lc.a; a0; º; p/ D
X

k

fzk log pA.rk; gk/ C .1 zk/ log p0.rk; gk/ C zk log.p/ C .1 zk/ log.1 p/g:

The E-step is to obtain the conditional expectation of lc.a; a0; º; p/, which simply involves replacing zk

by the posterior probability of change

Ozk D P .zk D 1jrk; gk; p/ D
ppA.rk; gk/

ppA.rk; gk/ C .1 p/p0.rk; gk/
(8)

and with parameters a, a0, º, and p � xed at tentative values. The M-step is to maximize the resultant form
in the four parameters. Having broken the mixture structure, this maximization is simpli� ed. Immediately,
we � nd the updated estimate of p is the arithmetic mean of fOzkg. An off-the-shelf numerical procedure,
such as nlminb in Splus, readily optimizes the remaining parameters in each iteration. Forty iterations of
EM were used to obtain the estimates reported in Table 2, and results were checked from various starting
con� gurations.

Placing a prior distribution over p stabilizes the computations and enables a nice interpretation of the
output. We use a Beta(2,2) prior in what we report in Table 2, which amounts to a prior assumption of
exchangeability of the fzkg and that P .zk D 1/ D 0:5 upon integrating uncertainty in p. It is convenient to
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Table 2. Parameter Estimates in
Gamma–Gamma–Bernoulli Model via

EM Algorithm

Microarray a a0 º p

Control 22.90 0.94 0.28 0.003
Heat shock 2.75 1.37 4.12 0.052
IPTG-a 12.53 0.82 0.37 0.007
IPTG-b 9.69 0.68 0.28 0.004

� x other parameters, a, a0, and º at their estimated values rather than integrating against a prior. Owing
to the large sample size, there should not be signi� cant error in the present examples.

Our goal is to compute posterior odds of change at each spot. The odds summarize our inference about
actual differential expression at each spot using all the data on the microarray. With D D frk; gkg denoting
expression measurements on the whole microarray, the posterior odds of change at spot k are:

odds D
P .zk D 1jD/

P .zk D 0jD/
;

where

P .zk D 1jD/ D
Z 1

0
P .zk D 1jp; rk; gk/P .pjD/ dp (9)

by conditional independence of the data at different spots given the parameter p. The Bayes rule determines
P .zk D 1jp; rk; gk/ in terms of p0.rk; gk/ and pA.rk; gk/; see (8). Also, the EM-algorithm � nds the
posterior mode of P .pjD/, say, Op. To a � rst approximation, the integral (9) equals the integrand P .zk D
1jrk; gk; p/ evaluated at its modal value p D Op. Therefore,

odds ¼
pA.r; g/

p0.r; g/

Op
1 Op

: (10)

These posterior odds may also be called Bayes factors because the prior odds for change equal unity. An
inspection of the pro� le loglikelihood curve for p indicated that P .pjD/ is highly concentrated for the
E. coli examples, and so (10) provides a good approximation.

Figure 4 shows contours of the posterior odds of true differential expression computed in the Gamma-
Gamma-Bernoulli model using (10). The contour map provides an interesting summary of signi� cant
change. The grey area in each panel indicates that the odds favor no change. An important feature of the
map is that the contour lines are not straight on this log–log scale, indicating that to consider fold changes
alone is not enough. As we expected, we are less con� dent about naive fold change at low signal intensity.
Dotted lines on each panel correspond to the 99% rule from Chen et al. (1997). (We used all the spots
to estimate the coef� cient of variation, and this was so large in the heat-shock data that the Chen et al.
approximation to the upper band broke down.) These lines are designed so that they will be exceeded
only for 1% of spots which in fact have not changed. Within the present model, most of this 1% can be
expected to occur at low total abundance, a sign of inef� ciency.

The Bayes factor computation allows us to rank order genes by their probability of real differential
expression. We have replicate microarrays for the IPTG treatment, so it is instructive to check the repro-
ducibility of these assessments. As a technical note, we had removed in the estimation phase any spots
for which the measured intensity was below the estimated background. For assessing changes, we include
these spots and deem them to present zero signal in that channel. (Interestingly, the log Bayes factor is
continuous at zero intensity so there is no computational problem in doing so.) On IPTG-a, 20 genes have
odds better than 10:1 favoring changed expression. The replicate IPTG-b shows seven changed genes. Five
valid genes are in common between the replicates and are induced by IPTG. These � ve are exactly the
genes identi� ed by Richmond et al. (1999) as being induced on the basis of the same microarray data and
other radioactivity data.
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FIG. 4. Odds of real differential expression E. coli data: In shaded region odds are for no change. Contours are at
odds of change of 1:1, 10:1, and 100:1, respectively.

The heat-shock data provide an interesting demonstration of the methodology. Using Bayes factors, we
� nd 38 genes exhibit differential expression (25 induced and 13 repressed). This represents about 1% of
the genes on the microarray, and prior work suggests that more genes have changed (Richmond et al.,
1999). If we look at the parameter estimates for this case (Table 2), we see that the estimated proportion of
changed spots, Op, is about 5% (about 200 genes), and this number is in line with the earlier report. Being
the optimal parameter value, Op satis� es the equation Op D [

Pn
kD1 Ozk. Op/]=n where Ozk.p/ is the posterior

probability of change at spot k, as in (8). At the same time, the Bayes factor (odds for change) is the ratio
of Ozk. Op/ to 1 Ozk. Op/. Something interesting is going on. On average over spots, the posterior probability
of change is about 5%, and this leads us to infer that about 5% of spots have changed. When it comes to
deciding which spots have changed, however, only 38 spots, about 1%, have Ozk. Op/ > 0:5 and thus have
odds favoring change. Our inference about the proportion of changed spots does not need to be the same
as the proportion of spots which we can con� dently say have changed. In fact, by Markov’s inequality,
the proportion of spots in which Ozk. Op/ > 0:5 is no greater than 2 Op, and some re� nements to this bound
may be possible.
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Table 3. Error Rates, Simulated Gamma–Gamma–Bernoulli Modela

Odds-Bigger-Than-1 Rule Less Stringent Rule

Ozk > 0:5 Ozk · 0:5 Ozk > 0:236 Ozk · 0:236
True change 577 423 694 306
No change 73 2927 311 2689

Total 650 3350 1005 3995

aTwo decision rules are examined below for a 4,000 spot microarray in which 1,000 genes have changes in true
gene expression. Signi� cant change is inferred if the posterior probability of change, Ozk , exceeds a cutoff.

To study our methodology further, we performed a small simulation. We considered a single microarray
with n D 4000 spots and in which data for 1,000 spots arose from the Gamma-Gamma model with a D 12,
a0 D 1, and º D 1. The remaining 3,000 spots had variable expression levels, but there was no change in
true expression from green to red. The same Gamma model was used to generate these common expression
levels and then also to generate the measured intensities. So basically we simulated the Gamma–Gamma–
Bernoulli model, but we forced exactly 1,000 spots to change. Parameter estimates, obtained by the EM
algorithm, were Oa D 12:5, Oa0 D 1:0, Oº D 0:95, and Op D 0:26, and thus we recovered the model parameters
extremely well. Table 3 records error rates by two decision rules. Taking our standard rule, to call a spot as
changed if the odds exceed unity, we inferred only 650 changed spots, much less than the 1,000 or so which
we conclude have changed from Op. This underestimation mirrors what happened with the heat-shock data.
In total, we make 496 incorrect calls using the odds-bigger-than-one rule. A second, much less stringent
rule is to call a total of n Op spots as changed, rank-ordered by their individual posterior probabilities. For
these simulated data, we thus lowered the bar from a change probability of 0.5 to a change probability
of 0.236, and by so doing we produced a list of about 1,000 genes. This rule has the advantage that our
conclusion about the number of changed genes is in line with our reporting of particular genes. But, at least
in this simulation, we ampli� ed the overall error rate; with this rule, 617 spots were called incorrectly. The
simulation highlights dif� culties with inferring differential gene expression, but we point out that speci� c
error rates may depend on the application.

5. MODEL VALIDATION AND DISCUSSION

Both the Gamma–Gamma model and the Gamma–Gamma–Bernoulli model attempt to capture some
structural features expected in microarray data, but of course they are highly parameterized and it is
important to check whether predictions implied by them are in line with available data. We have considered
several simple checks. For instance, we can compare a histogram of measured intensities to the � tted
marginal model (Fig. 5). Plotted on each histogram (on the log scale) is the � tted marginal density from
the Gamma–Gamma model used for shrinkage estimation (dotted line) and the � tted density from the
Gamma–Gamma-Bernoulli model (solid line). Clearly there is room for improvement in the � t, but the
primary features of the data are captured.

A second interesting check is based on a well-known property of the Gamma distribution. If R and G

are measurements on one spot, and there is no real differential expression, then both measurements arise
from a common Gamma distribution with shape a and scale µ . The renormalized difference

B D f1 C .R G/=.R C G/g=2

has a symmetric Beta distribution with shape parameters a and a; i.e., its density is proportional to
ba 1.1 b/a 1 for b 2 .0; 1/. Notably, this density does not depend on the scale parameter, so it is
the common distribution for all unchanged spots on the microarray. Figure 6 compares the histogram of
B values to the � tted Beta density. For the treatment microarrays, we focused only on B values from
spots deemed to be probably unchanged by the Bayes factor computation. This is a true model check; the
� tting procedure does not attempt to capture variations on the shown scale. Indeed, the � t is poor in some
respects, but again primary features of variation are captured.
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FIG. 5. Diagnostic check: Histograms are of intensities (both colors pooled) on the natural log scale. Dashed curve
is � t from Gamma–Gamma model; solid curve is � t from Gamma–Gamma–Bernoulli model.

We are using just four parameters to describe marginal variation and dependence between the red and
green channels, and improvements may come by increasing the number of parameters. We did let the scale
parameter º be color speci� c, and this improved the � ts somewhat, especially on the IPTG microarrays,
as the estimated value of a goes up. We also let the shape parameter a be color speci� c, but this did not
signi� cantly improve � ts. The use of additional scale parameters lead to problems with the Bayes factor
contours in Fig. 4, and so currently we are investigating model elaborations and identi� ability questions.

We conjecture that improvements may arise if some positive correlation is added to the expression
model. We can do this by retaining the Gamma sampling model but adding correlation between µr

and µg in the expression model. For example, we might say Ã »Gamma(a0; º) and two multipliers
mr ; mg »iidGamma(·; ·) for a positive dependence parameter ·. Then write µr D mrÃ and µg D mgÃ .
The multipliers are centered on unity, and will be close to unity if · is large. This model is an intermediate
between the null and alternative models so far studied, and it requires more sophisticated machinery to � t,
but it may be effective at identifying subtle expression changes.

Our methods use Gamma distributions but other parametric forms can be considered. Various parametric
models entail constant coef� cient of variation on the positive line. The log-normal model has been used
for this purpose, and a comparison of the different formulations will be useful (Wiens, 1999). On the
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FIG. 6. Diagnostic check: Histograms are of renormalized differences B D .1=2/[.R G/=.R C G/ C 1] for spots
deemed to have not changed. Curves are predicted Beta densities.

basis of preliminary computations, we can say that the same qualitative analysis features carry over to the
log-normal, in particular the shape of contours in the Bayes factor plots is similar.

We have used one particular method of normalization and background noise adjustment. Probably some
advantage can be gained by combining these tasks with the present modeling method to better account for
these sources of variation. For instance, on normalization, we could say that the scale parameters in one
sample are a global constant multiple of those in the other sample, and then treat this constant as another
model parameter to be estimated from unnormalized intensities. This is similar to the calibration procedure
described in Chen et al., (1997), but in the context of a hierarchical model.

Our methodology deals with a single microarray at a time, and does not attempt to combine data, though
the modeling framework certainly allows this elaboration. One approach would be to decompose say log µ ,
the expression scale parameter, into contributions from different genes, different RNA preparations, and
different growth conditions. Combining information from multiple microarrays may be an effective way
to obtain accurate estimates of the contribution of different sources of variation. Kerr et al. (2000) provide
details of a related method which expresses the expected value of log-transformed intensity measurements
in terms of contributions from such factors.
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Hierarchical statistical modeling allows for ef� cient data processing in large-scale expression studies.
This provides more precise estimates of differential gene expression and more accurate assessments of
signi� cant changes than standard methods by accounting for differential variability in data. Calculations
account for the measurement error process and for natural � uctuations in absolute expression levels.
Preprocessing image data via these methods may reduce errors in downstream tasks, such as cluster
analysis or classi� cation.
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