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Abstract: Cluster tools are increasingly adopted in semiconductor fabrication. With wafer residency time 

constraints, it is crucial to schedule a cluster tool such that the wafer sojourn time in a processing module is in a 

given range. However, because of the activity time variation in wafer fabrication by cluster tools, a feasible 

schedule obtained under the assumption of deterministic activity times may become infeasible. Thus, it is a great 

challenge to schedule cluster tools. To solve this problem, it is critically important to reveal the wafer sojourn 

time change with bounded activity time variation. This work targets at single-arm cluster tools. They are modeled 

by a Petri net (PN) to describe the fabrication processes. Based on the net, a real-time control policy is proposed 

such that its use offsets the effect of the activity time variation as much as possible. Then, the wafer sojourn time 

delay is analyzed and analytical expressions are given to compute the upper bound. With the proposed method, 

we can check if a given schedule is feasible under bounded activity time variation. Examples are given to show 

the applications of the research results. 

Keywords: Cluster tools, Semiconductor manufacturing, Petri net, scheduling. 

I. INTRODUCTION 

As a kind of integrated equipment in semiconductor manufacturing, cluster tools are increasingly adopted to 

produce wafers one by one with single-wafer processing technology. A cluster tool is composed of a number of 

processing modules (PM), an aligner, a wafer handing robot, and two loadlocks for wafer cassette 

loading/unloading. They provide a flexible, reconfigurable, and efficient environment for semiconductor 

manufacturing [Bader, et al., 1990; and Burggraaf, 1995], resulting in higher yield [Newboe, 1990], shorter cycle 

time [McNab, 1990; Newboe, 1990; and Singer, 1995], better utilization of space [Burggraaf, 1995; and Singer, 

1995], and lower capital cost [Singer, 1995]. 

In general, a cassette has 25 wafers with an identical recipe [Kim et al., 2003; and Lee and Park, 2005]. 

Raw wafers are loaded into the system through a loadlock, visit one or more PMs in a pre-specified order (each 

wafer should stay in a PM for a minimum time in each step to get processed), and return to the loadlock where 
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they come from [Wu et al., 2008]. The robot can be a single or dual-arm one as shown in Fig. 1.1. 

 

Figure 1.1. The cluster tools: (a) single-arm robot; (b) dual-arm robot 

To operate cluster tools effectively, important effort has been made in modeling and performance 

evaluation of cluster tools [Venkatesh et al., 1997; Ding et al., 2006; Perkinson, et al., 1994 and 1996; Yi et al., 

2008; Zuberek, 2001; Chan et al., 2011; and Wu and Zhou, 2010a and 2010b]. With these models, it is found that 

the operations of a cluster tool under the steady state are divided into two different regions: transport and 

process-bound ones. In the former, the robot is always busy and the system cycle time is determined by the time 

for robot tasks, while in the latter, the robot has idle time and the processing times in PMs determine the cycle 

time. It is also shown that PM activities follow the robot tasks [Shin et al., 2001]. Hence, scheduling robot tasks 

is very important. With these properties, dispatching or priority rules are developed to schedule them [Venkatesh 

et al., 1997; and Jevtic, 1999]. It is known that, for cluster tools, the robot moving time from one PM to another 

can be treated as a constant and are much shorter than the wafer processing time [Kim et al., 2003]. Thus, for 

single-arm cluster tools, backward scheduling is optimal [Lee et al., 2004; and Lopez and Wood, 2003]. However, 

these results are obtained based on the assumption that there is no limitation on how long a wafer can stay in a 

PM after being processed. 

For some wafer fabrication processes, such as low pressure chemical-vapor deposition (LPCVD), there is a 

strict constraint on the wafer sojourn time in a PM [Kim et al., 2003; Lee and Park, 2005; Rostami et al., 2001; 

and Yoon and Lee, 2005]. It is referred to as residency time constraint [Rostami et al., 2001]. It means that a 

wafer should be unloaded from a PM within a limited time after it is processed, and otherwise, the wafer would 

be scrapped. Since there is no immediate buffer between PMs, it is very complicated to coordinate and schedule 

cluster tools to meet wafer residency time constraints. In this sense, scheduling cluster tools is somehow similar 



 

to hoist scheduling [Che and Chu, 2005 and 2007; Chen et al., 1998; and Kats et al., 1999]. However, differences 

exist between them due to multiple PMs for each step, and unique chamber operation for wafer fabrication. By 

considering residency time constraints, the methods [Kim et al., 2003; Lee and Park, 2005; and Rostami et al., 

2001] find the optimal periodical schedule for dual-arm cluster tools. To improve their computational efficiency, 

necessary and sufficient conditions are presented for both single and dual-arm cluster tools in [Wu et al., 2008; 

and Wu and Zhou, 2010a]. If schedulable, closed-form scheduling algorithms are proposed to find the optimal 

cyclic schedules. 

All the aforementioned studies are conducted under the assumption that the activity times are deterministic 

and known in advance. However, in practice, some abnormal events may occur in operating a cluster tool, 

leading to the activity time disturbance. For instance, wafer alignment failure and retrial, processing delay, and 

computer processing delay may take place. Thus, besides the residency time constraints, the process or robot 

tasks are subject to random variation or abrupt random disturbances [Kim and Lee, 2003; and Kim and Lee, 

2006], which result in the wafer residency time fluctuation such that a feasible schedule obtained under the 

assumption of deterministic activity time becomes infeasible in practice. Therefore, it is necessary to search for 

an effective scheduling methodology to adapt to the abrupt random disturbances caused by abnormal events. The 

work [Shin et al., 2001] presents a real-time scheduling approach to deal with abnormal events by modeling the 

system with finite state machines. In [Kim and Lee, 2003], it is found that by increasing the robot cycle time the 

system can be stabilized to a steady state after a disturbance. Based on the earliest starting rule and swap strategy, 

Kim and Lee [2008] study the schedulability problem by considering bounded activity time variations for 

dual-arm cluster tools.  They identify so called always schedulable and never schedulable cases by using Petri 

nets and branching technique. Wu et al. [2008] improve their result by showing that some never schedulable 

cases identified in [Kim and Lee, 2008], in fact, are always schedulable by using their new real-time controller. 

They analyze the effect of activity time variation on the wafer sojourn time delay in a PM in a dual-arm cluster 

tool by a Petri net model in [Wu and Zhou, 2010c]. Then, closed-form scheduling algorithms are proposed to find 

the optimal schedule for them with wafer residency time constraint and bounded activity time variation in [Wu 

and Zhou, 2011]. Notice that their results are applicable to only dual-arm cluster tools under a swap strategy. In a 

single-arm cluster tools, swapping is impossible. Thus, the results obtained for dual-arm cluster tools are not 

applicable to single-arm cluster tools. According to [Wu et al., 2008; Wu and Zhou, 2010c; and Wu and Zhou, 

2011], to cope with the activity time variation, one needs to offset the activity time fluctuation and balance the 

workloads among the operation steps by properly scheduling the robot waiting times. For dual-arm cluster tools, 



 

only the robot waiting time during swapping affects the workload at a processing step and all the others have no 

effect on the workload. Unfortunately, for single-arm cluster tools, any scheduled robot waiting time has its 

contribution to the workload at a processing step to be shown later, which is totally different from the dual-arm 

one. Notice that offsetting activity time variation and balancing workloads among the operation steps depend on 

the assignment of robot waiting times. Thus, with wafer residency time constraint and activity time variation, a 

single-arm cluster tool is much more complex and difficult to analyze and schedule than the dual-arm one is. Up 

to now, this problem remains untouched. This work is the first one that aims to solve it to the authors’ best 

knowledge. 

In the next section, a Petri Net model is developed to describe the system. Then, Section 3 presents a 

real-time control policy and conducts the wafer sojourn time delay analysis. Two illustrative examples are used 

to show the results in Section 4. Finally, conclusions are given in Section 5. 

II. SYSTEM MODELING 

Due to their capability of dealing with concurrent activities, Petri nets (PN) are widely used as a modeling 

and analysis tools for flexible manufacturing system [Zhou and DiCesare, 1991; Zhou et al., 1992; Viswanadham 

et al., 1990; Wu, 1999; Wu and Zhou, 2001, 2004, and 2005], semiconductor manufacturing [Zhou and Jeng, 

1998; Wu and Zhou, 2002 and 2006; and Liao et al., 2004], and cluster tools [Kim and Lee, 2003; Kim et al., 

2003; and Zuberek, 2001]. In this section, we model single-arm cluster tools by extending the resource-oriented 

Petri net (ROPN) proposed in [Wu et al., 2008]. 

A. Finite Capacity PN 

To operate an automated manufacturing system (AMS) well, such as a cluster tool, is to effectively allocate 

the finite resources to the production jobs [Wu et al., 2008]. PNs are powerful in modeling the behavior of 

resource allocation. Because of the resource limitations in an AMS, a finite capacity PN is an ideal choice to 

model them. Its concept is based on [Zhou and Venkatesh, 1998; and Murata, 1989]. It is a particular kind of 

directed graphs containing places and transitions, PN = (P, T, I, O, M, K) where P = {p1, p2, ..., pm} is a finite set 

of places; T = {t1, t2, ..., tn} is a finite set of transitions with P ∪T ≠∅ and P ∩T = ∅; I : P × T → ℕ is an input 

function; O: P × T → ℕ is an output function, where ℕ ={0, 1,2, …}; M: P → ℕ is a marking representing 

the numbers of tokens in places with M0 being the initial marking; and K: P → {1, 2, 3, …} is a capacity function 

where K(p) represents the largest number of tokens that p can hold at any time. 

The preset of transition t is the set of all input places to t, i.e., t = {p: p∈P and I(p, t) > 0}. Its postset is the 



 

set of all output places from t, i.e., t  = {p: p∈P and O(p, t) > 0}. Similarly, p’s preset p = {t∈T: O(p, t) > 0} 

and postset p  = {t∈T: I(p, t) > 0}. 

Definition 2.1: A transition t∈T in a finite capacity PN is enabled if ∀p ∈P, 

M(p) ≥ I(p, t)                                                         ( 2.1 ) 

and         K(p) ≥ M(p) - I(p, t) + O(p, t)                                             ( 2.2 ) 

    If a transition is enabled, it can fire. Firing an enabled transition t in marking M yields 

M'(p) = M(p) - I(p, t) + O(p, t)                                           ( 2.3 ) 

Definition 2.1 means that t is enabled and can fire if there are enough tokens in all the places in t and at the 

same time there are enough free spaces in all the places in t . Thereafter, when condition (2.1) is met, t is said to 

be process-enabled. When condition (2.2) is met, t is said to be resource- enabled. Thus, t is enabled only if it is 

both process and resource-enabled. A sequence of transition firings results in a sequence of markings. Mi is said 

to be reachable from M0 if there exists a sequence of transition firings that transforms M0 to Mi. The set of all 

markings reachable from M0 is denoted by R(M0). A transition in a PN is live if it can fire at least once again in 

some firing sequence for every marking M reachable from M0. A PN is live if every transition is live. The 

liveness of a PN assures that all events or activities in the model can happen. 

B. Modeling the Wafer Flow 

We model a single-arm cluster tool with wafer residency time constraint and activity variation by extending 

the ROPN developed in [Wu et al., 2008]. According to [Kim et al., 2003], for a wafer fabrication process 

without wafer revisiting, the wafer flow pattern can be denoted as (m1, m2, …, mn), where n is the number of 

steps for processing the wafer and mi is the number of PMs used to process the wafers for Step i. 

We use timed place pi to model the PMs of Step i with K(pi) = mi. The loadlocks are treated just as a 

processing step, called Step 0, and are modeled by p0. Because the loadlocks can hold all the wafers in the tool, 

we have K(p0) = ∞. Then, there are n+1 steps for the system, and let Ω = {0, 1, …, n} be the set of steps 

including Step 0 and ℕn ={1, …, n} be the set of wafer processing steps. The robot is modeled by place r with 

K(r) = 1 indicating that it has only one arm. When there is a token in r it implies that the robot arm is available 

for delivering a wafer. 

If the system operates in the process-bound region, the robot needs to wait before or after a robot task is 

executed. It follows from the results obtained in [Wu et al., 2008] that if the activity times are deterministic the 

robot waiting times can be exactly scheduled. However, with activity time variation, it is not realistic to do so. 



 

Thus, there are two types of robot waiting times: scheduled and unscheduled waiting times. The key is to decide 

after what task is executed the robot should wait. With wafer residency time constraint and activity time variation, 

the robot waiting should be used to balance the workload among the steps and offset the activity time variation to 

the largest extent. It is known from [Wu et al., 2008] that, to balance the workload, the robot can wait before 

unloading a wafer from or loading a wafer to a step. However, if the robot waits before unloading a wafer from 

or loading a wafer to a step only, some activity time variation cannot be offset. Thus, we schedule the system 

such that the robot waits before both unloading a wafer from and loading a wafer to a step. In the PN model, we 

introduce places qi2 and qi1 to model the scheduled robot waiting before unloading a wafer from and loading a 

wafer to Step i, respectively. Because of the activity time uncertainty, when the robot arrives at Step i for 

unloading a wafer, the wafer may not be completed. Hence, an unscheduled robot waiting is necessary. Place qi3 

is used to model such an unscheduled robot waiting at Step i. Noticed that, places pi, qi1, qi2, and qi3 are timed 

places. Every transition in the model represents a robot task, and thus all the transitions are timed. Transitions si1 

and s01 model the loading of a wafer into a PM at Step i modeled by pi and a loadlock modeled by p0, 

respectively. Transitions si2, i = 1, 2, …, n-1, model robot tasks of unloading a wafer from a PM at pi and moving 

to pi+1. Transition s02 models robot tasks of unloading a wafer from a loadlock at p0 and moving to p1. Transition 

sn2 models robot tasks of unloading a wafer from pn and moving to a loadlock. Transitions yi1, i = 0, 1, …, n-2, 

represent that the robot moves from place pi+2 to pi without carrying a wafer. Transitions y(n-1)1 and yn1 represent 

that the robot moves from place p0 to pn-1 and place p1 to pn, respectively. Pictorially, places pi’s and qij’s are 

denoted by , and r is denoted by . Then, the PN model for a system with n steps is shown in Fig. 2.1. 

In operating a cluster tool, there is an initial transient process that transfers the tool from the idle to steady 

state. At most of time, the tool operates in the steady state in a periodical way. When it needs to stop the tool, 

there is a final transient process that transfers the tool from the steady to idle state. In this paper, we address the 

periodical scheduling problem, which involves only the steady state. Thus, we need to model the steady state 

only. Because the robot task times are much shorter than the wafer processing times, when the system reaches its 

maximal production rate in the steady state, there are ∑ =

n

i im
1  

wafers being processed concurrently. This 

implies that mi wafers are under processing at step i, i ∈ ℕn. Thus, without loss of generality, we let M0(pi) = mi, 

i ∈ ℕn, M0(r) = 1 to indicate that the robot is idle, and M0(p0) = n to indicate that there are always wafers to be 

processed. 



 

 

Figure 2.1. A generic PN model for a single-arm cluster tool with n wafer processing steps 

The PN model developed above is deadlock-prone. For example, when a marking M is reached such that 

M(pi) = mi, i ∈ ℕn and M0(r) = 1. At this marking, y01 is enabled and can fire. However, firing y01 makes the PN 

dead. Thus, it is necessary to avoid deadlocks in the PN. To do so, a control policy can be introduced to make the 

PN live as done in [Wu et al, 2008]. 

Definition 2.2 [Wu et al., 2008]: At marking M, transition yi1, i ∈ ℕn-1∪{0} is said to be control-enabled if 

M(pi+1) = mi+1 – 1; and transition yn1 is said to be control-enabled if M(pi) = mi, i ∈ ℕn. 

With the control policy given in Definition 2.2, the system starts from M0, yn1 fires first and followed by sn2, 

and s01. At this time, marking M1 is reached, y(n-1)1 fires and followed by s(n-1)2, and sn1. By doing so, at some time 

marking Mk is reached such that only y(n-k)1 is enabled, y(n-k)1 fires and followed by s(n-k)2, and s(n-k+1)1. In this way, 

finally, marking Mn is reached such that only y01 is enabled. Thus, y01 fires and followed by s02, and s11. Then, 

Mn+1 is reached such that Mn+1 is equivalent to M0, this implies that a cycle is completed and the PN model 

becomes deadlock-free. 

C. Modeling Activity Times 

In scheduling cluster tools with wafer residency constraints, the starting time for each activity is crucial. 

Thus, for the purpose of scheduling, the model should describe the temporal aspect of activities. In the proposed 

PN, time is associated with both places and transitions that represent actions. The key here is how to model the 

activity time variation. To solve this problem, we use a time duration [ζ1, ζ2] to denote a robot task time meaning 



 

that time ζ is needed to complete a task, where ζ∈[ζ1, ζ2] is any number in [ζ1, ζ2]. The wafer processing time is 

denoted as ([ζ1, ζ2], χ) which means that after the completion of processing this task with ζ time units the longest 

time delay in a PM must not be greater than χ. If ζ is associated with a transition t, it means that firing t takes ζ 

time units. If ζ is associated with a place p, a token in p must stay in p at least for ζ time units before it can 

enable an output transition of p. It should also be pointed out that, for a robot task or wafer process at a PM, ζ ∈ 

[ζ1, ζ2] is obtained by observing in the real-time operation. If ζ ∈ [ζ1, ζ2] represents a scheduled robot waiting 

time, ζ can be scheduled to be any number in [ζ1, ζ2]. It implies that it is controlled by the scheduler, and thus 

controllable. However, if ζ ∈ [ζ1, ζ2] represents an unscheduled robot waiting time, ζ is determined by the 

activity time variation, and hence not controllable. The time durations for different transitions and places are 

shown in Table 2.1. Durations , , and are needed for the robot to move from Step i + 2 to Step 

i , i ∈ ℕ

1iyμ 1)1( −nyμ 1nyμ

n-2, from Step 0 to Step n-1, and from Step 1 to Step n , respectively. They can be any number in [α, β]. 

The time λi2 is taken for the robot unloading a wafer from a PM at pi and moving to pi+1. The time λn2 is taken for 

the robot unloading a wafer from pn and moving to a loadlock. It is assumed that the times taken for λi2 and λn2 

are same. They can be any number in [c, d]. However, transition s02 models the robot unloading a wafer from a 

loadlock, aligning and moving to p1 together, and thus has the time λ02∈[c0, d0] which is different from λi2, i∈ℕn. 

Table 2.1. The time durations associated with transitions and places 
Symbol Transition or 

place 
Actions 

Allowed 
time 

duration 
λi1 si1∈T Robot loads a wafer into Step i, i ∈ Ω [c, d] 

λ01 s01∈T Robot loads a wafer into a loadlock [c, d] 

si2∈T 
Robot unloads a wafer from Step i and moves to pi+1, i ∈ ℕn-1

 
λi2

sn2∈T Robot unloads a wafer from Step n and moves to loadlock 

 
[c+α, d+β]

λ02 s02∈T Robot unloads a wafer from a loadlock, aligns it and moves to 
p1 together 

[c0+α, 
d0+β] 

1iyμ  
yi1∈T 

Robot moves from Step i + 2 to Step i, i ∈ ℕn-2
[α, β] 

1)1( −nyμ  y(n-1)1∈T Robot moves from Step 0 to Step n-1 [α, β] 

1nyμ  
yn1∈T Robot moves from Step 1 to Step n [α, β] 

τi pi∈P 
A wafer being processed and waiting in pi, i ∈ ℕn

([ai, bi], δi)

ωi2 qi2∈P Robot waits before unloading a wafer from Step i, i ∈ Ω [0, ∞] 



 

ωi1 qi1∈P Robot waits before loading a wafer to Step i, i ∈ Ω [0, ∞] 

From Definition 2.2, it is known that the PN model is deadlock-free. However, with residency time 

constraint, its deadlock-freeness does not mean that it is live because it requires that a token in a place pi should 

stay in it within a given time window. Furthermore, the activity time variation can make the token’s sojourn time 

longer than the desired one. Nevertheless, it is easy to verify that if for any i such that a token is allowed to stay 

in pi for unlimited time, the PN is live. Let τi denote the sojourn time of a token in pi. Further, let ςi be a sample in 

[ai, bi]. Then, we present the liveness definition of the timed PN for single-arm cluster tools with residency time 

constraints. 

Definition 2.3: A timed PN for single-arm cluster tools with residency time constraint is said to be live if ∀ 

M ∈ R(M0), i ∈ ℕn, ςi ∈ [ai, bi], si2 is enabled for any wafer in pi at τi when τi - ςi ≤ δi. 

Based on the model, to obtain a feasible schedule for a single-arm cluster tool with wafer residency time 

constraints and activity time variation is to determine the scheduled robot waiting times such that the timed PN is 

live. 

III. ANALYSIS OF TEMPORAL PROPERTIES 

With activity time variation, the time taken by an activity is ζ that can be any number in [ζ1, ζ2] and it is 

obtained by on-line observation. Thus, it is not meaningful to schedule such a system by using an off-line 

schedule, and instead real-time scheduling is necessary. If the activity times are deterministic, a periodic schedule 

is used because the cluster tools operate cyclically. Thus, to schedule a cluster tool subject to activity time 

variation, an effective way is to find a periodic schedule based on deterministic activity times and then make it 

adapt to certain random activity time variation. To do so, it is important to know the effect of time variation on 

the system. Therefore, in this section, based on the PN model, a real-time control policy is proposed. Then, we 

analyze the effect of activity time variation on wafer sojourn time delay at a PM under this policy. 

A. Temporal Properties under Normal Condition 

As discussed before, an activity takes time ζ∈ [ζ1, ζ2]. To effectively analyze the system, we define the 

normal condition under which an activity takes ζ = ζ1 time units. Then, in the real-time operation, the time 

needed for an activity can be denoted as ζ = ζ1 +Δζ with ζ1 ≤ ζ1 + Δζ ≤ ζ2. In this way, Δζ≠0 can be seen as a 

disturbance and ζ can be any number in [ζ1, ζ2]. Thus, activity time variation can be treated as disturbance to the 

normal condition. Hence, to schedule cluster tools with activity time variation, we can obtain a periodic schedule 

under the normal condition plus a real-time regulator to adapt to the activity time disturbance. We first analyze 

the properties under the normal condition. 



 

Observe the PN model shown in Fig. 2.1, we know that, under the normal condition, to complete the 

processing of a wafer in Step i, i ∈ ℕn-1, the following transition firing (activities) sequence must be executed: si2 

(time c+α) → robot waiting in q(i+1)1 (time ω(i+1)1) →s(i+1)1 (time c) →y(i-1)1 (time α) → robot waiting in q(i-1)2 

(time ω(i-1)2) →s(i-1)2 (time c+α) → robot waiting in qi1 (time ωi1) →si1 (time c) → processing a wafer at Step i 

(time τi) →si2 (time c+α) again. In this way, a cycle is completed and it takes τi + 4c + 3α + ω(i-1)2 + ω(i+1)1+ ωi1 

time units. Notice that τi should be within [ai, ai + δi] and there are mi PMs for Step i. When τi = ai we have the 

lower permissive cycle time at Step i as 

i

iiii
iL m

ca 11)1(2)1(34 ωωωα
θ

+++++
= +− , 1 < i < n                          (3.1) 

When τi = ai + δi we have the upper permissive cycle time at Step i as 

i

iiiii
iU m

ca 11)1(2)1(34 ωωωαδ
θ

++++++
= +− , 1 < i < n                     (3.2) 

For Step 1, the lower cycle time is 
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Its upper cycle is 
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112102011
1

33
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For Step n, the lower cycle time is 

n

nnn
nL m

ca 1012)1(34 ωωωα
θ

+++++
= −                                    (3.5) 

Its upper cycle is 

n

nnnn
nU m

ca 1012)1(34 ωωωαδ
θ

++++++
= −                                (3.6) 

In fact, Expressions (3.1), (3.3), and (3.5) describe the workloads among the steps when robot waiting exists. 

It shows that any robot waiting affects the workload. Also, it follows from Expressions (3.1) - (3.6) that the robot 

waiting times have effect on the permissive wafer sojourn time range for the steps. Thus, by carefully regulating 

the robot waiting times, it can change the permissive range among the steps. If the robot waiting time is removed 

from the above expressions, we can obtain the lower and upper workloads with no robot waiting for each step as 



 

follows. 

i

i
iL m

ca αϑ 34 ++
= , 1 < i ≤ n                                              (3.7) 
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= , 1 < i ≤ n                                          (3.8) 
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Expressions (3.7)–(3.10) present the workload balance information that affects the existence of a feasible 

schedule. It follows from (3.2) and (3.8) that θiU > ϑiU if ω(i-1)2 + ω(i+1)1 + ωi1 > 0. It implies that, by making ω(i-1)2 

+ ω(i+1)1 + ωi1 > 0, the cycle time of Step i is increased without increasing the wafer sojourn time. Thus, it is 

possible to adjust the robot waiting times such that the permissive wafer sojourn time ranges among the steps are 

balanced to some extent to guarantee the feasibility. At the same time, any robot task time delay is just like robot 

waiting and affects the schedule’s feasibility, which complicates the analysis and scheduling problem. 

To schedule a single-arm cluster tool with residency time constraint under the normal condition, the key is 

that ai ≤ τi ≤ ai + δi must be satisfied. Hence, we need to know how τi should be calculated. The wafer sojourn 

time at pi depends on the robot cycle time and the workloads of the steps. Under the normal condition, the 

unscheduled robot waiting time is zero. Hence, from the PN model shown in Fig. 2.1, we know that, during a 

wafer stays in a PM at Step i, the following event sequence forms a robot cycle: firing si2 → robot waiting in 

q(i+1)1 → firing s(i+1)1 → firing y(i-1)1 → robot waiting in q(i-1)2 → firing s(i-1)2 → robot waiting in qi1 → firing si1 

with the k-th wafer → firing y(i-2)1 → robot waiting in q(i-2)2 → firing s(i-2)2 → robot waiting in q(i-1)1 → firing 

s(i-1)1 → …→ firing s21 → firing y01 → robot waiting in q02 → firing s02 → robot waiting in q11 → firing s11 → 

firing yn1 → robot waiting in qn2 → firing sn2 → robot waiting in q01 → firing s01 →…→ firing si1 with the 

(k+1)-th wafer → firing y(i-2)1 → robot waiting in q(i-2)2 → firing s(i-2)2 → robot waiting in q(i-1)1 → firing s(i-1)1 

→ …→ firing s21 → firing y01 → robot waiting in q02 → firing s02 → robot waiting in q11 → firing s11 → firing 

yn1 → robot waiting in qn2 → firing sn2 → robot waiting in q01 → firing s01 →…→ firing si1 with the (k+mi-1)-th 

wafer → firing y(i-2)1 → robot waiting in q(i-2)2 → firing s(i-2)2 → robot waiting in q(i-1)1 → firing s(i-1)1 → …→ 

firing s21 → firing y01 → robot waiting in q02 → firing s02 → robot waiting in q11 → firing s11 → firing yn1 → 

robot waiting in qn2 → firing sn2 → robot waiting in q01 → firing s01 →…→ firing si2 with the k-th wafer → 



 

robot waiting in q(i+1)1 → firing s(i+1)1 → firing y(i-1)1 → robot waiting in q(i-1)2 → firing s(i-1)2 → robot waiting in 

qi1 → firing si1 with the (k+mi)-th wafer. 

With this event sequence, it is known that when si1 fires for the (k+mi)-th time for loading the (k+mi)-th 

wafer into pi while si2 fires for the (k+mi)-th time unloading the k-th wafer from pi and moving to pi+1. In other 

words, the k-th wafer is loaded into pi by the k-th firing of si1 and unloaded from pi and moving to pi+1 by the 

(k+mi)-th firing of si2, or the sojourn time duration of the k-th wafer in pi is between the k-th firing of si2 and the 

(k+mi)-th firing of si1. During this time, the robot undergoes mi cycles except that transitions si2, s(i+1)1, yi-1, s(i-1)2, 

and si1 fire (mi - 1) times, and the robot waits in q(i-1)2, q(i+1)1, and qi1 (mi-1) times. Let  denote the time taken 

by the j-th occurrence of an event. Notice that, under the normal condition, ω

jζ

i2 and ωi1, i ∈ Ω, are the scheduled 

waiting times and are constant, while ωi3, i ∈ Ω, should be zero. Then, the wafer sojourn time in pi is 

τi =  +  +  +  – (  +  +  

+  +  +  +  +                              (3.11) 

∑ ∑
=

−+

=

n

d

mk

kj

j
y

i

d
0

1

1
μ ∑ ∑

=

−+

=

+
n

d

mk

kj

j
d

j
d

i

0

1

21 )( λλ ∑ ∑
=

−+

=

n

d

mk

kj

j
d

i

0

1

2ω ∑ ∑
=

−+

=

n

d

mk

kj

j
d

i

0

1

1ω k
i1λ

k
i2λ k

i 1)1( +λ

k
y i 1)1( −

μ k
i 2)1( −λ k

i 2)1( −ω k
i1ω k

i 1)1( +ω

Under the normal condition, , for all j; , for all j and i ∈ ℕαλ += 002 cj αλ += cj
i2 n; , = 

ω

αμ =j
yd1

j
i2ω

i2, = ωj
i1ω i1 and for all j and i. Thus, at any steady state marking M, the wafer sojourn time in pcj

i =1λ i is 

τ1 = m1 × [2(n+1)α + (2n+1)c + c0 +  + ∑n
d0 2ω ∑n

d0 1ω ] – (3c + c0 + 3α + ω02 + ω11+ ω21) 

= m1 × ψ – (3c + c0 + 3α + ω02 + ω11+ ω21)                                        (3.12) 

τi = mi × [2(n+1)α + (2n+1)c + c0 +  + ∑n
d0 2ω ∑n

d0 1ω ] – (4c + 3α + ω(i-1)2 + ωi1 + ω(i+1)1) 

= mi × ψ – (4c + 3α + ω(i-1)2 + ω(i+1)1+ ωi1), i = 2, 3, …, n-1                           (3.13) 

τn = mn × [2(n+1)α + (2n+1)c + c0 +  + ∑n
d0 2ω ∑n

d0 1ω ] – (4c + 3α + ω(n-1)2 + ωn1 + ω01) 

= mn × ψ – (4c + 3α + ω(n-1)2 + ωn1 + ω01)                                         (3.14) 

Notice that, under the normal condition, the robot cycle time is 

ψ = 2(n+1)α + (2n+1)c + c0 +  + ∑n
d0 2ω ∑n

d0 1ω  = ψ1 + ψ2                    (3.15) 

where ψ1 = 2(n+1)α + (2n+1)c + c0 is a constant and known in advance and ψ2 = ∑n
d0 2ω  + ∑  is to be 

determined by a scheduler. It should also be noticed that ψ is independent of the wafer processing times. 

n
d0 1ω

Let θ1 = (τ1 + 3c + c0 + 3α + ω02 + ω11 + ω21)/(m1), θi = (τi + 4c + 3α + ω(i-1)2 + ωi1 + ω(i+1)1)/(mi), i = 2, 3, …, 



 

n -1, and θn = (τn + 4c + 3α + ω(n-1)2 + ωn1 + ω01)/(mn) denote the cycle time for step i, i ∈ ℕn. Further, let θ be 

the production cycle of the system. Because the steady-state process of single-arm cluster tools is a series process, 

the production rate is the same for all the steps and this production rate is the one for the system. Thus, we have 

the following proposition. 

Proposition 3.1: A single-arm cluster tool should be scheduled such that when the steady-state process is 

reached, all processing steps have the same cycle time, or we have 

θ = θ1 = θ2 = … = θn.                                                         (3.16) 

With the PN model shown in Fig. 2.1, we can analyze the relationship between the production cycle and the 

robot cycle. Assume that wafer Wk is loaded into step i at time τk and Wk+1 is loaded into it at τk+1. Then, [τk, τk+1] 

forms a processing cycle for step i. During this time, si1 fires twice, and the robot completes the following 

activities: firing si1 → firing y(i-2)1 → waiting in q(i-2)2 → firing s(i-2)2 → waiting in q(i-1)1 → firing s(i-1)1 → firing 

y(i-3)1 → …→ firing y01 → waiting in q02 → firing s02 → waiting in q11 → firing s11 → firing yn1 → waiting in qn2 

→ firing sn2 → waiting in q01 → firing s01 → firing y(n-1)1 → …→ firing yi1 → waiting in qi2 → firing si2 

→waiting in q(i+1)1 → firing s(i+1)1 → firing y(i-1)1 → waiting in q(i-1)2 → firing s(i-1)2 → waiting in qi1 → firing si1 

again. It can be seen that, during this time, the robot completes exactly one cycle. Thus, we have the following 

proposition. 

Proposition 3.2: Under the normal condition, a single-arm cluster tool should be scheduled such that when 

the steady state is reached the wafer production cycle is equal to the robot cycle, or we have 

θ = θ1 = θ2 = … = θn = ψ                                                     (3.17) 

For the robot cycle time in (3.15), α, c, and c0 are all deterministic, only ωd2 and ωd1, d ∈ Ω, are changeable, 

or ψ1 is deterministic and ψ2 can be regulated. Thus, based on the PN, to schedule a single-arm cluster tool with 

residency time constraints under the normal condition is to appropriately regulate ωd2, and ωd1, d ∈ Ω, such that 

(3.17) holds and at the same time the wafer residency time constraints are satisfied. 

B. Real-Time Control Policy 

Under the normal condition, , for all j; , for all j and d ∈ ℕαλ += 002 cj αλ += cj
d 2 n;  and 

 for all j and d ∈ Ω. Meanwhile, ω

αμ =j
yd1

cj
d =1λ d2, and ωd1, for all d ∈ Ω, are scheduled to be constant. It follows 

from (3.12) - (3.14) that τi, i ∈ ℕn, is constant. Hence, to obtain a feasible periodic schedule under the normal 

condition is to determine ωd2, and ωd1, for all d, such that ai ≤ τi ≤ ai + δi for any i ∈ ℕn. However, when the 



 

activity times are subject to random variation, the situation is different. Thus, it is necessary to analyze the effect 

of activity time variation on the wafer sojourn time. 

The random activity time variation can be seen as random disturbance to the normal condition. Thus, we let 

, , , and , d ∈ ℕj
y

j
y dd 11

σαμ += j
d

j
d c 11 ρλ += jj c 02002 ραλ ++= j

d
j
d c 22 ραλ ++= n. Meanwhile, the 

wafer processing time variation causes unscheduled robot waiting. Consider that ωd2, and ωd1, for any d ∈ ℕn, 

are given as constant for the periodic schedule under the normal condition, and  and are adjusted 

dynamically to adapt to the random activity time variation. Then, taking the activity time variation into account, 

from (3.11) we have 

j
d 2ω j

d1ω

τ1 = m1 × [2(n+1)α + (2n+1)c + c0] +  +  +  +  + 
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τi = mi × [2(n+1)α + (2n+1)c + c0] +  +  +  +  + 

 – (4c + 3α +  +  +  +  +  +  

+  +  + , i = 2, 3, …, n-1                             (3.19) 
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It follows from (3.19) that if =j
d 2ω 2dω , and =j

d1ω 1dω , a nonzero value of  , , and  causes 

a delay of τ

j
yd1

σ j
d 2ρ j

d1ρ

i. This may result in the violation of wafer residency constraints if it takes ai time units for the k-th 

wafer to be completed in pi. To reduce the effect on the delay of τi caused by , and , we can adjust 

ω

j
yd1

σ j
d 2ρ j

d1ρ

d2 and ωd1 dynamically. To do so, we can observe , , and  in real-time. If there exists a nonzero j
yd1

σ j
d 2ρ j

d1ρ



 

value of , , and , the robot waiting time in qj
yd1

σ j
d 2ρ j

d1ρ d2 and qd1 can be shortened by adjusting ωd2 and ωd1 in 

real-time. Let = max{(j
i2ω 2iω – ), 0}. Further, let + = j

yi1
σ j

i2ω j
yi1

σ 2iω + . Surely, we have = 

max{( –

j
i2η j

i2η

j
yi1

σ 2iω ), 0}. In this way, the effect of  on τj
yd1

σ i can be made as small as possible. Let = 

max{(

j
01ω

01ω – ), 0}, and = max{(j
n2ρ j

i1ω 1iω – ), 0}. Further, let +  = j
i 2)1( −ρ j

01ω j
n2ρ 01ω + , +  = j

01η j
i1ω j

i 2)1( −ρ

1iω + . Surely, we have = max{( –j
i1η j

01η j
n2ρ 01ω ), 0}, and = max{( –j

i1η j
i 2)1( −ρ 1iω ), 0}. In this way, the effect 

of  can be made as small as possible. The dynamical regulation of  and  can be summarized as 

the following real-time operation policy. 

j
d 2ρ j

i2ω j
i1ω

Control Policy 3.1 (Real-time Operation Policy): The following rules are applied for the real-time operation 

of the cluster tool. 

1) Under the normal condition find a periodic schedule by determining ωi2, and ωi1, i ∈ Ω. 

2) Transition s01 is enabled if the j-th token stays in q01 for = max{(j
01ω 01ω – ), 0}, and sj

n2ρ i1, i ∈ ℕn, is 

enabled if the j-th token stays in qi1 for = max{(j
i1ω 1iω – ), 0}. j

i 2)1( −ρ

3) Transition yi2, i ∈ Ω, is enabled if the j-th token stays in qi2 for = max{(j
i2ω 2iω – ), 0}. j

yi1
σ

4) Transitions si2 and yi1, i ∈ Ω, fire once enabled. 

By Control Policy 3.1, si2 can fire when there is a token in qi3 and a wafer (token) in pi is completed. This 

implies that the token waiting time  in qj
i3ω i3 (or the firing of si2) depends on whether a wafer in pi is completed 

or not. Based on such policy, we can rewrite τi as follows. 

τ1 = m1 × [2(n+1)α + (2n+1)c + c0 + + ] +  +  + 
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where Λ1 = m1 × ψ – (3c + c0 + 3α + ω02 + ω11 + ω21), Λi = mi × ψ – (4c + 3α + ω(i-1)2 + ωi1 + ω(i+1)1), i = 2, 3, …, 

n-1, and Λn = mn × ψ – (4c + 3α + ω(n-1)2 + ωn1 + ω01) are the scheduled sojourn time under the normal condition 

given by (3.12) - (3.14), and are constant when the periodic schedule is determined. 
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observation. It should be pointed out that  and  in Θ
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1dω 2dω i are determined by an off-line schedule and are 

known in advance. However,  is uncontrollable and is caused by activity time variation and the real-time 

regulation of ω

j
d 3ω

d2 and ωd1. Thus, to evaluate Θi, the key is to analyze the effect of activity variation on . j
d 3ω

C. Wafer Sojourn Time Delay Analysis 



 

It follows from the last sub-section that the delay of sojourn time τi for the j-th wafer in pi is equal to  

in q

j
i3ω

i3. Now, based on the PN and above analysis, we analyze the delay of wafer sojourn time τi in pi by deriving 

the upper bound of . j
i3ω

With wafer flow pattern (m1, m2, …, mn), there are m = m1 + m2 + … + mn wafers in processing at any time. 

Without loss of generality, they can be numbered as W1, W2, …, Wm. Let WPi denote the set of wafers being 

processed in pi. Further, let E1 = m2 +…+ mn + 1, L1 = m, Ei = mi+1 + … + mn + 1, Li = mi + … + mn, i ∈ Nn-1, En 

= 1, and Ln = mn, such that WEi and WLi are the earliest and the latest wafers released into pi, respectively. Hence, 

we have WP1 = {WE1, WE1+1, …, WL1}, …, WPi = {WEi, WEi+1, …, WLi}, …, WPn = {WEn, WEn+1…, WLn}. Let  

be the robot waiting time in q

1
3iω

i3 before the robot unloads the completed wafer WEi at pi, and  before the robot 

unloads W

2
3iω

Ei+1 at pi, and so on. Then, the wafer sojourn time delay is analyzed step by step as follows. 

Theorem 3.1: Assume that wafers WE(i+1), i ∈ ℕn-1, and all the robot tasks are performed under the normal 

condition, and the processing of wafer WEi, i ∈ ℕn-1, takes υi ∈ (ai, bi] time units. Then,  = max{(υ1
3iω i – Λi), 0}, 

i ∈ ℕn-1. 

Proof: By assumption, under the normal condition, the system is scheduled such that 3iω  = 0, i ∈ Ω, and 

the delay in processing WEi, i ∈ ℕn-1, has no effect on the processing of WE(i+1), …, WEn. Thus, = 0, d = 

i+1, …, n, must hold. It is known that Λ

1
3dω

i is the scheduled wafer sojourn time at pi. Then it follows from Control 

Policy 3.1 that  = max{(υ1
3iω i - Λi), 0}, i ∈ ℕn-1, must hold.              

We call max{(υi - Λi), 0} the time delay caused by a delay in processing a wafer. With Theorem 3.1, we have 

the following corollary when there is a delay in processing a wafer at pn. 

Corollary 3.1: Assume that all the robot tasks are performed under the normal condition, and the processing 

of wafer WEn takes υn ∈ (an, bn] time units. Then,  = max{(υ1
3nω n – Λn), 0}. 

Theorem 3.2: Assume that: 1) wafers WE(i+1), i ∈ {ℕn-1 - {1}}, and all the robot tasks are completed under the 

normal condition; 2) the processing of wafer WEi, i ∈ {ℕn-1 - {1}}, takes υi ∈ (ai, bi] time units; 3) wafers WE(i-1), 

WE(i-2), …, WE(i-k+1) are completed under the normal condition with 1 ≤ k ≤ i-1; and 4) the processing of wafer 

WE(i-k), i ∈ {ℕn-1 - {1}}, takes υi -k ∈ (ai-k, bi-k] time units. Then,  = max{(υ1
3)( ki−ω i-k – Λi-k – ), 0}, i ∈ {ℕ1

3iω n-1 - 



 

{1}}. 

Proof: Because the robot waits in qi3 for  time units, there is  time-unit delay in addition to the 

scheduled one when it arrives at q

1
3iω

1
3iω

(i-k)3. Thus, the robot needs to wait for max{(υi-k – Λi-k – ), 0} time units for 

the completion of W

1
3iω

E(i-k) at pi-k.                              

Similarly to Corollary 3.1, with Theorem 3.2, we have the following corollary. 

Corollary 3.2: Assume that: 1) all the robot tasks are completed under the normal condition; 2) the 

processing of wafer WEn takes υn ∈ (an, bn] time units; 3) wafers WE(n-1), WE(n-2), …, WE(n-k+1) are completed under 

the normal condition with 1 ≤ k ≤ n-1; and 4) the processing of wafer WE(n-k) takes υn -k ∈ (an-k, bn-k] time units. 

Then,  = max{(υ1
3)( kn−ω n-k – Λn-k – ), 0}. 1

3nω

It follows from Theorem 3.2 that  +  = max{(υ1
3iω

1
3)( ki−ω i – Λi), (υi-k – Λi-k), 0}. This implies that at the 

time when the robot leaves q(i-k)3, the total robot activity time delay, or the accumulated robot waiting time in 

q(i-k)3, is determined by the larger delay in processing wafers WEi and WE(i-k). The key is that after the delay in 

processing wafer WEi at pi, one wafer is processed at pi-1, pi-2, …, and pi-k+1. Thus, it can be seen that wafers WEi, 

WE(i-1), …, and WE(i-k+1) are processed in the same cycle. Thereafter, we think that it is a cycle when the robot 

leaves qi3, performs a series of tasks, and comes back to qi3 again. By this observation, we have the following 

corollary immediately. 

Corollary 3.3: Assume that: 1) wafers WE(i+1), i ∈ ℕn-1, and all the robot tasks are completed under the 

normal condition; 2) the processing of wafer WEi, i ∈ ℕn-1, takes υi ∈ (ai, bi] time units; 3) wafers WE(i-1), 

WE(i-2), …, WE1, …, WEn+1, …, and WE(k+1)+1 are completed under the normal condition with i ≤ k ≤ n –1; and 4) 

the processing of wafer WEk+1 takes υk+1 ∈ (ak+1, bk+1] time units. Then,  = max{(υ2
3)1( +kω k+1 – Λk+1 – ), 0}. 1

3iω

From Theorem 3.2 and Corollary 3.3, it is easy to verify that if there are delays in processing more than two 

wafers in a cycle, the accumulated robot waiting time is the largest one among them. From (3.21) through (3.23), 

it is known that it is more important to obtain the accumulated robot time delay than the robot waiting time at a 

single place. In fact, Θi denotes the accumulated robot time delay. We use  to denote the accumulated robot 

time delay when the robot leaves place q

j
i3γ

i3 in the j-th cycle. 

Theorem 3.3: Assume that: 1) it takes ∈ (aj
iυ i, bi] time units to process wafers WEi+j-1, j ∈ ℕk and i ∈ ℕn, 

with k ≤ mi at pi, respectively; 2) all the robot tasks are completed under the normal condition; and 3) all other 



 

wafers before WEi+k-1 are completed under the normal condition. Then, 

k
i3γ  = max{0, max{( – Λj

iυ i), j ∈ ℕk}}                                        (3.24) 

Proof: It follows from Theorem 3.1 that before unloading WEi the robot waiting time at qi3 is . Noticed 

that there are m

1
3iω

i parallel PMs at pi, hence, before the robot unloads wafer WEi, wafers WEi+1, …, and WEi+k-1 are 

already in processing. Hence, when the robot arrives at qi3 again after a cycle for unloading wafer WEi+1, wafer 

WEi+1 has been in pi for max { , Λ1
iυ i } time units. Thus, if  ≤ , the robot can unload W2

iυ
1
iυ Ei+1 immediately, or 

 = 0. This means (3.17) holds. If  >  we have: 1) if  ≤ Λ2
3iω

2
iυ

1
iυ

2
iυ i,  = 0; 2) if  ≤ Λ2

3iω
1
iυ i < ,  

= – Λ

2
iυ

2
3iω

2
iυ i; and 3) if Λi < ,  = – . Then, we have  = max{( – Λ1

iυ
2
3iω

2
iυ

1
iυ

2
3iγ 1

iυ i), ( – Λ2
iυ i), 0}. When the 

robot arrives at qi3 for the third time for unloading WEi+2, the situation is similar. By doing so, we know that (3.24) 

holds.                                   

The key for this theorem is that the wafers WEi, WEi+1, …, and WEi+k-1 with k ≤ mi at pi are processed in 

parallel. In fact,  in (3.24) presents the accumulated robot waiting time caused by the delays in processing 

wafers at p

k
i3γ

i when k ≤ mi. To present the following theorem, we define a function fd as 

⎩
⎨
⎧ ∈

=
otherwise

Nd
f j

d ,0

,1
 

Theorem 3.4: Assume that: 1) it takes ∈ (aj
iυ i, bi] time units to process wafers WEi+j-1, j ∈ ℕk and i ∈ ℕn, 

with mi < k ≤ 2mi at pi, respectively; 2) all the robot tasks are completed under the normal condition; 3) all other 

wafers before WEi+k-1 are completed under the normal condition; and 4) the k wafers are numbered as 1, 2, …, mi, 

mi+1, .., mi+j, when k < 2mi; and 1, 2, …, mi, mi+1, .., 2mi, when k = 2mi. Then, 

k
i3γ  = max{0, max{( – Λd

iυ i) + fd × ( – Λdm
i

i +υ i), d = 1, 2, …, mi}}, if k < 2mi              (3.25) 

k
i3γ  = max{0, max{( – Λj

iυ i) + ( – Λjm
i

i +υ i), j = 1, 2, …, mi}}, if k = 2mi                  (3.26) 

Proof: It follows from Theorem 3.3 that = max{( – Λim
i3γ 1

iυ i), …, ( – Λim
iυ i), 0}. Because wafers WEi and 

 are processed by the same PM in a sequential way, after a cycle, when the robot arrives at q
imEiW + i3 again for 

unloading wafer , there is a time delay max{( – Λ
imEiW +

1
iυ i) + ( – Λ1+im

iυ i), 0} for the processing of WEi and 

. Thus, = max{0, max{( – Λ
imEiW +

1
3
+im

iγ
1
iυ i) + ( – Λ1+im

iυ i), (( – Λf
iυ i), f = 2, …, mi)}}. Similarly, we have 



 

2
3
+im

iγ = max{0, max{( – Λ1
iυ i) + ( – Λ1+im

iυ i), ( – Λ2
iυ i) + ( – Λ2+im

iυ i), (( – Λf
iυ i), f = 3, …, mi)}}. Continue this 

process, we can obtain (3.25) and (3.26).                      

The key here is that wafers WEi, …, , and wafers , …,  are processed in 

parallel by different PMs, respectively, but W

1−+ imEiW
imEiW + 12 −+ imEiW

Ei and , W
imEiW + Ei+1 and , …, and  and 

 are sequentially processed by the same PM, respectively. Based on the above discussion, we have the 

following corollary. 

1++ imEiW 1−+ imEiW

12 −+ imEiW

Corollary 3.4: In Theorem 3.4, if k = d×mi, we have 

k
i3γ = max{0, max{ , j = 1, …, m∑

−

=

×+ Λ−
1

0
)(

d

f
i

mfj
i

iυ i}}                             (3.27) 

Up to now, we have discussed how to calculate  that is caused by the delay in processing wafers. Based 

on the above analysis, we can now discuss how τ

j
i3γ

i changes with the activity time variation. 

Assume that: 1) when the robot loads wafer WEi into pi, there is a time delay ρi for executing the loading task; 

and 2) it takes υi ∈ (ai, bi] time units to complete WEi. Then, in the sense of time delay, it is equivalent that it 

takes υi + ρi time units to complete the processing of WEi with no delay in the loading operation. Thus, it results in 

a time delay max{(υi + ρi – Λi), 0}. Let ρ = d – c and Hi = max{(bi + ρ – Λi), 0} be the longest time delay caused 

by processing a wafer at pi and H = max{Hi, i ∈ ℕn} be the largest one. Further let η11 = max{(d0 – c0) + (β – α) 

– ω11, 0}, ηi1 = max{(d - c)+(β - α) – ωi1, 0}, ηi2 = max{(β – α) – ωi2, 0} and Φ =  + (n+1) × ρ 

be the longest robot delay in a cycle. Notice that under the normal condition, H

∑
=

+
n

i
ii

0
21 )( ηη

i, H, and Φ are all constant. To 

make a schedule feasible, we concern the sojourn time τi of a wafer in pi. The infeasibility of a schedule is caused 

by the delay of τi. After a wafer is loaded into pi and before the wafer is unloaded from pi, the robot should 

perform a series of activities. From (3.11) and (3.18)-(3.23), we determine the sojourn time τi of this wafer. 

Further, since a wafer needs to stay in pi for mi robot activity cycles before the robot comes to qi3 for unloading it, 

τi is equal to the accumulated time delay  in performing these activities. Thus, we have the following result. im
i3γ

Theorem 3.5: If mi ≤ mj for any i ≠ j and Φ ≤ H, the wafer sojourn delay Θi in pi is bounded by 

BB1 = H + m1 × Φ – (η21 + η11 + η02+ ηn2 +2ρ)                                      (3.28) 

BBi = H + mi × Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 +2ρ), i ∈ {ℕn - {1, n}}                  (3.29) 



 

BBn = H + mn × Φ – (η01 + ηn1 + η(n-1)2+ η(n-2)2 +2ρ)                                  (3.30) 

Proof: Assume that the robot has just loaded wafer WLi into pi. The time delay of any robot activity before 

the robot loads WLi into pi does not cause a delay of τi for WLi. Hence, after loading WLi, ≤ max{η1
3)2( −iγ (i-2)2, Hi-2} 

≤ max{Φ, H} ≤ H, ≤ max{(H+ η1
3)3( −iγ (i-1)1 + ρ + η(i-3)2), Hi-3} ≤ max{( H+ η(i-1)1 + ρ + η(i-3)2), H} ≤ H+ η(i-1)1 + ρ 

+ η(i-3)2, for H+ η(i-1)1 + ρ + η(i-3)2 ≥ H must hold. It follows from Theorems 3.2 and 3.3 that we have ≤ H 

+ + (i-2-k)ρ + , if 0 ≤ k < i-3, ≤ H + + (i-1)ρ +∑ + , if k = n, ≤ H 

+ + i × ρ +∑ + , if k = n–1 , ≤ H + + (i-1+n-k)ρ +∑  + + 

, if i < k ≤ n-2, and ≤ H + Φ – (η
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3iγ (i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 +2ρ). Then, after each robot cycle, when 

the robot arrives at qi3, the time delay increases by at most Φ time units. In this way, after mi – 1 robot cycles, the 

robot arrives at qi3 again for unloading WLi from pi. Thus, we can obtain (3.29). Similarly, we can show that (3.28) 

and (3.30) hold.                                                

It follows from (3.29) that a delay in processing a wafer may result in the sojourn time delay of another 

wafer. It should be noticed that if mi > 1, wafers WEi and WEi+1 are processed simultaneously at pi, a delay in 

processing WEi will lead to a sojourn time delay for WEi+1. Thus, in calculating the longest delay of Θi given by 

(3.29), Hi must be calculated as given by max{(bi + ρ – Λi), 0} such that we can obtain a right H. However, if mi = 

1, the PM for Step i processes wafers in a serial way. Thus, the sojourn time delay for a wafer processed at Step i 

has no effect on the sojourn time for the next wafer processed at Step i. Further, if mi = 1, the accumulated time 

delay in qi3 is between loading a wafer into pi and unloading the wafer from pi. By observing the PN model in Fig. 

2.1, after firing si1 for loading a wafer into pi, the following transition firing sequence should be executed before 

the wafer is unloaded from pi: σ = {y(i-2)1 → y(i-2)2 → s(i-2)2 → s(i-1)1 → y(i-3)1 → y(i-3)2 → s(i-3)2 → s(i-2)1 → … → yi1 

→ yi2}. During this period, the robot does not go to pi-1 for unloading a wafer, and a delay in processing wafer 

WE(i-1) in pi-1 has no effect on the sojourn time delay of wafer WEi in pi. Hence, to obtain the upper bound of the 

wafer sojourn time delay at Step i, if mi = 1, i ∈ {ℕn - {1}}, we should set Hi = 0, and Hi-1 = 0 and Hj = max{(bj + 

ρ – Λj), 0}, j ≠ i and j ≠ i-1 in calculating H. Similarly, if m1 = 1, to obtain the upper bound of the wafer sojourn 

time delay at Step 1, we should set H1 = 0 and Hj = max{(bj + ρ – Λj), 0}, j ≠ 1. 



 

Theorem 3.6: If mi ≤ mj for any i ≠ j and H ≤ Φ, the wafer sojourn delay Θi in pi is bounded by 

BB1 = max{ηn2, H} + m1 × Φ – (η21 + η11 + η02+ ηn2 + 2ρ)                             (3.31) 

BBi = max{η(i-2)2, H} + mi × Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 + 2ρ), i ∈ {ℕn - {1, n}}       (3.32) 

BBn = max{η(n-2)2, H} + mn × Φ – (η01 + ηn1 + η(n-1)2+ η(n-2)2 + 2ρ)                       (3.33) 

Proof: Assume that the robot has just loaded wafer WLi into pi. We have, ≤ max{η1
3)2( −iγ (i-2)2, Hi-2} ≤ 

max{η(i-2)2, H}, ≤ max{max{η1
3)3( −iγ (i-2)2, H} + η(i-1)1 + ρ + η(i-3)2, Hi-3} ≤ max{max{η(i-2)2, H} + η(i-1)1 + ρ + 

η(i-3)2, H} ≤ max{η(i-2)2, H} + η(i-1)1 + ρ + η(i-3)2, for max{η(i-2)2, H} + η(i-1)1 + ρ + η(i-3)2 ≥ H must hold. Based on 

Theorems 3.2 and 3.3, we have ≤ max{η1
3kγ (i-2)2, H} + + (i-2-k)ρ +∑ , if 0 ≤ k < i-3, ≤ 
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i < k ≤ n-2, and ≤ max{η
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3iγ (i-2)2, H} + Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 + 2ρ). Then, after each robot cycle, when 

the robot arrives at qi3, increases by at most Φ time units. In this way, after m1
3iγ i – 1 robot cycles, the robot 

arrives at qi3 again for unloading WLi from pi. Thus, we can obtain (3.32). We can derive (3.31) and (3.33) in the 

similar way.                         

In Theorems 3.5 and 3.6, we consider just the situation that mi ≤ mj for any i ≠ j. However, it follows from 

Theorem 3.4 that if the condition that mi ≤ mj for any i ≠ j is not true, (3.28) - (3.33) may not be applicable. 

Theorem 3.7: If mi ≤ mj, ∀ i ≠ j and mi > mk, ∀ i ≠ k and k ≠ j, Φ ≤ Hk, and Φ ≤ H, the wafer sojourn delay Θi 

in pi is bounded by 

BB1 = H + Hk + (m1 – 1) × Φ – (η21 + η11 + η02+ ηn2 +2ρ)                           (3.34) 

BBi = H + Hk + (mi – 1) × Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 +2ρ), i ∈ {ℕn - {1, n}}        (3.35) 

BBn = H + Hk + (mn – 1) × Φ – (η01 + ηn1 + η(n-1)2+ η(n-2)2 +2ρ)                       (3.36) 

Proof: Without loss of generality, i < k ≤ n-2 is assumed. Then, it follows from the proof of Theorem 3.5 that 

≤ H + + (i-1+n-k)ρ +  + + . At this time, wafer W1
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d 2η Lk is loaded into pk. Then, 

after mk robot cycles, the robot arrives at qk3 for unloading WLk. At this time, the accumulated time delay caused 



 

by the robot activities is bounded by H + mk×Φ + + (i-1+n-k)ρ +∑  + + . Then, 

according to Theorem 3.4, the accumulated time delay caused by the processing of W
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iγ k + mk × Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 

+2ρ). After mi - mk -1 robot cycles, the robot arrives at qi3 for unloading WLi. Thus, we can obtain (3.35). It 

follows from the proof of (3.35) that (3.34) and (3.36) hold.                

Based on the proof of Theorem 3.7 we have the following theorem. 

Theorem 3.8: If mi ≤ mj, ∀ i ≠ j and mi > mk, ∀ i ≠ k and k ≠ j, Φ ≥ Hk, and Φ ≤ H, the wafer sojourn delay Θi 

in pi is bounded by 

BB1 = H + m1 × Φ – (η21 + η11 + η02+ ηn2 +2ρ)                                     (3.37) 

BBi = H + mi × Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 +2ρ), i ∈ {ℕn - {1, n}}                  (3.38) 

BBn = H + mn × Φ – (η01 + ηn1 + η(n-1)2+ η(n-2)2 +2ρ)                                  (3.39) 

    Proof: According to Theorem 3.7, we have  ≤ max{[H + m1
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k. Then, it is easy to check that  ≤ H + (m1
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iγ k + 1) × Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 +2ρ). After mi - mk 

-1 robot cycles, the robot arrives at qi3 for unloading WLi. Thus, we can obtain (3.38). It follows from the proof of 

(3.38) that (3.37) and (3.39) hold.              

Notice that inequalities (3.37) - (3.39) are the same as (3.28) - (3.30), respectively. This implies that this 

wafer flow pattern has the same effect on the time delay as that in Theorem 3.5. 

Theorem 3.9: If mi ≤ mj, ∀ i ≠ j, mi > mf, ∀ i ≠ f and f ≠ j, and mf > mk, ∀ f ≠ k and k ≠ i and j, Φ ≤ Hf, Φ ≤ Hk, 

and Φ ≤ H, the wafer sojourn delay Θi in pi is bounded by 

BB1 = H + Hk + Hf + (m1 – 2)× Φ – (η21 + η11 + η02+ ηn2 +2ρ)                         (3.40) 

BBi = H + Hk + Hf + (mi – 2)× Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 +2ρ), i ∈ {ℕn - {1, n}}     (3.41) 

BBn = H + Hk + Hf + (mn – 2)× Φ – (η01 + ηn1 + η(n-1)2+ η(n-2)2 +2ρ)                     (3.42) 

Proof: Without loss of generality, i < k < f ≤ n-2 is assumed. Then, it follows from the proof of Theorem 3.5 
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From Theorem 3.7, after mf robot cycles, the robot arrives at qf3 for unloading WLf. At this time, the accumulated 

time delay caused by the robot activities and the processing of WLf is bounded by H + Hk+ (mf-1) × Φ + + 
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respectively. Hence, we have  ≤ H + H
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1
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iγ k + (mf-1) × Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 +2ρ) + Hf. After mi - mk -1 robot 

cycles, the robot arrives at qi3 for unloading WLi. Thus, we can obtain (3.41). It follows from the proof of (3.41) 

that (3.40) and (3.42) hold.                   

From Theorems 3.6 through 3.9, we have the following corollaries immediately. 

Corollary 3.5: If mi ≤ mj, ∀ i ≠ j, mi > mf, ∀ i ≠ f and f ≠ j, and mf > mk, ∀ f ≠ k and k ≠ i and j, Hf ≤ Φ, Φ ≤ Hk, 

and Φ ≤ H, the wafer sojourn delay Θi in pi is bounded by 

BB1 = H + Hk + (m1 – 1)× Φ – (η21 + η11 + η02+ ηn2 +2ρ)                             (3.43) 

BBi = H + Hk + (mi – 1)× Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 +2ρ), i ∈ {ℕn - {1, n}}          (3.44) 

BBn = H + Hk + (mn – 1)× Φ – (η01 + ηn1 + η(n-1)2+ η(n-2)2 +2ρ)                          (3.45) 

Corollary 3.6: If mi ≤ mj, ∀ i ≠ j, mi > mf, ∀ i ≠ f and f ≠ j, and mf > mk, ∀ f ≠ k and k ≠ i and j, Hf ≤ Φ, Hk ≤ Φ, 

and Φ ≤ H, the wafer sojourn delay Θi in pi is bounded by 

BB1 = H + m1 × Φ – (η21 + η11 + η02+ ηn2 +2ρ)                                      (3.46) 

BBi = H + mi × Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 +2ρ), i ∈ {ℕn - {1, n}}                  (3.47) 

BBn = H + mn × Φ – (η01 + ηn1 + η(n-1)2+ η(n-2)2 +2ρ)                                  (3.48) 

Corollary 3.7: If mi ≤ mj, ∀ i ≠ j, mi > mf, ∀ i ≠ f and f ≠ j, and mf > mk, ∀ f ≠ k and k ≠ i and j, and H ≤ Φ, the 

wafer sojourn delay Θi in pi is bounded by 

BB1 = max{ηn2, H} + m1 × Φ – (η21 + η11 + η02+ ηn2 +2ρ)                             (3.49) 

BBi = max{η(i-2)2, H} + mi × Φ – (η(i+1)1 + ηi1 + η(i-1)2+ η(i-2)2 +2ρ), i ∈ {ℕn - {1, n}}        (3.50) 

BBn = max{η(n-2)2, H} + mn × Φ – (η01 + ηn1 + η(n-1)2+ η(n-2)2 +2ρ)                       (3.51) 

Up to now, we present the upper bound of wafer sojourn time delay caused by the activity time variation. 

With such bound, we can check if a given off-line schedule is feasible. This is necessary in practice when the 

activity time variation exists. 

IV. ILLUSTRATIVE EXAMPLES 

In this section, examples are presented to show the application of the proposed method to check the 

feasibility of a given off-line periodic schedule under the control policy. 

Example 1: The wafer flow pattern is (1, 1). Under the normal condition, it takes 15 time units for the robot 

to unload a wafer from a loadlock (c0 =15) and 10 time units for the robot to load a wafer into a PM or a loadlock, 

or unload a wafer from a PM (c = 10), 2 time units to move from pi to pj (α = 2). It needs 100 time units for a PM 



 

at both steps to process a wafer (a1 = a2 = 100), respectively, and after being processed, a wafer at Steps 1 and 2 

can stay there for 20 time units (δ1 = δ2 = 20). The activity times are subject to random variation, and we have d0 

= 20, d = 12, β = 3, and b1 = b2 = 104. Under the normal condition, we have ψ1 = 2(n+1)α + (2n+1)c + c0 = 77. 

Further, we have ϑ1L = 151, ϑ2L = 146, ϑ1U = 171, ϑ2U = 166. Let ϑLmax = max {ϑiL, i ∈ ℕn}, thus, we have ϑLmax = 

151. ψ1 < ϑLmax implies ψ2 = ϑLmax - ψ1 = 74 > 0. By using the approach presented in [Wu et al., 2008], an off-line 

schedule with cycle time being 151 can be obtained by setting ω11 = 0, ω21 = 0, ω02 = 0, ω01 = 0, ω12 = 0, and ω22 

= 74. Thus, we have η01 = 3, η11 = 6, η21 = 3, η02 = 1, η12 = 1, and η22 = 0, and then Φ = 20. Furthermore, with 

this schedule, we have Λ1 = 100 and Λ2 = 105. 

To make a schedule feasible (or to make the PN model live) requires that ai ≤ τi ≤ ai + δi, ∀i ∈ ℕn. Notice 

that Λi ≤ τi is always true. Thus, ai ≤ τi is so. Based on the results presented in this paper, we have τi ≤ Λi + BBi. 

Hence, if, in the worst case, Λi + BiB  ≤ ai + δi holds, the wafer residency constraint is never violated, or the 

schedule is feasible even if the activity times vary. For the example, we have BB1 + (Λ1 – a1) = 7 + (100 – 100) = 7 

< δ1 and B2B  + (Λ2 – a2) = 9 + (105 – 100) = 14 < δ2. This implies that the schedule is feasible. 

Its simulation is carried out, and the result shows that it is correct. The evolution of the system is shown in 

Table 4.1. PMi and ST denote the processing module for Step i and sojourn time, respectively. Robot activity time 

(RAT) and processing time (PT) are randomly generated numbers. 

Table 4.1. The simulation result for Example 1 

NO. Time(s) Robot activities Disturbance 
to RAT(s) 

PT(s) ST(s) PM1 PM2

1 0-20 Unload W1 from loadlock 5    W0

2 20-22 Move to PM1 0    W0

3 22-34 Load W1 to PM1 2    W0

4 34-36 Move to PM2 0   W1 W0

5 36-110 Wait at PM2  103 112 W1 W0

6 110-121 Unload W0 from PM2 1   W1  
7 121-124 Move to loadlock 1   W1  
8 124-135 Load W0 to loadlock 1   W1  
9 135-137 Move to PM1 0 103 103 W1  

10 137-149 Unload W1 from PM1 2     
11 149-151 Move to PM2 0     
12 151-162 Load W1 to PM2 1     
13 162-164 Move to loadlock 0    W1

14 164-182 Unload W2 from loadlock 3    W1

15 182-185 Move to PM1 1    W1



 

16 185-195 Load W2 to PM1 0    W1

17 195-198 Move to PM2 1   W2 W1

18 198-271 Wait at PM2  101 109 W2 W1

19 271-283 Unload W1 from PM2 2   W2  
20 283-286 Move to loadlock 1   W2  
21 286-297 Load W1 to loadlock 1   W2  
22 297-299 Move to PM1 0 101 104 W2  
23 299-309 Unload W2 from PM1 0     
24 309-311 Move to PM2 0     
25 311-321 Load W2 to PM2 0     
26 321-324 Move to loadlock 1    W2

27 324-343 Unload W3 from loadlock 4    W2

28 343-345 Move to PM1 0    W2

29 345-355 Load W3 to PM1 0    W2

30 355-358 Move to PM2 1   W3 W2

31 358-431 Wait at PM2  104 110 W3 W2

32 431-443 Unload W2 from PM2 2   W3  
33 443-445 Move to loadlock 0   W3  
34 445-457 Load W2 to loadlock 2   W3  
35 457-459 Move to PM1 0 103 104 W3  
36 459-469 Unload W3 from PM1 0     
37 469-471 Move to PM2 0     
38 471-481 Load W3 to PM2 0     
39 481-483 Move to loadlock 0    W3

40 483-503 Unload W4 from loadlock 5    W3

41 503-505 Move to PM1 0    W3

42 505-516 Load W4 to PM1 1    W3

43 516-518 Move to PM2 0   W4 W3

44 518-592 Wait at PM2  104 111 W4 W3

45 592-602 Unload W3 from PM2 0   W4  
46 602-605 Move to loadlock 1   W4  
47 605-617 Load W3 to loadlock 2   W4  
48 617-619 Move to PM1 0   W4  
49 619-620 Wait at PM1  104 104 W4  
50 620-632 Unload W4 from PM1 2     
51 632-634 Move to PM2 0     
52 634-644 Load W4 to PM2 0     
53 644-647 Move to loadlock 1    W4

54 647-662 Unload W5 from loadlock 0    W4

55 662-665 Move to PM1 1    W4

56 665-676 Load W5 to PM1 1    W4

57 676-678 Move to PM2 0   W5 W4

58 678-752 Wait at PM2  102 108 W5 W4



 

59 752-762 Unload W4 from PM2 0   W5  
60 762-764 Move to loadlock 0   W5  
61 764-775 Load W4 to loadlock 1   W5  
62 775-778 Move to PM1 1 100 102 W5  
63 778-789 Unload W5 from PM1 1     
64 789-791 Move to PM2 0     
65 791-803 Load W5 to PM2 2     
66 803-805 Move to loadlock 0    W5

Example 2: The flow pattern is (1, 1). Under the normal condition, c0 =15, c = 10, α = 2, a1 =100, a2 = 80, 

and δ1 = δ2 = 15. The activity times are subject to random variations, and we have d0 = 20, d = 12, β = 3, and b1 = 

105, b2 =85. For this example, we have ψ1 = 77. Further, we have ϑ1L = ϑLmax = 151, ϑ2L = 126, ϑ1U = 166, ϑ2U = 

141. Clearly, [ϑ1L, ϑ1U] ∩ [ϑ2L, ϑ2U] = Ø. Thus, an off-line schedule can be obtained by setting ω11 = 0, ω21 = 0, 

ω02 = 0, ω01 = 0, ω12 = 10, and ω22 = 64 based on [Wu et al., 2008]. Although this schedule is feasible under the 

normal condition, it is shown infeasible by simulation when the system is subject to activity time variation. 

By setting the robot waiting times as ω11 = 0, ω21 = 0, ω02 = 0, ω01 = 3, ω12 = 22, and ω22 = 49, another 

off-line schedule is obtained. It is easy to check that it is feasible under the normal condition. With this schedule, 

by using the results presented in this paper, we have BB1 = 9 and B2B  = 9 such that BB1 + (Λ1 – a1) = 9 + (151 – 151) 

= 9 < δ1 and B2B  + (Λ2 – a2) = 9 + (80 – 80) = 9 < δ2. This means that the off-line schedule together with the 

real-time control policy forms a feasible real-time schedule when the system is subject to activity time variation. 

V. CONCLUSIONS 

With residency time constraints, it is difficult to operate single-arm cluster tools, especially, when the 

activity times are subject to random variation. In this paper, to solve this problem, a generic PN model is 

developed for the system by extending the PN model proposed in [Wu et al., 2008]. With the model, a real-time 

control policy is proposed by analyzing the properties of the system. With the policy, the activity time variation 

can successfully be offset as much as possible. Based on it, wafer sojourn time delay caused by the activity time 

variation is analyzed and upper bound is analytically presented. Thus, such bound can hence be efficiently 

calculated. It can be easily used to check if a given off-line schedule obtained under deterministic activity times 

is feasible subject to activity time variation under the proposed Control Policy. For a single-arm cluster tool with 

wafer residency time constraint and activity time variation, schedulability is a vitally important issue. Further, if 

schedulable, how the system should be scheduled is also a problem. All of them are open and they are our future 

work by using the results presented in this paper. 
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