
ACM Transactions on Embedded Computing Systems,      
Accepted for publication, 2016	

 

1 
 

Vector Coprocessor Virtualization for Simultaneous 
Multithreading 

YAOJIE LU, SEYEDAMIN ROOHOLAMIN and SOTIRIOS G. ZIAVRAS, 
New Jersey Institute of Technology, Dept. of Electrical and Computer Engineering 
 

Vector coprocessors (VPs), commonly being assigned exclusively to a single thread/core, are not often 
performance and energy efficient due to mismatches with the vector needs of individual applications. We 
present in this paper an easy-to-implement VP virtualization technique which, when applied, enables a 
multithreaded VP to simultaneously execute multiple threads of similar or arbitrary vector lengths to 
achieve improved aggregate utilization. With a vector register file (VRF) virtualization technique invented 
to dynamically allocate physical vector registers to threads, our VP virtualization approach improves 
programmer productivity by providing at run time a distinct physical register name space to each 
competing thread, thus eliminating the need to solve register name conflicts statically. We applied our 
virtualization technique to a multithreaded VP and prototyped an FPGA-based multicore processor system 
that supports VP sharing as well as power gating for better energy efficiency. Under the dynamic creation 
of disparate threads, our benchmarking results show impressive VP speedups of up to 333% and total 
energy savings of up to 37% with proper thread scheduling and power gating compared to a similar-sized 
system that allows VP access to just one thread at a time. 

 INTRODUCTION 1.

VPs exploit efficiently data level parallelism (DLP) due to their specialization. They 
can process many array elements simultaneously by executing a single vector 
instruction. As an accelerator, a VP can offload the DLP workload from general-
purpose processors, thus enhancing the overall performance and energy efficiency. 
The VIRAM’s multi-lane architecture is the basis of several VP designs [Kozyrakis 
and Patterson 2003]. VIRAM has separate pipeline structures for load-store (LDST) 
units and arithmetic logic units (ALUs). Vector registers are distributed evenly 
across the vector lanes.  Each lane carries out ALU array operations on data within 
its local VRF. Vector elements in a lane are processed sequentially due to the ALU’s 
pipelined architecture while all lanes work in parallel on different array parts. SODA 
[Lin et al. 2006] is a fully programmable VP that realizes the W-CDMA and 
IEEE802.11a protocols. Lee et al. [2013] compared accelerators for programmability 
and efficiency, confirming that vector architectures exploit DLP more efficiently than 
other types even for irregular data pattern accesses.  

Unfortunately, single-thread dedicated VPs are often not efficiently utilized for 
the following reasons: (a) Every application contains some serial code for flow control 
or other system management, thus vector instructions may not be issued at a 
sufficient rate to keep a highly active VP. (b) Data dependencies within some 
applications’ vector instruction flows can cause frequent stalls, wasting precious clock 
cycles in the VP’s deeply pipelined floating-point units (FPUs). (c) Finally, it may be 
preferable that applications with small vectorizable code be executed on the scalar 
host in order to give another highly-vectorized application exclusive VP access. 
However, the former applications as well could benefit from simultaneous VP usage. 
Our benchmarking shows that applications with VP run-time utilization as low as 8.5% 
can yield a speedup of 84 by executing on a VP compared to a scalar processor with 
the same clock frequency (as shown in Section 7.1).  

To address these challenges, we introduce virtualization for VP sharing under 
simultaneous multithreading (SMT) for vector threads. For other thread types, such 



  
 

 
 

SMT approaches as Intel’s Hyper-Threading Technology (HTT) for general-purpose 
processors (GPPs) “make a single physical processor appear as multiple logic 
processors” [Marr et al. 2002]. Our approach achieves high aggregate VP utilization 
independent of the individual vector thread DLP levels. Our VP virtualization solves 
register name conflicts among threads using a novel VRF virtualization algorithm 
that can dynamically allocate physical registers of varying lengths to threads. With 
easy-to-use VRF management kernel functions, programmers are provided with a 
fixed register name space and VRF management becomes transparent. To prove its 
viability, we realized VP virtualization on a multi-lane VP [Rooholamin and Ziavras 
2015], and then benchmarked its performance and energy consumption.  

Related work is discussed in Section 2. The shared VP interface for a multicore 
processor appears in Section 3. VP virtualization is introduced in Section 4. VP 
architecture is discussed in Section 5. Section 6 contains the resource consumption of 
our FPGA prototype. Section 7 introduces benchmarks and performance results. 
Section 8 proposes a throughput-oriented scheduler. Section 9 analyzes the VP’s 
power and energy consumption. Finally, conclusions are drawn in Section 10. 

 RELATED WORK 2.

Embedded VPs do not normally support multicore sharing or SMT, and are often 
optimized for specific application classes or fixed DLP levels. Yang et al. [2005] 
proposes an application-specific VP prototyped on an FPGA for sparse matrix 
multiplication. Yiannacouras et al. [2008] allows a parameterized VP to be statically 
customized to match a given application. Area-performance tradeoffs at static time 
improve VP performance by varying functional unit populations and VRF 
bandwidths [Yu et al. 2009]. Chou et al. [2011] enhances the latter using scratchpad 
memory, instead of a VRF, as well as modular functional units. [Severance et al. 
2012] improves performance by using a streaming pipeline in the ALU data path. 
The major drawbacks of these works are: (a) VP is assigned exclusively to a single 
host; and (b) to maintain high efficiency for various DLP levels, static hardware 
scaling of VP is needed (i.e., new hardware realizations with increased resources). In 
contrast, we propose a novel SMT VP architecture that can be shared among many 
cores via per-core dedicated streaming interfaces attached to vector instruction 
FIFOs. An arbitrator schedules these vector instructions at run time. It supports 
uninterrupted vector instruction issuing with arbitrary DLPs without the need to 
modify the VP’s static hardware realization.  

VP sharing among threads or cores was first proposed by Beldianu and Ziavras 
[2013]. Three sharing policies were introduced for a multi-lane VP, namely coarse-
grain temporal sharing (CTS), fine-grain temporal sharing (FTS) and vector lane 
sharing (VLS). Under CTS, a core reserves the entire VP exclusively until its current 
vector thread stalls or completes execution. CTS and FTS support sharing for threads 
of similar VL (vector length: represents the number of elements in the processed 
vectors). VLS allows threads of different VLs to coexist in VP which is split into 
distinct sets of vector lanes, one set per thread; VLS uses multiple vector controllers 
(VCs) to control these sets. FTS achieves the best VP utilization and may double the 
speedup compared to CTS while reducing the dynamic energy by 50% for a dual core 
[Beldianu and Ziavras 2015]. Although their SMT VP design allows instructions from 
two threads to coexist in the VP’s pipeline, (a) the design does not scale well for 
increased thread populations since each new thread requires a new dedicated VC; (b) 
for two threads of different VLs, VP resources must be divided equally into two 
halves, thus potentially wasting resources and being inflexible in accommodating any 



  
                                                                                                                                         

 

pair of threads with a combined VL that does not exceed the VP’s VRF size; and (c) 
VRF name conflicts must be resolved by the programmer or compiler at static time, 
which is impractical in dynamic environments. To improve this design, Rooholamin 
and Ziavras [2015] introduced a multi-lane VP with separate pipelines for the ALU 
and LDST units that also allows each vector instruction to define its own VL. 
Simultaneously running threads of disparate VLs can exploit the VP in a CTS-like 
fashion as long as they do not result in vector register name conflicts.  

The major contribution of our work is the invention of a VP virtualization 
technique that resolves SMT-based register name conflicts using dynamic VRF 
renaming. Traditional SMT technologies, such as Intel’s HTT [Marr et al. 2002] and 
Intel’s Xeon Phi [Rahman 2014], allocate a fixed set of registers to a thread. The 
hardware overhead for replicating registers in HTT is not substantial since a GPP’s 
register file has several hundred to about 2K bits. VRFs in VPs have much larger size 
and the overhead of SMT implementation becomes so significant (e.g., 32K bits per 
thread in our current VP realization) that intelligently managing and sharing VRF 
dynamically is indispensable. The basic hardware overhead in our robust VP 
virtualization is a translation lookup table (TLT) supporting runtime register name 
translation. TLT in our current implementation has 128 5-bit entries (32 entries per 
thread), and the 640 bits overhead is negligible (just 0.65%) compared to the 96K bits 
for the traditional approach that replicates VRF for each new thread. 

We apply VP virtualization to a multithreaded VP similar to that in Rooholamin 
and Ziavras [2015] with minor hardware modifications. Our VP prototype interfaces 
five cores (without loss of generality), supports FTS-like SMT and power gating, and 
carries out throughput-oriented scheduling of vector threads. Four cores share a VP 
simultaneously for vector codes of various VLs. The fifth core does VP management 
and vector thread scheduling. Vector register name conflicts among threads are 
resolved via VRF virtualization that involves an effective register management 
algorithm run on the control core and a hardwired TLT for fast virtual-to-physical 
register name (i.e., ID) translation. Application programmers use virtual registers. 

In addition to inventing VP virtualization, our VP also differs from Beldianu and 
Ziavras [2013] in three major aspects: (a) Theirs requires extra VCs and resources for 
threads with different VLs. In contrast, our per-instruction thread ID mechanism 
only requires one VC to manage all threads. This approach is very flexible and scales 
well with the thread population. (b) Contrary to their work where all cores directly 
interface VP, we add a distinct FIFO between VP and each core to eliminate frequent 
core stalls due to vector instruction arbitration. Under low VP utilization, an 
application’s speed is bounded by its host core. The distinct FIFOs allow a core to 
keep sending vector instructions until its FIFO is full. (c) Finally, we remove the 
crossbar between the vector lanes and vector memory (VM) banks by connecting a 
bank’s dedicated port to the attached lane’s LDST unit. This modification eliminates 
arbitrator delays in the crossbar and improves VP throughput for sequential memory 
accesses that are omnipresent due to VP pipelined units that target array operations. 
Inter-lane data exchange is supported by the scalar cores, who have access to all VM 
banks in a low-order interleaved fashion. Removing the crossbar also improves VP 
scalability. With both VM and VRF distributed across VP lanes, scalability is 
achieved since the individual lane complexity is independent of the number of lanes.  

Although general-purpose GPUs (GPGPUs) run many vector threads 
simultaneously (e.g., on streaming multiprocessors -SMs- in Nvidia), all threads have 
identical control flow. In contrast, our virtualized VP can execute simultaneously 
heterogeneous vector threads. VPs also consume drastically reduced resources and 
energy compared to GPGPUs [Beldianu and Ziavras 2015]; e.g., Nvidia’s Maxwell 



  
 

 
 

GPU GTX 980 consists of 16 SMs, each having 128 CUDA cores, and 5.2 billion 
transistors [Nvidia Corp. 2014]. Without highly sustained DLP and a much needed 
fine-grain power management mechanism, a lot of CUDA cores in each SM may be 
often idle while consuming high static energy.   

 THE MULTICORE ARCHITECTURE 3.

Our prototype in Fig. 1 has two sub-systems: the scalar processors sub-system (SPS) 
with five cores and VP. SPS does system management, realizes control flow in 
applications and issues VP instructions. TLT has hardware support for run time VP 
register renaming and is managed by SPS. AXI4 (Advanced eXtensible Interface 4.0) 
interconnects SPS components. Two AXI4 types, AXI4-Stream (AXI4-S) and AXI4, 
are also present. AXI4-S pairs realize bidirectional handshaking [Xilinx Inc. 2011]. 
The interface between SPS and VP is pipelined, and VP can read one 32-bit 
instruction/datum and three 5-bit physical register names from SPS per clock cycle.  

MicroBlaze (MB), a Xilinx 32-bit RISC soft processor [Xilinx Inc. 2010], forms SPS 
cores MB0-MB4. In Fig. 1, its Harvard architecture interfaces a fast local memory 
(LM) via a local memory bus (LMB); LM contains frequently used library functions. 
LM blocks are initialized from the FPGA’s flash memory upon power up. The 
libraries can be modified at runtime. In addition to regular load/store instructions 
that access memory and I/O devices mapped within the 4GB address space, MB uses 
AXI4-S for put/get instructions; its interface consists of one input and one output port, 
providing a low latency dedicated link to the processor’s pipeline. We use AXI4-S for 
inter-core and core to VP connections. We use blocking and non-blocking put/get 
instructions. Blocking stalls MB if the receiver/sender is not ready. With non-
blocking, MB keeps executing instructions even without needing acknowledgment. 

MB0 is connected to four MBs and TLT using AXI4-S, and performs these tasks: 
(a) It runs a register management algorithm for VRF virtualization. (b) It updates 
TLT based on this algorithm’s mapping of a thread’s virtual vector registers to 
physical VRF registers. (c) It estimates VP utilization using information for active 
vector threads before scheduling new threads. (d) To simplify benchmarking, MB0 
notifies application cores MB1-MB4 about new tasks assigned to them. (e) And, it 
polls MB1-MB4 for task completion before releasing VP resources. MB0 is connected 
to TLT using the output port of its AXI4-S, and uses a non-blocking put since it 
knows the TLT status. Connections between MB0 and slave cores are bi-directional. 
MB0 assigns tasks to idle cores. With a non-blocking get, MB0 polls slaves for task 
completion (denoted by a task completion flag) to avoid premature release of VP 
resources. MB0 is attached to a fast 32KB LM that contains the register 
management and thread scheduler codes.  

MB1-MB4 serve as application cores (ACs) running applications that may contain 
function calls to vector kernels stored as a library in the attached 16KB LM.   For 
benchmarking simplicity, the ACs receive commands from MB0 to execute vector 
kernels and acknowledge successful completion. The ACs use blocking put/get to 
communicate with MB0. Another AXI4-S interface connects an AC to its dedicated 
vector instruction FIFO. Vector instructions are presented in Section 5. Each vector 
instruction goes through the VP instruction arbitrator before reaching VP. Each First 
Word Fall Through (FWFT) vector instruction FIFO contains 16 32-bit words. An AC 
can keep issuing vector instructions until its FIFO saturates. A round-robin pipelined 
arbitrator currently gives equitable access to all ACs by polling these FIFOs; it has 
two stages for arbitration and VP handshaking, respectively. FIFO and arbitrator 
interconnects allow 32-bit transfers per clock cycle. 



  
                                                                                                                                         

 

 

 
Fig. 1. Multicore architecture for VP sharing (Instr Arb: vector instruction arbitrator). 

 
An AXI4 connects all MBs to VM and the 128 KB system memories with separate 

read and write channels, and supports incremental bursts for up to 256 32-bit 
transfers. VP can only access VM. Vector data initially stored in the system memory 
are moved to VM for processing using a DMA engine. Each VM bank has two ports; 
one port directly connects to a lane’s LDST unit. With four direct connections 
between VP lanes and VM banks, a four-fold bandwidth increase is achieved between 
VP and VM compared to a system with a crossbar [Beldianu and Ziavras 2013]. The 
other port of each bank is connected to the system bus in low-order interleaved 
fashion; sequential data communicated by a MB or the DMA engine are low-order 
interleaved among the four banks to support fast pipelined access. I/O devices on the 
system bus support debugging, display and I/O.  

 VP VIRTUALIZATION  4.

Our current prototype supports simultaneous VP sharing for four threads with 
VL=16, 32 or 64. Virtualization resolves register conflicts among active threads using 
a software algorithm accelerated by minor hardware modifications.  Each vector 
thread has its own virtual register name space mapped at runtime to physical VRF 
registers. Virtualization involves two components: (a) a register management 
algorithm run on MB0 that determines virtual to physical vector register mappings; 



  
 

 
 

and (b) a hardwired TLT that facilitates fast translation of IDs between virtual and 
physical registers after the mapping. TLT name translation uses one pipeline stage 
in VP; it is the only VP hardware modification. In our programming interface, 
applications can use virtual vector registers 0-31 for VL=16 or 32, and 0-15 for VL=64.   

The physical VRF contains 16 vector registers where each can store 64 (i.e., 
VL=64) 32-bit elements. If needed, each register of VL=64 can be split into two 
registers of VL=32, and each register of VL=32 can be further split into two registers 
of VL=16. We use the notation reg_64(n-1) to represent the n-th physical vector 
register for VL=64, where n=1, 2, …, 16. As illustrated in Fig. 2, reg_64(0) can be 
split into reg_32(0) and reg_32(1), or further to become reg_16(0), reg_16(1), 
reg_16(2) and reg_16(3). The vector instruction decoder needs both a register’s 
physical name and an instruction’s VL to physically locate a register in VRF. In our 
VP prototype, each instruction contains a 2-bit thread ID, the 5-bit IDs of involved 
virtual registers, and the instruction’s VL encoded in a 2-bit field. The thread ID and 
virtual register IDs are used to obtain physical register IDs from TLT. VRF can be 
easily expanded since it is distributed across multiple lanes. VRF management can 
manage any VRF having a power of two population. More simultaneous threads are 
supported by linearly expanding the number of entries in TLT and the instruction 
arbitrator’s state machine. We demonstrate here the case where up to four threads 
share simultaneously a VP with the VRF structure in Fig. 2.     

 

 
Fig. 2. VRF structure. 

 The Vector Register Management Module (RMM) and Algorithm 4.1

The functional blocks of the register management module (RMM) and its TLT 
interface are shown in Fig. 3. The register management algorithm, written in C, 
supports a virtual space of 32 vector registers for each thread. RMM receives as input 
a request to either allocate or release a number of registers of certain VL; to release, 
it just receives the ID of a retiring vector thread since RMM maintains lists of 
assigned resources. After processing the request and updating TLT, RMM assigns a 
vector thread ID to the new allocation and sends it to the requesting core. To 
minimize vector register fragmentation, the register access queues as well as the 
register split, allocation, release and merge/recovery mechanisms give priority to the 
preservation of registers with larger VL.  

Fig. 4 shows two data structures for VRF management. Struct vp_control 
contains data for VRF management. Each register is an instance of struct vp_reg; 



  
                                                                                                                                         

 

there are three vp_reg arrays in vp_control for VL=16, 32 and 64, respectively. A 
register’s vp_reg record is located by using its physical ID as the index into one of 
the three arrays. If the register is available, vp_reg can also be accessed using the 
quick access queue. Inside vp_reg, rname is the physical name of the register; it 
initializes to the index in the array. in_queue is set to ‘1’ when a register is put into 
the fast access queue; it is available to a thread or can be split for a smaller VL. After 
a register is assigned or split, in_queue is set to ‘0’ and used is set to ‘1’. Fields prev 
and next are for the fast access queue (a doubly linked list) which is accessed to 
identify an available register for allocation or splitting. Using one of the head_16, 
head_32 and head_64 pointers in vp_control, the vp_reg record of the first 
available register in a queue is found and its fields are modified accordingly. Before 
any thread accesses VP, vp_control is initialized. No register is used initially, 
therefore the fields representing the number of registers available for VL=16, 32 or 
64 are 64, 32 and 16, respectively. Initially, all 16 registers of VL=64 can be accessed 
or split; they are arranged into the fast access queue pointed to by head_64. The 
other two access queues for VL=32 and 16 are initially empty. in_que_64, 
in_que_32 and in_que_16 are initialized to 16, 0 and 0, respectively. 

 Assigning/Releasing VRF Resources  4.2

For a thread to request VP access, its VL and needed number of registers are 
provided. Based on VL’s value, avail_16, avail_32 or avail_64 within vp_control is 
compared with the latter number. If the number of available registers is not enough 
for the thread, VP access is denied. Otherwise, the thread is assigned an ID (0 to 3) 
for unique identification while using VP, and register allocation begins. 
thread_len[ID] and thread_num[ID] in vp_control are modified to record the 
thread’s VL and number of registers. Only vector registers in the fast access queue 
are allocated. When registers of VL=16 are needed, their available number in the 
queue is checked; if the number is not sufficient, registers in the queue of VL=32 are 
split. If registers in the queue of VL=32 are not sufficient, registers in the queue of 
VL=64 are split. Whenever a register of VL=N is split, for N=64 or 32, the respective 
number of VL=N registers in the queue and the potentially available number of 
registers are decremented by one. However, for registers of VL=N/2, their number in 
the queue is incremented by two while their number of potentially available remains 
unchanged until the register is actually allocated.  

After register splitting, there are sufficient registers in the fast access queue 
representing the VL of the assigned thread. Chosen registers are removed from the 
queue for allocation. The physical IDs of the registers are stored into TLT and 
tlt_table in vp_control. The physical names in tlt_table are used later to release 
VP registers. TLT has three read ports and one write port, and contains the same 
information as array tlt_table. It supports three VP register name readings per clock 
cycle when updated, and is implemented by merging three dual-port RAM modules; 
the write signal is broadcasted to one port of each module. VP uses the 2-bit thread 
ID concatenated with the 5-bit register ID to form an index into the 128-entry TLT 
for locating the physical register ID used by a vector instruction. When a thread 
finishes execution, the tlt_table entries assigned to the thread are identified for 
releasing its registers. Instead of putting it back into the fast access queue, a 
released register may be combined with its “sister” register to form a register of 
higher VL depending on the current status of VRF. For example, reg_16(15) is 
checked when reg_16(14) is released. If reg_16(15) is not in the access queue, 
reg_16(14) is returned to the queue. Otherwise, the two registers are combined into 
reg_32(7); it may trigger the recovery of reg_64(4) based on the status of reg_32(6). 



  
 

 
 

 

 
Fig. 3. RMM and its TLT interface. 

 

 
Fig. 4. Data structures used to manage VRF. 

 Fragmentation Analysis 4.3

Our VRF management is designed to minimize register fragmentation by forming 
registers of larger VL upon releasing VP threads. However, if VP threads do not 
complete execution in the reverse order of their VP instantiation, fragmentation can 
occur. To evaluate efficiency, we performed an experiment involving random VP 

struct vp_reg 
{ 
int rname; //Register's physical name 
int in_que, used; //Register's status 
vp_reg *prev, *next; //Pointers for implementing the access queue 
}; 
 
struct vp_control 
{ 
vp_reg reg_16[64], reg_32[32], reg_64[16]; //Array of all the registers 
vp_reg *head_16, *head_32, *head_64; //Head of access queue for each VL  
int avail_16, avail_32, avail_64; //Number of registers available for each VL 
int in_que_16, in_que_32, in_que_64; //Number of registers in the fast access queue  
int thread_len[4]; //VL for each thread 
int thread_num[4]; //Number of registers used by each thread 
int tlt_table[32][4]; //Mapping of virtual name to physical name 
}; 



  
                                                                                                                                         

 

request/release calls. After each request/release call, the numbers of fragmented 
reg_32 and reg_64 are counted. The number of fragmented registers can be easily 
calculated using Frag_32=avail_16/2–avail_32.We also count the number of request 
failures due to register fragmentation. Random calls are generated using the rand() 
C function. When VP is not occupied by a thread, the call is a request; when VP is 
fully occupied by four threads, it is a release; otherwise, release and request have 
equal probability. For VP request, all three VLs have the same probability; once the 
VL is set, all possible numbers of registers for that VL are chosen with equal 
probability. For VP release, all current VP threads have the same probability to be 
released. We repeated random calls 109 times. The numbers of fragmented reg_32 
and reg_64 and their duration (measured in number of calls) are plotted in 
logarithmic scale in Fig. 5. In the worst case, two out of the thirty-two reg_32 and 
three out of the sixteen reg_64 are fragmented. However, fragmented registers are 
not present more than 98% of the time. 591,441,754 of the 109 random calls are for 
VP requests, and 408,558,246 of them succeed. Among the request failures, only 
155,865 are due to fragmentation, thus fragmentation may impact a request only 
with a 0.026% probability.  
 

 
Fig. 5. Duration of fragmented registers for VL=32 and 64. 

 VP ARCHITECTURE 5.

VP consists of a VC, data hazard detection unit (HDU), VRF of 1024 32-bit elements, 
64KB VM, and four vector lanes; each lane has a LDST unit and a FPU. Each of the 
four low-order interleaved banks in VM is a true dual-port RAM with one port 
connected to a distinct vector lane and the other port to the system bus. Each vector 
lane can only access its own dedicated VM bank; all cores and the DMA controller 
can access all four VM banks. Application data are initially stored in the system 
memory, and are transferred for VP processing to VM using either the DMA engine 
or an AC. Fig. 6 shows the architecture of our prototype. Two types of vector 
instructions are generated by ACs using C macro definitions and are sent to VP via 
the arbitrator interface. The first type is vector-vector ALU operations with a 32-bit 
instruction that does not contain data. The second type contains a 32-bit operand and 
the 32-bit instruction; e.g., vector-scalar ALU and vector LDST instructions.  
 

1E+0

1E+1

1E+2

1E+3

1E+4

1E+5

1E+6

1E+7

1E+8

1E+9

1E+10

0 1 2 3

R_32 Frag

R_64 Frag

D
u

ra
ti

on

Number of Fragmented Registers



  
 

 
 

 
Fig. 6. Detailed architecture of the four-lane VP (FP: Floating-point). 

 Pipelined ALU and LDST Units 5.1

The first three pipeline stages in our VP’s data path are inside VC, which handles 
register renaming, hazard detection, and assignment of ALU and LDST instructions 
into separate data paths. ALU and LDST pipeline stages are shown in Fig. 7. Two 
clock cycles are consumed in the ALU or LDST FIFO to pass an instruction and its 
data to VP. The ALU decode unit consumes four clock cycles for decoding, fetching 
operands and feeding them to the execution unit. FPU takes six clock cycles and an 
extra cycle is needed by write back (WB). The total latency to fill up the pipeline with 
ALU instructions is 16 clock cycles (considering both the lane and VC delays).  

Memory access instructions are decoded in the LDST unit that uses six stages 
with store instructions for data fetching and address generation. For a load from VM, 
two more clock cycles are added for memory access and WB data latching. Fetching 
two consecutive vector instructions from a FIFO produces an idle clock cycle between 
them to ease functional verification and instruction tracking in behavioral simulation. 
To fill up the pipeline, 11 and 13 clock cycles are needed for a store and a load, 
respectively. ALU and LDST instructions share the first three VC stages. The ISA for 
vector and control instructions supporting VP virtualization are listed in Fig. 8.  The 
control instruction __VP_REQ is implemented as a C function that takes an 
application’s VL and the number of registers as input. Upon a successful VP request, 
the thread ID is returned. The __VP_REL function takes as parameter the thread ID 
and releases all vector registers occupied by the corresponding thread. Vector 
application development for the virtualized VP is almost identical to that for a single-
threaded VP. Programmers only have to use the __VP_REQ function to obtain a 
thread ID and then use it as the ID field for every VP instruction. When an 
application completes, VP resources must be released using a __VP_REL call.   

 VP-MB Interface  5.2

VC does not give VP access to the arbitrator if the lane FIFO is full or a previous 
instruction is stalled due to data dependency. Register renaming is performed by 
reading physical register names/IDs from TLT. Since each vector instruction uses up 
to three vector registers, TLT has three read ports. In VC’s renaming stage, virtual 
names are replaced by physical names as determined by the technique in Section 4.   
 



  
                                                                                                                                         

 

 
Fig. 7. Pipeline structure in the LDST and ALU data paths 

 
Target Instruction Description 

MB 
__VP_REQ Requesting VP resources 
__VP_REL Releasing VP resources 

ALU 

__VADD Vector_vector addition
__VADD_S Vector_scalar addition
__VSUB Vector_vector subtraction 
__VSUB_S Vector_scalar subtraction 
__VMUL Vector_vector multiplication 
__VMUL_S Vector_scalar multiplication 

LDST 

__VLD Vector load (unit stride addressing) 
__VLD_S Vector load (stride addressing) 
__VST Vector store (unit stride addressing) 
__VST_S Vector store (stride addressing) 

Fig. 8 . ISA of the VP 

 Hazard Detection Unit (HDU) 5.3

After updating the register name fields, instructions enter HDU. RAW (Read-After-
Write), WAW (Write-After-Write) and WAR (Write-After-Read) data hazards are 
detected by HDU. Hazard information is forwarded to VC that may stall instructions. 
We assume no dependency across threads. Each HDU module has two separate slots 
that buffer the previous ALU and LDST instructions of a thread that entered the 
vector lanes, and two counters that count the number of remaining same-thread ALU 
and LDST instructions in the lanes. Each buffered instruction is a potential cause of 
hazard since an incoming instruction may depend on it. The counter of the 
corresponding instruction type is incremented by one upon issuing a new instruction 
from the same thread; it is decreased by one when an instruction of its corresponding 
type completes execution. ALU and LDST units broadcast an acknowledgment with 
the thread ID to HDU modules upon instruction completion; the module with the 
matching thread ID then updates its counters. A zero count implies no pending 
instruction of its corresponding type in the lane for this thread; thus, there is no need 
to check the buffered instruction for hazards. When an instruction enters HDU, the 
HDU module that corresponds to the instruction’s thread-ID performs hazard 
detection. The instruction is compared against both buffered instructions in the 
module; upon a data hazard detection, the instruction is stalled from entering the 
lanes until any related counter is reduced to zero.  

This mechanism adds only one extra pipeline stage and does not decrease the 
throughput without hazards. For a data hazard, the instruction in the HDU stage 
stalls until its dependent has gone through the safe point; by the time the former 



  
 

 
 

starts fetching its first operand, the latter will have written its first result. For longer 
VL instructions, the pipeline will still be fully filled even with a hazard. With VL=16, 
at most three bubbles will be injected into the pipeline due to a stall. The stall cannot 
be avoided with in-order execution. However, since our design targets SMT assuming 
no dependencies among threads, the HDU’s performance impact is almost negligible.  

 Vector Lane Structure 5.4

The lane architecture is depicted in Fig. 9. To reduce the complexity in order to track 
the progress of instructions through pipelines, simple execution units are chosen. 
Once a vector instruction passes hazard checking, it is broadcasted to all vector lanes. 
A lane’s VRF consists of 256 32-bit (single-precision FP) elements.  It is accessed 
using three read and two write ports since the ALU and load units need two and one 
read port, and the WB and store units require one write port each. The design has 
one clock cycle latency to send an output. All read ports are “enabled” only when 
actually used for power efficiency. The ALU decode unit requires two read ports 
when reading a pair of operands for vector-vector operations. A lane’s ALU contains a 
floating-point adder/subtractor and a multiplier derived from open source code. 
Compared to a FP multiplier, an IEEE-754 adder/subtractor includes two to three 
extra stages for exponent comparison and mantissa alignment [Ehliar 2014]. Hence, 
it has six pipeline stages for addition and subtraction, and four for multiplication. 
The results are sent to the WB block, which is connected to a write port of VRF for 
writing one element per clock cycle in a pipelined fashion. 

LDST instructions use absolute memory addressing with a unit or non-unit stride. 
Each lane is connected to a private VM bank, therefore memory accesses are never 
stalled. Arbitration deteriorates performance if all memory banks are accessible to all 
lanes [Beldianu and Ziavras 2013]. ALU and LDST decode blocks in each lane 
include counters for synchronization across lanes; counts are initialized based on the 
VL value in instructions. Vector instructions with different VLs may coexist in VP.  
 

 
Fig. 9. Vector lane architecture. 

 



  
                                                                                                                                         

 

 FPGA IMPLEMENTATION 6.

Our prototype uses a Xilinx Virtex6 xc6vlx240t FPGA device. The entire VP, 
arbitrator and TLT are custom designed in VHDL. The rest of the system uses IP 
cores in Xilinx ISE. The system is fully synthesized and routed. The chosen clock 
frequency of 100MHz is the result of open source FPU codes. Critical path delay 
analysis shows that the VP’s clock cycle could be as low as 7.01 ns (i.e., 142.65 MHz) 
corresponding to the adder. This delay is due to 32 levels of logic. The earliest and 
latest signal arrival times are 1.897 ns and 2.126 ns, respectively. 

Table I shows resource consumption. The FPGA contains 37,680 slices, each 
having eight registers and four 6-input lookup tables (LUTs). Registers are used to 
implement flip-flops or latches, and a LUT may be formed as a pair of 5-input LUTs. 
Some LUTs are used as small RAM blocks known as distributed RAMs. Large RAM 
memory is realized with 36Kbit BRAM blocks (RAMB36E1). Each embedded DSP 
slice (DSP48E1) contains a hardwired 25x18 two's complement 
multiplier/accumulator. Our FPUs are designed with custom ASIC logic without DSP 
slices. Only four DSP48E1s are used, one for each lane’s address calculator in LDST. 
VP and its SPS interface (including vector instruction FIFOs, the arbitrator and TLT) 
consume 13.9% and 45.8% of the total registers and LUTs. The resource consumption 
of FPGA designs is also affected by the randomness of the routing process. Some 
registers and LUTs are used as wires and buffers to reduce critical path delays. Our 
benchmarking relies on cycle accurate behavioral system simulation. For highly 
accurate power measurements, post place-and-route simulation is performed at fine 
detail, down to individual LUT switching. The binaries for each benchmark are 
generated and used as testbenches to obtain Switching Activity Interchange Format 
(SAIF) files, which are then used by the Xpower Analyzer to derive accurate power 
consumption.  
 

Table I. Resource consumption. 

Entity 
Slice Registers 
(% Utilization) 

Slice LUTs 
(% Utilization) 

RAMB36E1s 
(% Utilization) 

DSP48E1s 
(% Utilization) 

A Vector Lane 10247 (3.4%) 17035 (11.3%) 0 (0%) 1 (<1%) 
VM (4 Banks) 16 (<1%) 272 (<1%) 16 (3.8%) 0 (0%) 

VC (Including HDU) 358 (<1%) 305 (<1%) 0 (0%) 0 (0%) 
VP (VC+4 Lanes+VM) 41378 (13.7%) 68717 (45.6%) 16 (3.8%) 4 (<1%) 

VP/SPS Interface 388 (<1%) 283 (<1%) 0 (0%) 0 (0%) 
VP + VP/SPS Interface 41766 (13.9%) 69000 (45.8%) 16 (3.8%) 4 (<1%) 

SPS 9962 (3.3%) 15268 (10.1%) 73 (17.5%) 23 (3%) 

 BENCHMARKING 7.

As shown in Fig. 10, two basic types of vector instructions are sent to VP: without 
(type V_instr_a) and with a scalar operand (type V_instr_b). Macro definitions 
ease programming using an assembly-like VP programming interface. As an example, 
Fig. 10  shows the macro definition for the 32-bit __ADD (vector-vector add) type a 
instruction, and the __VLD (unit-stride load) and __VST (unit-stride store) type b 
instructions that hold an extra 32-bit scalar operand as address. The main function 
loads two 16-element vectors from VM and stores the summation back into VM. To 
compile benchmarks written in C that contain macros and assembly code for vector 
instructions, the MB GNU mb-gcc tool without optimization (i.e., option o0) is applied.  



  
 

 
 

 
Fig. 10. Macros to define vector instructions. 

 
The first benchmark is matrix multiplication (MM) for square matrices of size 

16*16, 32*32 and 64*64. All elements on a row of the resulting matrix are calculated 
in each loop iteration to maximize the vectorization ratio (i.e., ratio of vector to scalar 
code). A single element of the first matrix is multiplied with all elements on a row of 
the second matrix to produce partial products. To calculate row i, each element on 
row i of the first matrix is multiplied with the respective row in the second matrix 
and appropriate partial products are summed up. Multiplications use scalar-vector 
multiplications; vector-vector additions are applied. For optimality, only two vector 
registers of size VL are needed. Increasing the dimensionality of the matrix and 
consequently VL, the time needed to generate one element in the result decreases 
slightly (due to a higher vectorization ratio). The second benchmark is finite impulse 
response (FIR) digital filter using the outer product [Sung and Mitra 1987]. 16, 32 
and 64 tap FIR filters are implemented with the input sequence having the same size 
as the filter; the resulting sequence has twice the input’s length. A loop unrolling 
technique expands the kernel four times to increase vectorization. We use two vector 
registers of size VL. The third benchmark is vector-dot product (VDP) with VL= 16, 
32 and 64. A vector-vector multiplication is followed by two vector-vector additions. 
Four VL-sized vector registers are used. The execution time of VDP is for a pair of 
arrays in the input having VL elements per thread.  

The fourth benchmark is discrete cosine transform (DCT) which is common in 
video processing. Since DCT is usually applied on fixed-sized pixel blocks, like 8*8 or 
4*4, we perform one-dimensional 8-point DCT on blocks of size 8*8. 2, 4 and 8 
adjacent blocks are used as input with VL=16, 32 and 64, respectively. Three vector 
registers of size VL are used. The last benchmark is RGB to YIQ color space mapping 
(RGB2YIQ). It has the highest portion of vector code among all benchmarks and uses 
seven vector registers with VL=16, 32 and 64 to perform the calculation on a 1024-
pixel block. Since the input size is independent of VL, higher VL leads to fewer loop 
iterations, and therefore shorter execution times.  

 Simulation Results  7.1

In this section only, we assume each time simultaneous VP runs of up to four threads 
from the same benchmark. The only exception is RGB2YIQ with VL=64 since it 

// Functions defining two types of vector instructions, with and w/o data 
#define V_instr_a(instr)  asm volatile("put\t%0,rfsl1\t\n" ::"d"(instr)) 
#define V_instr_b(instr,data)  asm volatile ("cput\t%0,rfsl1\t\n" \ 
"put\t%1,rfsl1\t\n"  ::"d"(instr),"d"(data)) 
 
// Based on the above, define vector instructions as macros 
// Constant X_SHIFT determines the location of field X within 32‐bit instruction 
#define __VADD(VDst,VSrc_1,VSrc_2,VL,Id)\ 
V_instr_a((OP_VADD<<OP_SHIFT)|(VDst<<DST_SHIFT)|(VSrc_1<<SRC1_SHIFT)|\ 
(VSrc_2<<SRC2_SHIFT)|(VL<<VL_SHIFT)|(Id<<THREAD_ID_SHIFT)) 
 
#define __VLD(VDst,BaseAddr,VL,Id)   V_instr_b((OP_VLD<<OP_SHIFT)|(VDst<<DST_SHIFT|\ 
(VL<<VL_SHIFT)|( Id<<THREAD_ID_SHIFT), BaseAddr) 
 
#define __VST(VSrc,BaseAddr,VL,Id)   V_instr_b((OP_VST<<OP_SHIFT)|(VSrc<<SRC_SHIFT|\ 
(VL<<VL_SHIFT)|(Id<<THREAD_ID_SHIFT), BaseAddr) 
 
int main(){    // For VL=16 & thread=0 
__VLD(0,adr1,16,0);    // Load from location adr1 to r0 
__VLD(1,adr2,16,0);    // Load from location adr2 to r1 
__VADD(2,0,1,16,0);    // r2  r0+r1 
__VST(2,adr3,16,0);    // Store r2 into location adr3 
}; 



  
                                                                                                                                         

 

requires seven registers per thread while our VP has 16 registers of VL=64; we 
assume up to two threads for RGB2YIQ. 58 simulations are done for various VLs and 
degrees of multithreading. For clarity, the times for task request and register 
management are excluded from our measurements. Since the threads start execution 
at the same time and the SPS’s VP interface involves a round-robin arbitrator, all 
threads finish execution at the same time. Tables II to VI show execution times and 
VP utilization for various numbers of VL and active cores (i.e., threads). The 
execution times are for the input size described above.  
 

Table II. Matrix multiplication performance (input matrix size: VL*VL, 1 iteration per core). 

VL 
# of 

cores 
LDST 
NWT 

ALU 
FLOP 

Execution 
Time (μs) 

Million 
FLOP/S 

% LDST 
Utilization 

% ALU 
Utilization 

Speedup 

16 

1 4608 8192 241 53.11 4.78 8.49 84.97 
2 9216 16384 241 106.22 9.56 16.99 169.95 
3 13824 24576 241 159.33 14.34 25.49 254.93 
4 18432 32768 241 212.44 19.12 33.99 339.91 

32 

1 34816 65536 942 106.53 9.23 17.39 173.38 
2 69632 131072 942 213.06 18.47 34.78 346.76 
3 104448 196608 942 319.59 27.72 52.17 520.19 
4 139264 262144 942 426.12 36.96 69.57 693.53 

64 

1 270336 524288 3819 208.07 17.69 34.32 337.8 
2 530672 1048576 3819 416.14 35.39 68.64 675.69 
3 811008 1572864 4221 564.76 48.03 93.15 917.01 
4 1081344 2097152 5625 565.06 48.05 93.20 917.5 

NWT: Number of Word Transactions 
 

Table III. FIR performance (input vector size: VL, 1 iteration per core). 

VL 
# of 

cores 
LDST 
NWT 

ALU 
FLOP 

Execution 
Time (μs) 

Million 
FLOP/S 

% LDST 
Utilization 

% ALU 
Utilization 

Speedup 

16 

1 576 1024 27 59.25 5.3 9.4 78.8 
2 1152 2048 27 118.51 10.6 18.9 157.4 
3 1728 3072 27 177.77 16 28.4 236.1 
4 2304 4096 27 237.04 21.3 37.9 314.8 

32 

1 2176 4096 51 122.98 10.6 20 153.07 
2 4352 8192 51 245.96 21.3 40 306.15 
3 6528 12288 51 368.94 32 60 459.23 
4 8704 16384 51 491.92 42.6 80 612.31 

64 

1 8448 16384 97 256 21.77 42.22 354.13 
2 16896 32768 97 512 43.54 84.44 708.26 
3 25344 48152 133 552.6 47.63 90.0 774.83 
4 33792 65536 177 561.17 47.72 92.56 776.29 

 

In this section, simultaneously active threads from an application are 
homogeneous but independent, and their control flows are executed on different MBs. 
Threads operate on their own input data for higher throughput. Section 8 deals with 
the simultaneous execution of heterogeneous threads with different VLs arriving 
from different MBs. VP utilization with a single thread is very low for all 
benchmarks when VL=16; with more threads/cores, the utilization improves 
substantially. As VL increases, the utilization of a thread increases until saturation. 
As explained earlier, the idle clock cycle between issuing successive instructions 
decreases the maximum utilization but eases the verification of functional behavior. 
Due to this effect, the nominal maximum utilization that can be achieved for VL=16, 
32 and 64, is calculated as 80%, 88.88% and 94.11%, respectively. For a low VP-
utilization benchmark, the total execution time of multiple threads may be almost 



  
 

 
 

the same as the benchmark’s native duration (i.e., a thread’s execution time with 
exclusive VP usage). When the total VP utilization for simultaneous threads exceeds 
the VP’s nominal maximum, thread executions are slowed down proportionally due to 
resource competition. When either ALU or LDST saturates, the other unit’s 
utilization may not increase further since ALU and LDST operations may depend on 
each other. Among the five basic benchmarks, MM, FIR and RGB2YIQ have higher 
ALU utilization that leads to ALU saturation. VDP and DCT have higher LDST 
utilization that may lead to LDST saturation. Upon VP saturation, the slowdown 
amount depends on the higher of the ALU and LDST utilizations. The performance of 
RGB2YIQ with VL=64 saturates for two cores although the ALU utilization is not 
close to the nominal maximum of 94%. It happens when threads produce high VP 
utilization and many data hazards, causing frequent VC stalls. For each benchmark, 
sequential C code with identical functionality and behavior was also run on a 100 
MHz MB. The last column in the tables is the speedup of VP versus scalar core runs. 

 Comparisons with Prior Works 7.2

For a fair performance comparison with prior works that focused on VP sharing for 
multicores, we choose a common reference point. Since VP speedups against host 
processors were listed in them, we do the same. Moreover, the chosen benchmark 
scenarios are similar (including identical VLs). Table VII shows comparisons with 
Beldianu and Ziavras [2013] that implemented an 8-lane shared VP for two cores 
using the CTS, FTS and VLS policies. FTS has the best performance. As per Section 
2, FTS is similar to our VP sharing technique. Rooholamin and Ziavras [2015] used a 
VP with many similarities to ours. It utilized a hardware scheduler and a register 
renaming block to support VP sharing for two threads with identical VLs and relied 
on compiler optimizations to increase instruction issue rates. Our virtualization 
yields better speedup than other techniques even with half of the lanes. 
 

Table IV. VDP performance (input vector size: VL, 1 iteration per core). 

VL 
# of 
cores 

LDST 
NWT 

ALU 
FLOP 

Execution 
Time (μs) 

Million 
FLOP/S 

% LDST 
Utilization 

% ALU 
Utilization 

Speedup 

16 

1 112 64 2.4 73.33 11.6 6.6 4.88 
2 224 128 2.4 146.66 23.2 13.3 9.77 
3 336 192 2.4 220 34.8 20 14.65 
4 448 256 2.4 293.33 46.4 26.6 19.54 

32 

1 288 160 3 149.33 24 13.33 8.1 
2 576 320 3 298.66 48 26.6 16.2 
3 864 480 3 448 72 40 24.3 
4 1152 640 3.4 527.05 84.7 47.05 28.58 

64 

1 704 448 3.6 320 48.8 31.1 13.05 
2 1408 896 4 576 88 56 23.5 
3 2112 1344 6 576 88 56 23.5 
4 2816 1792 8 576 88 56 23.5 

 

 SCHEDULING VECTOR THREADS 8.

We focus here on throughput-maximizing thread scheduling. We first profile each 
application to determine its ALU and LDST utilizations, as well as its native 
duration (i.e., its execution time with exclusive VP access). We evaluate combinations 
of simultaneously executing benchmarks (from our set of 15) for: i) A closed system 
with a fixed number of threads. ii) An open system with randomly arriving threads. 
As observed in Section 7, when ALU and LDST utilizations are both far below 90%, 



  
                                                                                                                                         

 

the performance is upper bounded by the speed of the ACs that issue vector 
instructions, and therefore multiple threads could share the VP with only negligible 
increase in the per-thread execution time. Due to the one clock cycle delay between 
consecutive instructions (Section 5.1), our VP’s saturation threshold is not 100% but 
a number from 80% to 94% depending on the active threads’ VLs. We assume a 
saturation threshold of 90% to design a scheduling algorithm that keeps the VP 
highly busy either with zero or minimum saturation. 
 

Table V. DCT performance (input: VL/8 blocks of size 8*8, 1 iteration per core). 

VL 
# of 
cores 

LDST 
NWT 

ALU 
FLOP 

Execution 
Time (μs) 

Million 
FLOP/S 

% LDST 
Utilization 

% ALU 
Utilization 

Speedup 

16 

1 4224 2048 87 72.09 12.13 5.96 7.98 
2 8448 4096 87 144.18 24.27 11.92 15.97 
3 12672 6144 87 216.27 36.41 17.89 23.96 
4 16896 8192 87 23.85 48.55 23.85 31.95 

32 

1 8448 4096 87 144.18 24.24 11.57 19.2 
2 16896 8192 87 288.36 48.55 23.51 38.4 
3 25344 12288 87 432.55 72.82 32.25 57.65 
4 33792 16384 94 533.78 89 43.15 71.14 

64 

1 16896 8192 87 288.36 48.55 23.53 48.55 
2 33792 16384 109 460.33 77.5 37.57 77.50 
3 50688 24576 132 557.51 93.86 45.51 93.86 
4 67584 32768 176 557.51 93.86 45.51 93.86 

 
Table VI. RGB2YIQ performance (input: 1024 pixels, 1 iteration per core). 

VL 
# of 
cores 

LDST 
NWT 

ALU 
FLOP 

Execution 
Time (μs) 

Million 
FLOP/S 

% LDST 
Utilization 

% ALU 
Utilization 

Speedup 

16 

1 6144 15360 244.2 88.05 6.29 15.72 358.13 
2 12288 30720 244.2 176.11 12.58 31.45 716.26 
3 18432 46080 244.2 264.17 18.87 41.74 1074.39 
4 24576 61440 244.2 352.23 25.16 62.9 1432.53 

32 

1 6144 15360 123.6 173.98 12.43 31.06 707.57 
2 12288 30720 123.7 347.68 24.83 62.08 1415.14 
3 18432 46080 155.8 414.06 29.57 73.49 1690.51 
4 24576 61440 204.1 421.44 30.10 75.25 1713.98 

64 

1 6144 15360 63.74 337.37 24.09 60.24 1372.07 
2 12288 30720 96.7 444.57 31.76 79.43 1808.8 
3 18432 46080 NA NA NA NA NA 
4 24576 61440 NA NA NA NA NA 

 

Table VII. Speedup comparison with prior works. 

SYSTEM   \   BENCHMARK MM FIR RGB2YIQ VL 
[Rooholamin and Ziavras 2015], 4 lanes,1 core 92.66 73.32 383.32 

16 
Our VP, 4 lanes, 4 cores 339.91 314.8 1432.53 
 [Beldianu and Ziavras  2013], CTS,  8 lanes, 1 core 12.97 10.93 NA 

32 
 [Beldianu and Ziavras  2013], FTS, 8 lanes, 2 cores 25.89 21.83 NA 
[Rooholamin and Ziavras 2015], 4 lanes,1 core 193.06 150.94 762.22 
Our VP, 4 lanes, 4 cores 693.53 612.31 1713.98 
[Rooholamin and Ziavras 2015], 4 lanes,1 core 403.50 360.12 1512.44 

64 
Our VP, 4 lanes, 4 cores 917.50 776.29 1808.80 

 

 
In a closed system, all threads in a queue at a given time are scheduled. No new 

threads are added to the queue before all threads in the current queue have finished 
execution. Once a thread is picked by the scheduler, it keeps executing until the end, 



  
 

 
 

at which time its VP resources are released to pending threads. Pending threads are 
arranged in descending order of their native duration. ALU and LDST utilizations as 
well as VRF usage of pending threads are input to the scheduler. The scheduler 
keeps picking pending threads for execution until VP has four threads, or no other 
pending thread can be accommodated due to unavailable VRF resources. The 
scheduler searches down the queue until a fitting thread is found which does not lead 
to saturation. If no such thread is found, the thread update mechanism ensures that 
the scheduler searches down the queue only once to find a fitting thread for 
minimum saturation. The scheduler always starts investigation with the first 
pending thread of the longest native duration. With sufficient VRF resources, 
utilization saturation check is performed to see whether this thread will lead to ALU 
or LDST overall utilization higher than 90%. If no saturation can occur, this thread is 
scheduled. Otherwise, it becomes the “potential thread” for scheduling.  When 
another thread in the queue is found to lead to utilization saturation, it is compared 
against the currently potential thread. If the former thread can yield smaller ALU 
and LDST overall utilizations than the currently potential thread, then the former 
will replace the latter as the potential thread for scheduling. When the entire queue 
has been searched and all pending threads are either not fitting or lead to saturation, 
the currently potential thread is chosen for immediate scheduling.  

 Queues of Fixed Length 8.1

We evaluated our scheduler for a closed system with two queue sizes: 8 and 16 
pending threads. Six successive schedules of random thread combinations were 
tested. Threads and their input data size were chosen with equal probability from the 
list of 15 benchmarks in Section 7.  The average execution time per schedule is shown 
in Fig. 11. To identify the optimal solution for the six schedules with queue length 8, 
we applied exhaustive search (i.e., a C program produced the total execution time of 
all permutations of involved threads). Compared to the optimal case, which cannot be 
implemented in practice, our execution time is only 14.7% slower on the average and 
actually achieves optimality in one of the six schedules. For a queue length of eight, 
our average speedup is 2.83 compared to the case without VP sharing; when the 
queue length increases to 16, the average speedup increases to 3.33. With increases 
in the thread queue, the speedup approaches four, which is ideal since it matches the 
maximum thread population. We chose one of the six schedules for each queue length 
to generate tables with detailed simulation information (Table VIII and Table IX).  

 Open System with Randomly Arriving Threads 8.2

To simulate an open system with randomly arriving tasks, we schedule all tasks 
arriving within 10ms time slices. We choose a fixed input size for each benchmark to 
create 15 distinct tasks. The characteristics of each task are listed in Table X. 
Dynamic energy measurement is the focus of Section 9.1. The average task native 
duration is 1.82ms. Task arrival follows the Poisson distribution with a rate of λ 
tasks arriving per time slice. Tasks arriving in a time slice form a queue which is 
scheduled for execution in the next time slice. We assume λ=0.5, 0.75 and 1; for a 
given λ, we generate queues for six consecutive time slices and calculate average 
values for the six schedules. Details of task arrivals and execution times are shown in 
Tables XI to XIII. The average of the total execution time for all threads scheduled in 
a time slice is shown in Fig. 12. The speedup compared to the VP without sharing is 
2.59, 3.15 and 3.22 for λ=0.5, 0.75 and 1, respectively. The speedups concur with the 
results obtained earlier for fixed thread queue lengths where the speedup increased 



  
                                                                                                                                         

 

with the thread population. Without VP sharing and scheduling, even for the lowest 
thread arrival rate the queue increases faster than the system can process. With our 
scheduling, the VP is active only 80% of the time slice for the highest λ= 1. The rest 
of the time the VP can be power gated to reduce the static energy (Section 9.2). Based 
on the tasks list shown in Table X, the theoretical peak arrival rate that the system 
can handle is λ=0.367 without VP sharing. With SMT and proper scheduling, the 
threshold is increased to 1.578. The detailed derivation is omitted here for brevity.  
 

 
Fig. 11. Average execution time per schedule with (w/) and without (w/o) sharing for pending thread 

queues of length (a) 8 and (b) 16.   
 

Table VIII. Detailed results for a schedule with pending thread queue length of 8. 

Task 
ID 

Application VL 
Native 
Duration 
(μs) 

% ALU 
Utilization 

% LDST 
Utilization 

Issue  
Time 
(μs) 

Commit 
Time 
(μs) 

Actual 
Duration 
(μs) 

0 MM 16 4820 9 5 11 4905 4894 
1 VDP 64 3600 31 49 30 4348 4318 
2 DCT 64 2610 24 49 3075 6083 3008 
3 FIR  16 2025 9 5 44 2109 2065 
4 MM 32 1884 17 9 60 1967 1907 
5 RGB2YIQ 64 1268 60 24 2680 4655 1975 
6 VDP 16 960 7 12 1994 3048 1054 
7 FIR 32 510 20 11 2132 2642 510 

Practical issue order based on static scheduling: 0,1,3,4,6,7,5,2. 
Optimal order based on simulation of all permutations: 0,3,6,4,1,2,5,7. 
Actual execution time = 6.083ms. Optimal execution time = 5.215ms. 
Total native duration w/o VP sharing = 17.677ms. Speedup = 2.91. 

 VP ENERGY CONSUMPTION 9.

We investigate the energy consumption for the benchmarks of Section 7. Based on 
the power dissipation of individual benchmarks, a projection is made of the total 
energy consumption for the dynamic schedules of Subsection 8.2. Power consumption 
has three components: device static, design static and design dynamic [Beldianu and 
Ziavras 2015]. The device static power, also known as leakage power, is a device 
specific constant not related to resource utilization or switching activity. Under our 
simulation conditions for an ambient temperature of 500C and an airflow of 250LFM 
(linear feet per minute), the leakage power for the FPGA is 2.88W. The design static 
power represents the power consumption when the device is configured but there is 
no switching activity. It includes the static power in I/O DCI terminations, clock 

0 10 20 30 40

1

2

3

4

5

6

w/ sharing
w/o sharing

Execution time (ms)
0 5 10 15 20

1

2

3

4

5

6

optimal

w/ sharing

w/o sharing

Execution time (ms)

(a) (b)



  
 

 
 

managers, etc., and is related to FPGA resource consumption. The design dynamic 
power results from the switching of user configured logic. Accounting for the FPGA 
resources that our VP actually uses, our power model adds the design’s static and 
dynamic powers to estimate the total dissipation. 

 
Table IX. Detailed results for a schedule with pending thread queue length of 16. 

Task 
ID 

Application VL 
Native 

Duration 
(μs) 

% ALU 
Utilization 

% LDST 
Utilization 

Issue 
Time 
(μs) 

Commit 
Time 
(μs) 

Actual 
Duration 

(μs) 
0 MM 64 3819 34 18 11 3829 3818 
1 MM 32 2826 17 9 24 2873 2849 
2 RGB2YIQ 32 1483.2 31 12 54 1705 1651 
3 MM 16 964 8 5 1111 2080 969 
4 DCT 32 860 12 24 1740 2606 866 
5 DCT 64 783 24 49 2632 3460 828 
6 DCT 16 693 6 12 78 771 693 
7 FIR 64 679 42 22 3533 4338 805 
8 FIR 16 675 9 5 2101 2789 688 
9 RGB2YIQ 64 634 60 24 4030 4815 785 
10 VDP 32 630 13 24 3511 4357 846 
11 FIR 32 561 20 11 2907 3468 561 
12 RGB2YIQ 16 488.4 16 6 2837 3470 633 
13 VDP 64 356.4 31 49 3863 4397 534 
14 DCT 32 348 12 24 3559 3988 429 
15 VDP 16 240 7 12 820 1070 250 

Practical issue order based on static scheduling: 0,1,2,6,15,3,4,8,5,12,11,10,7,14,13,9. 
Actual execution time = 4.815ms. 

Total native duration w/o VP sharing = 16.053ms. Speedup = 3.33. 

 VP Dynamic Power 9.1

To reliably estimate dynamic power, our design was fully implemented and all signal 
switching activities of each system node were used as input for power calculation. We 
fully synthesized, translated and placed-and-routed our VP design with the Xilinx 
ISE tool chain, and performed post place-and-route (PAR) ISE simulations. The 
binaries of the vector instructions of each benchmark were generated to estimate 
dynamic power. All signal switching activities during each simulation were recorded 
in an SAIF File. This file along with two other files generated during design 
implementation, namely the Native Circuit Description and Physical Constraint files, 
were fed into the Xilinx power analyzer (XPA) to produce the VP’s accurate power 
dissipation for each benchmark [Xilinx Inc. 2012]. Our power measurements include 
all power consumed by VP subsystems (i.e., VC, HDU, vector lanes, VRF and VM). 
Also, register name readings from TLT contributed to the figure.  

Due to the time consuming nature of PAR simulations, we measured the average 
power consumption for one iteration of each vector kernel. For matrix multiplication, 
the innermost loop that involves three vector instructions is considered as the target 
kernel. It is repeated VL times to produce one row of the result. This kernel includes 
one load, one vector-scalar multiplication and one vector-vector addition. For FIR, the 
target kernel for power estimation is the internal loop which is unrolled four times, 
slides the coefficients four times over the input sequence, and carries out 
multiplications and additions to produce four elements of the result. This kernel 
contains twelve vector instructions:  four loads, four vector-scalar multiplications and 
four vector-vector additions. For VDP, the kernel size depends on VL. This kernel 
contains 11, 14 and 18 vector instructions for VL=16, 32 and 64, respectively.  For 



  
                                                                                                                                         

 

VL=16, the kernel consists of five loads, two stores, three vector-vector additions and 
one vector-vector multiplication. For VL=32, one load, one store and one vector-vector 
addition are added to the former case. For VL=64, two loads and two vector-vector 
instructions are added to the VL=32 case. For DCT, the inner loop which calculates 
the output result for one output coefficient forms the kernel that contains six 
instructions: two loads, two stores, one vector-vector multiplication and one vector-
vector addition. For RGB2YIO, the chosen kernel converts the color space for VL 
input pixels and contains 21 instructions: three loads, nine scalar-vector 
multiplications, six vector-vector additions and three stores. 
 

Table X. Characteristics of chosen tasks for an open system. 

Task 
ID 

Application_VL 
Native 

Duration (μs) 
% ALU 

Utilization 
% LDST 

Utilization 
Vector 

Registers 
Dynamic 

Energy (μJ) 
0 RGB2YIQ_16 4884 16 6 7 766 
1 MM_64 3819 34 18 2 792.3 
2 MM_32 2826 17 9 2 404.1 
3 RGB2YIQ_32 2472 31 12 7 535.8 
4 FIR_64 1940 42 22 2 577.2 
5 DCT_64 1740 24 49 3 417.8 
6 DCT_32 1740 12 24 3 288.2 
7 DCT_16 1740 6 12 3 207.8 
8 MM_16 1446 8 5 2 152.34 
9 RGB2YIQ_64 1268 60 24 7 354.4 
10 FIR_32 1020 20 11 2 255 
11 VDP_64 720 31 49 4 192.8 
12 VDP_32 600 13 24 4 123.6 
13 FIR_16 540 9 5 2 85.8 
14 VDP_16 480 7 12 4 70.8 

 
Table XI. Detailed task arrivals and execution time for λ=0.5. 

Task 
ID 

Application_VL 
Number of Task Arrivals 

Average 
Slice1 Slice2 Slice3 Slice4 Slice5 Slice6 

0 RGB2YIQ_16 1 1 1 1 0 0 .66 
1 MM_64 1 0 0 0 0 2 0.5 
2 MM_32 0 0 0 0 0 0 0 
3 RGB2YIQ_32 2 0 0 0 0 0 .33 
4 FIR_64 1 0 1 1 0 0 0.5 
5 DCT_64 0 1 0 0 1 1 0.5 
6 DCT_32 0 1 0 0 0 0 0.16 
7 DCT_16 0 0 0 1 0 1 0.33 
8 MM_16 3 2 1 0 0 1 1.16 
9 RGB2YIQ_64 2 0 0 0 0 1 0.5 
10 FIR_32 0 0 0 1 0 0 0.16 
11 VDP_64 1 0 1 0 1 0 0.5 
12 VDP_32 2 1 1 1 2 0 1.16 
13 FIR_16 0 1 2 2 1 2 1.33 
14 VDP_16 2 0 1 0 0 0 0.5 

Total Native Duration (ms) 25.3 12.39 11.15 11.26 4.2 14.9 13.21 
Actual Duration (ms) 8.22 4.9 4.9 4.9 1.8 4.7 4.9 

Speedup 3.08 2.52 2.26 2.28 2.26 3.12 2.59 
Table XII. Detailed task arrivals and execution time for λ=0.75. 

Task 
ID 

Application_VL 
Number of Task Arrivals 

Average 
Slice1 Slice2 Slice3 Slice4 Slice5 Slice6 

0 RGB2YIQ_16 0 0 2 0 0 0 0.33 
1 MM_64 0 1 0 2 0 0 0.5 



  
 

 
 

2 MM_32 2 0 0 0 1 0 0.5 
3 RGB2YIQ_32 1 2 0 1 0 1 0.83 
4 FIR_64 1 1 1 0 1 1 0.83 
5 DCT_64 1 1 1 2 0 1 1 
6 DCT_32 0 0 0 0 0 1 0.16 
7 DCT_16 1 2 1 1 0 0 0.83 
8 MM_16 2 3 1 1 0 2 1.5 
9 RGB2YIQ_64 1 0 2 1 1 0 0.83 
10 FIR_32 1 0 1 0 1 0 0.5 
11 VDP_64 3 2 0 0 1 1 1.16 
12 VDP_32 0 2 1 0 0 0 0.5 
13 FIR_16 1 0 1 4 1 0 1.16 
14 VDP_16 0 1 0 0 1 0 0.33 

Total Native Duration (ms) 21.4 23.38 21.33 20.2 8.79 11.5 17.77 
Actual Duration (ms) 6.59 6.75 6.66 6.62 3.05 3.75 5.57 

Speedup 3.25 3.46 3.20 3.05 2.88 3.06 3.15 
 
 

 
 
Fig. 12. Average of the total execution time for all threads scheduled in a time slice for λ= 0.5, 0.75 and 1. 

(Time slice: 10ms.) 
 

For VP power measurements of individual benchmarks, VP is used exclusively 
without competition. The total dynamic energy consumed by a benchmark is actually 
the product of its vector kernel power consumption and its native duration. Dynamic 
power and energy consumptions of individual benchmarks are shown in Table XIV 
for the input data sizes of Section 7.1. Using the measured power, we calculate the 
total dynamic energy consumption of each benchmark for various native durations; 
this approach aids the estimation of the energy consumption in dynamic 
environments. The dynamic energy results for the predefined tasks of Section 8.2 are 
included in Table X. Using a task’s average number of arrivals per time slice, we 
produce its average dynamic energy consumption per slice. As per Fig. 13, dynamic 
energy consumption is related almost linearly to the task arrival rate.  

 
 
 

 
 

Table XIII. Detailed task arrivals and execution time for λ=1. 

Task 
ID 

Application_VL 
Number of Task Arrivals 

Average 
Slice1 Slice2 Slice3 Slice4 Slice5 Slice6 

0 RGB2YIQ_16 2 1 1 0 0 1 0.83 
1 MM_64 1 2 2 2 2 0 1.5 

0 5 10 15 20 25 30

0.5

0.75

1

w/ sharing
w/o sharing

Execution time (ms)

λ



  
                                                                                                                                         

 

2 MM_32 1 0 0 1 0 1 0.5 
3 RGB2YIQ_32 0 2 3 1 1 0 1.16 
4 FIR_64 1 2 0 0 0 0 0.5 
5 DCT_64 2 0 1 0 1 0 0.66 
6 DCT_32 1 0 1 0 2 0 0.66 
7 DCT_16 0 2 2 0 2 1 1.16 
8 MM_16 2 3 3 1 0 0 1.5 
9 RGB2YIQ_64 1 1 0 1 1 2 1 
10 FIR_32 1 0 1 1 3 1 1.16 
11 VDP_64 0 2 1 0 1 0 0.66 
12 VDP_32 0 2 1 1 1 2 1.16 
13 FIR_16 0 1 2 1 2 2 1.33 
14 VDP_16 0 2 1 0 0 1 0.66 

Total Native Duration (ms) 28.75 34.57 35.14 17.81 25.53 15.76 26.26 
Actual Duration (ms) 8.44 10.29 9.81 6.17 7.83 5.53 8.01 

Speedup 3.4 3.36 3.58 2.88 3.26 2.84 3.23 
 

 Total Energy Consumption 9.2

The VP’s static power is measured without running instructions but just applying 
clock signals. For a 100µs measurement after system reset, the average static power 
is 214mW. Without VP pending instructions, power-gating (PG) can be applied for VP 
shut-off in order to eliminate its static power dissipation. Implementing PG requires 
sleep transistors, isolation cells and circuits to control power signals. It can reduce 
the design’s static power by 85% [Beldianu and Ziavras 2015]. 
 

Table XIV. Power and energy consumption for benchmarks. 

Applic-
ation 

VL 
Kernel 

Duration 
(ns) 

VC+4Lanes+Memories 
Dynamic Power (mW) 

Kernel 
Dynamic 

Power 
(mW) 

Application 
Duration 

(μs) 

Application 
Dynamic 
Energy 

(μJ) 
Signal & 

Logic 
BRAM & 

IO 

MM 
16 365 102.04 3.32 105.36 241 25.39 
32 405 136.96 6.04 143 942 134.7 
64 555 198.68 8.8 207.48 3819 792.3 

FIR 
16 895 153.68 5.44 159.12 27 4.29 
32 935 239.6 10.48 250.08 51 12.75 
64 1575 284.6 13 297.6 97 28.86 

VDP 
16 765 136.26 11.24 147.5 2.4 0.35 
32 1235 187.4 19.04 206.44 3 0.62 
64 2275 243.28 24.92 268.2 3.6 0.96 

DCT 
16 525 110.16 9.32 119.48 87 10.39 
32 605 149 16.64 165.64 87 14.41 
64 775 212.28 27.92 240.2 87 20.89 

RGB2YIQ 
16 1465 152 5 157 244 38.3 
32 1805 209.64 8.2 217.84 123 26.79 
64 2295 267.76 13.52 281.28 63 17.72 

 
Although commercial FPGAs lack PG support, PG in association with our dynamic 
scheduler of Section 8.2 could yield not only performance gain but also substantial 
energy reduction. Once the task queue becomes empty in a time slice, VP is PGed 
until the next time slice. Using our static power measurements, the assumption of an 
85% static power reduction with PG and the measured average execution time in Fig. 
12, we project VP’s average static energy consumption per time slice for a given task 
arrival rate. Combining the results with the dynamic energy of Fig. 13, Fig. 14 shows 
the effect of PG on energy consumption with and without VP sharing. The energy 



  
 

 
 

saved using VP sharing, proper scheduling and PG is 33.9%, 36.1% and 37% under 
task arrival rates of λ=0.5, 0.75 and 1, respectively. Thus, energy savings and 
performance improvements are remarkable. 
 

 
Fig. 13. Average total dynamic energy consumption per time slice for λ=0.5, 0.75 and 1. 

  
 

 
Fig. 14. Total energy consumption with and w/o VP sharing, and with power gating. 

 CONCLUSIONS  10.

We proposed a virtualization technique for VPs supporting SMT with vector threads. 
Multicore processors can benefit tremendously due to VP dynamic sharing which is 
transparent to programmers.  VP can simultaneously execute multiple threads of 
various vector lengths to improve throughput and resource utilization. 
Benchmarking on an FPGA prototype shows that under dynamic thread creation 
with diverse vector lengths and operation types, impressive speedups of up to 333% 
and total energy savings of up to 37% can be achieved with proper thread scheduling 
and power gating compared to a similar-sized system that allows VP access to just 
one thread at a time. Finally, substantial performance improvements compared to 
prior works with VP sharing but without virtualization further prove the viability of 
our approach.  

 

REFERENCES 

Christoforos E Kozyrakis and David Patterson. 2003. Scalable, vector processors for embedded 
systems.  IEEE Micro. 23, 6, 36-45. 

Yuan Lin, Hyunseok Lee, Mark Woh, Yoav Harel, Scott Mahlke, Trevor Mudge, Chaitali Chakrabarti, and 
Krisztian Flautner. 2006. SODA: a low-power architecture for software radio. 33rd IEEE Annual 
International Symposium on Computer Architecture. Boston, MA, 89-101.  

0

1

2

3

4

5

6

0.5 0.75 1

E
ne

rg
y

(m
J)

λ

0

2

4

6

8

10

12

w/ w/o w/ w/o w/ w/o

0.5 0.75 1

static

dynamic

E
n

er
gy

 (
m

J)

λ



  
                                                                                                                                         

 

Yunsup Lee Yunsup, Rimas Avizienis, Alex Bishara, Richard Xia, Derek Lockhart, Christopher Batten, 
and Krste Asanović. 2013. Exploring the tradeoffs between programmability and efficiency in data-
parallel accelerators. ACM Transactions on Computer Systems. 31, 3, 6. 

Deborah T. Marr, Frank Binns, David L. Hill, Glenn Hinton, Favid A. Koufaty, J. Allen Miller and Michael 
Upton. (Febr, 2002). Hyper-threading technology architecture and microarchitecture. Intel Technology 
Journal. 6, 2, 1–12. 

Rezaur Rahman. (2014). Intel Xeon Phi coprocessor vector microarchitecture, http://software.intel.com/en-
us/articles/intel-xeon-phi-coprocessor-vector-microarchitecture 

Seyed A. Rooholamin and Sotirios G. Ziavras. (June, 2015). Modular vector processor architecture 
targeting at data-level parallelism, Microprocessors and Microsystems. Elsevier, 39, 4, 237-249. 

Jason Yu, Christopher Eagleston, Christopher Han-Yu Chou, Maxime Perreault, and Guy Lemieux. (2009). 
Vector processing as a soft processor accelerator. ACM Transactions on Reconfigurable Technology and 
Systems. 2, 1-34.  

Christopher H. Chou, Aaron Severance, Alex D. Brant, Zhiduo Liu, Saurabh Sant, and Guy Lemieux. 
(February, 2011). VEGAS: soft vector processor with scratchpad memory. 19th ACM/SIGDA 
International Symposium on Field Programmable Gate Arrays, 15-24.  

Aaron Severance and George Lemieux.(December, 2012). VENICE: A compact vector processor for FPGA 
applications. IEEE International Conference on Field-Programmable Technology. 261-268. 

Nvidia Corp. 2014. Gefore GTX 980 White Paper. Featuring Maxwell, the most advanced GPU ever made.  
Hongyan Yang and Sotirios G. Ziavras. (September, 2005). FPGA-based vector processor for algebraic 

equation solvers. IEEE International System on Chip Conference. 115-116. 
Peter Yiannacouras, J. Gregory Steffan, and Jonathan Rose. (October, 2008). VESPA: portable, scalable, 

and flexible FPGA-based vector processors. ACM International Conference on Compilers, Architectures 
and Synthesis for Embedded Systems. Atlanta, GA, 61-70.  

Spiridon F. Beldianu and Sotirios G. Ziavras. (2013). Multicore-based vector coprocessor sharing for 
performance and energy gains. ACM Transactions on Embedded Computing Systems. 13, 2. 

Spiridon F. Beldianu and Sotirios G. Ziavras. (March, 2015). Performance-energy optimizations for shared 
vector accelerators in multicores. IEEE Transactions on Computers.  64, 3, 805-817. 

XILINX INC. 2011. AXI Reference Guide, http://www.xilinx.com/support/documentation/ip_documentation/ 
ug761_axi_reference_guide.pdf 

XILINX INC. 2010. MicroBlaze Processor Reference Guide, http://www.xilinx.com/support/ 
documentation/sw_manuals/mb_ref_guide.pdf 

Andreas Ehliar. 2014. Area efficient floating-point adder and multiplier with IEEE-754 compatible 
semantics. IEEE International Conference on Field-Programmable Technology.  131-138. 

Wonyong Sung and Sanjit K. Mitra. 1987. Implementation of digital filtering algorithms using pipelined 
vector processors. Proceedings of the IEEE. 75, 9, 1293-1303. 

XILINX INC. 2012. XPower Analyzer User Guide. Xilinx, www.xilinx.com/support/documentation 
/user_guides/ug440.pdf 


