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ABSTRACT 

 

HERA (HEterogeneous Reconfigurable Architecture) is 

an FPGA-based mixed-mode reconfigurable computing 

system that we have designed and implemented for the 

simultaneous execution of a variety of parallel processing 

modes. These modes are SIMD (Single-Instruction, 

Multiple-Data), MIMD (Multiple-Instruction, Multiple-

Data) and M-SIMD (Multiple-SIMD). Each processing 

element (PE) is centered on a single-precision IEEE 754 

floating-point unit (FPU) and supports dynamic switching 

between SIMD and MIMD at runtime. Mixed-mode 

parallelism has the potential to best match the 

characteristics of subtasks in any application, thus 

resulting in sustained high performance. In this paper, we 

present our SIMD, MIMD and mixed-mode 

implementations on HERA of parallel LU factorization 

for sparse Block-Diagonal-Bordered (BDB) matrices. 

Experimental results with matrices of size up to 5000 x 

5000 show that mixed-mode scheduling can improve the 

performance by up to 24.7% compared to the SIMD 

implementation and 22.2% compared to the MIMD 

implementation. We also show that HERA outperforms a 

commercial PC with a 2GHz Pentium IV processor for all 

the test matrices.  
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1. Introduction 

 
SIMD and MIMD are the two fundamental modes in 

parallel processing. SIMD is attractive because it saves 

both hardware (uses only one control unit) and memory 

(only one copy of the program needs to be stored). Low 

PE-to-PE communication and synchronization overheads 

make it superior to MIMD in performing fine-grain 

algorithms [1-5]. Many numerical analysis algorithms, 

such as large-scale matrix multiplication and LU 

factorization, have a very high degree of structured, fine-

grain parallelism and can benefit substantially from the 

SIMD mode. SIMD’s superior ability for data parallelism 

has created immense demand in such areas as weather 

analysis and gene study. From the implementation point 

of view, SIMD is also very efficient in silicon layout. 

However, SIMD machines are frequently under-utilized 

when programs are abundant in conditional instructions 

due to SIMD’s implicit synchronization. On the other 

hand, MIMD machines consist of independent PEs and 

are very good at conditional branching.  However, 

numerous scientific and engineering problems, such as 

matrix operations and image processing, are primarily 

data parallel (i.e., SIMD) in nature and may perform 

poorly under MIMD. Recent years also have seen re-

evaluation of this SIMD vs. MIMD philosophy [4].  

SIMD machines were very popular in the late 1980s 

and early 1990s [2, 4, 5]. With steady performance 

improvements in COTS microprocessors, MIMD 

machines have become more accessible than SIMD 

machines; because the latter are usually implemented with 

custom chips, and suffer from high cost and resilience to 

hardware upgrades.   

We all know from our experience with high-

performance computing that the performance and 

efficiency of an algorithm highly depend on its good 

match with the target hardware. However, a typical 

application may have several subtasks that require 

different architectures. For a given machine configuration, 

the performance for most subtasks is not optimal because 

of the architecture's expected unsuitability. Mixed-mode 

heterogeneous computing, where the machine's 

operational mode (i.e., SIMD, MIMD, M-SIMD, etc.) 

changes dynamically as deemed suitable by the 

application, has proved to be a very effective approach in 

alleviating this problem and potentially getting the great 

performance by wishfully employing the most suitable 

architecture each time for the individual subtasks in the 

application [3].  Several prototype mixed-mode systems 

[3, 6-7] were implemented before the early 1990s by 

using COTS components.  In these systems, the 

processors designated as the control units and the 

computing PEs were most often exclusively defined at 

static time and there was an interconnection network 

between these two groups. Thus, the role assignment of a 

processor either as a control unit or a PE was fixed at 

runtime. This can cause performance degradation due to 

inefficient utilization of the available resources. Also, 
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these machines suffered from high communication 

overheads.  

Our HERA computer is dynamically reconfigurable 

and supports mixed-mode processing. It is based on new 

generation Xilinx platform FPGAs. FPGA-based 

reconfigurable computing is going through a revolution 

with the recent advent of multi-million gate devices. It is 

now viable to build programmable parallel systems that 

also support floating-point arithmetic on a single FPGA 

chip. It has been shown in [10] that the peak floating-

point performance of FPGAs has outnumbered in the last 

1-2 years that of modern microprocessors and is growing 

much faster than the latter. FPGA-based reconfigurable 

systems also introduce another dimension of flexibility; 

their runtime resource reconfiguration can further boost 

system performance. Every PE in HERA is built around 

an IEEE 754 single-precision FPU. It is equipped with its 

own control unit so that not only the whole system is 

dynamically partitionable, like previous mixed-mode 

systems, but also the role of each PE can be changed 

dynamically at runtime by using an HERA instruction. 

Thus, the system can be reconfigured dynamically at 

runtime to support a variety of independent or cooperating 

computing modes, such as SIMD, MIMD and M-SIMD, 

to best match in the time spectrum all subtask 

characteristics in a single application. The low 

communication overheads and very low cost of our 

approach add much needed promise to the high-

performance, low-cost computing field. 

The LU factorization [8] of large sparse matrices is a 

computation greedy process and plays such an important 

role in many scientific applications that its efficient 

implementation has long been the focus of many research 

efforts. In [12] we present our results of parallel LU 

factorization for sparse matrices permuted into the BDB 

format; the target system was an in-house developed 

configurable, IP-based multiprocessor that was embedded 

into an Altera FPGA. In this paper, we propose SIMD, 

MIMD and mixed-mode scheduling schemes for BDB-

based LU factorization on our new HERA system that 

comprises 36 PEs.    

The paper is organized as follows: In Section 2, an 

overview of the design and implementation of HERA is 

presented.  Section 3 describes a parallel LU factorization 

algorithm for sparse BDB matrices. Its SIMD, MIMD and 

mixed mode mappings onto HERA are presented in 

Section 4. Experimental results and analysis are given in 

Section 5. In order to have a reference point to evaluate 

the computing power of the HERA computer, we also 

provide the performance of the sequential BDB LU 

algorithm on a commercial PC for the same matrices. 

Conclusions follow in Section 6. 

 

2. HERA Architecture Overview 

 
Figure 1 shows the general diagram of our HERA 

machine with m x n PEs interconnected via a 2-D mesh 

network. The 2-D mesh topology is ideal for our target 

matrix-based applications and is also scalable. The 

computing fabric is controlled by the system Sequencer 

that communicates with the host processor via the PCI 

bus. Interrupt logic between the Sequencer and the host 

processor is implemented. The Global Control Unit 

(GCU) is included in the system Sequencer and fetches 

instructions from the global program memory (GPM) for 

PEs operating in SIMD. The total number of PEs is 

determined by the available resources in the target FPGA 

devices and the resource requirements of the application. 

The presence of FPGAs also makes it possible to 

dynamically adjust the capabilities of PEs at runtime to 

match the computation characteristics of the application.  

We employ fast, direct NEWS (North, East, West and 

South) connections for communications between nearest 

neighbors. Nearest PE pairs on the same row or column 

can also communicate through one port of the data 

memory of the PE to the west or north. Since every PE 

also has a Local Control Unit (LCU), the decoding of 

instructions is carried out by the LCU. By giving the 

decoding work to the LCUs, we avoid broadcasting a 

large number of control signals to all the PEs under SIMD 

mode. We still need global communication. Every column 

has a Cbus and all the Cbuses are connected to the 

Column Bus. 
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We employed a RISC load-store architecture for our 

PE to save hardware resources. All data paths are 32 bits. 

The PE contains several major components: a 7-stage, 

pipelined, 32-bit IEEE 754 FPU, an LCU, 32-bit dual-

ported local program memory (LPM), 32-bit dual-ported 

local data memory (LDM) and eight NEWS 

communication ports. The sizes of LPM and LDM were 

determined by the number of memory blocks in the FPGA 

device. The A port of LDM is accessed by the local PE, 

and the B port is shared with the neighbors to the south 

and east. A PE can directly write to or read from the 



 

LDMs of its west and north neighbors via their B ports. 

This feature facilitates efficient large block data transfers 

and data I/O.  

Currently HERA implements about 30 instructions 

supporting floating-point arithmetic, branch and jump, 

memory access, inter-PE communication and system 

control.  HERA supports both global and local PE 

masking. Every PE in the processor array is assigned an 

ID number and this number serves in global masking. The 

last seven bits of all the instructions select a particular PE 

or a group of PEs. Every PE holds a mask bit and 

computes the mask value with every instruction. A 

specific bit in instructions selects between global and 

local masking. The destination register of Get_N/E/W/S 

instructions or the source register of Send_N/E/W/S 

instructions can also be one of the four NEWS_OUT 

registers. In this innovative manner, data can bypass a PE 

to reach the next PE because we can use shared NEWS 

registers between PE pairs. Each PE comprises 32 32-bit 

general-purpose registers (GPRs) and several system 

registers: local instruction register (LIR), local program 

counter (LPC), data memory address register (DMAR), 

program memory address register (PMAR), local status 

register (LSR), 1-bit local mask register (LMR) and 

operating mode register (OMR).  Similar to some other 

RISC processors, the R0 GPR is fixed at zero.  

The operating mode of each PE is set dynamically by 

the host processor through its OMR by using the 

Configure instruction:  “0” indicates SIMD and “1” sets 

the PE into MIMD. All PEs operate in SIMD when 

powered up. To switch a PE to MIMD from SIMD, the 

sequencer first distributes the instructions to the LPM of 

the PE through the Column Bus and Cbus, and then sends 

a JumpI instruction to the PE with the starting address in 

the MIMD code. OMR is set to “1”. To switch back to 

SIMD, OMR is reset to “0” and the PE then listens for the 

broadcasting of a global instruction. The data in the 

registers and memories remain intact during switching. 

The instructions come from GPM in SIMD and from 

LPM in MIMD. The masking in the SIMD mode can use 

the PE’s ID number and/or LMR. 

Our first implementation was carried out on the high-

performance WILDSTARII-PCI [11] FPGA board from 

Annapolis Microsystems. The board is populated with 

two tightly coupled Xilinx XC2V6000 Virtex II FPGA 

devices and 24MB of DDRII SRAM memory. 36 PEs fit 

into the two FPGAs. The board communicates with the 

host computer via the PCI bus interface. Every PE is 

assigned 4KB of LPM and 8KB of LDM. The interface to 

the PCI bus operates at 133MHz and the datapath is 64 

bits. The computing fabric is clocked at 80MHz.  

 

3. Parallel LU Factorization of BDB Matrices 
 

Due to the limited space in this paper, we just present 

an overview of the algorithm. Complete details can be 

found in [12]. 

LU factorization is a classic and widely employed 

direct method that solves a large system of simultaneous 

linear equations presented in the form Ax = b; A is an N x 

N nonsingular matrix, x is a vector of N unknowns and b 

is a given vector of length N. It works as follows. We first 

factorize A so that A = LU, where L is a lower triangular 

matrix and U is an upper triangular matrix. Their elements 

can be determined by 
1

1

1
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U A L U for j i N
−
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= − ∈�  (2), respectively [8] if L 

has 1’s on its diagonal. Once L and U are formed, the 

unknown vector x can be identified by forward reduction 
and backward substitution, respectively, using the two 

equations Ly = b and Ux = y. Since LU factorization is a 

computation-intensive procedure, its parallel solution has 

been a quite active research area. Thus, plenty of parallel 

techniques have appeared in the literature.  

Although the sequential LU factorization of sparse 

matrices appears easy to parallelize, it suffers from a 

significantly unique dynamic problem corresponding to 

the fill-ins (i.e., zero-elements that receive new values). 

Our earlier research [12] has revealed that it is often 

inefficient to extract instruction level parallelism (ILP) in 

the LU factorization of sparse matrices due to irregular 

data dependencies and the limited scalability of the 

parallel implementations. We believe that data 

partitioning is an efficient and scalable approach to 

parallelize LU factorization algorithms.  
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One of the partitioning schemes is to reorder and 

partition the A matrix into the BDB form by the node-

tearing technique [9] or similar heuristics. In the BDB 

form shown in Figure 2, the Aik ’s represent matrix sub-

blocks and all the non-zero elements in the matrix appear 

only inside these sub-blocks. For every fixed i, the blocks 

Aii, Ain and Ani are said to form a 3-block group, where 

i∈[1, n-1] and n ≤ N. Ann is known as the last block. The 

Aii’s will be referred to as the diagonal blocks, and Ain 

and Ani will be called right border block and bottom 

border block, respectively, where i ∈[1, n]. The sizes of 

all the blocks after ordering are determined by the 

physical characteristics of the matrices and the ordering 

parameters, such as the maximum number of nodes in a 

block. For example, Figure 3 shows the nonzero patterns 

of a Jacobian matrix before and after ordering for the 

Newton’s power flow solution of a real 7917-bus power 

network. The Jacobian has dimension larger than the 

number of buses.  



 

          
 
        (a) Original matrix                      (b) Ordered matrix  
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Since all non-border, off-diagonal blocks contain only 

0’s, if we apply equations (1) and (2) to a BDB matrix, we 

can find out that there will be no fill-ins in these blocks 

during factorization. Thus, the resulting matrix keeps the 

same BDB form, as shown in Eq. (3).  

 

11 11 1

22 22 2

33 33 3

1 2 3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 ... ... 0 0 0 ... ...

... 0 0 0 ...

n

n

n

n n n nn nn

L U U

L U U

L U U

L L L L U

� �� �
� �� �
� �� �� �� �
� �� �
� �� �
� �� �
� �� �� �� �

  (3) 

where  

1

1

1

1

, [1, 1]

kk kk kk

kn knkk

nk nk kk

n

nn nn nn nk kn

k

A L U

U L A

L A U for k n

L U A L U

−

−

−

=

=

=

= ∈ −

= −�

  

 The calculations of , , andkk kk nk knL U L U for different k’s 

(i.e., 3-block groups) are independent. So we can 

distribute different 3-block groups to different processors 

in order to be factored in parallel with no data exchanges 

until the factorization of Ann. The last block, Ann, requires 

data produced in all the right and bottom border blocks, 

so its factorization is the last step. We can see that the 

sparse BDB matrix format presents great advantages for 

parallel implementation. 

In summary, the parallel BDB LU factorization 

includes the following jobs, 

1. FAC: Independent factorization of all the 3-block 

groups. There is no data communication between PEs 

in this category of work. 

2. MAC: Independent multiplication of the factored 

border block pairs ( nk knL U ) and (local) accumulation of 

the partial products inside each PE to later produce the 

inner product 
1

1

im

nk kn

k

L U
−

=

� , where mi is the total number of 

3-block groups assigned to PEi and 
36

1

1i

i

m n
=

= −� . Every 

resulting product has the same size as Ann. This work 

can be overlapped with the FAC work as long as the 

corresponding L and U blocks are already factored. 

3. PAC:  Parallel (global) accumulation of the partial 

results in all PEs in parallel after no more FAC or 

MAC tasks are left. This work can also be overlapped 

with FAC and MAC work. 

4.  LAST: Parallel LU factorization of the last block upon 

finishing all the factorization and multiplication work. 

The beginning of this work starts with the 

synchronization of the involved PEs. The last block is 

normally dense. 

 

4. Mapping the Algorithm onto HERA 
 

The parallel LU factorization of sparse BDB matrices 

involves irregular computation patterns and blocks of 

various sizes as a result of the physical characteristics of 

the underlying problem. The higher the variance in block 

sizes is, the larger will be the resulting PE idle times 

under the SIMD mode of computation. However, many 

parts of the algorithm could still benefit from an SIMD 

implementation. As a natural sequence, a combination of 

appropriate parallel execution modes should give better 

results. Thus, we develop in this section three efficient 

scheduling approaches for this problem in order to 

investigate the performance of SIMD, MIMD and mixed-

mode implementations, respectively. For this application, 

our HERA machine comprises 36 PEs, which are 

configured in a 6 x 6 mesh layout 

 

4.1 SIMD Implementation 

 

The factorization of all independent 3-block groups 

involves the same operations, so it is only natural to 

consider its implementation in the SIMD mode. Different 

PEs work on different 3-block groups, so there is no data 

communication until all 3-block groups have been 

processed. The PAC work is carried out in a logical 

binary tree and takes 
2log p	 
� �  steps, where p is the number 

of PEs (36 in HERA). The factorization of the last block 

is also carried out in SIMD and the data for the last block 

are scattered among the participating PEs. Depending on 

the size of the last block, it is possible that not all the PEs 

take part in the last factorization in an effort to reduce the 

communication overhead.  The total execution time is 

21 2
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36
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= + + =	 
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�   and 

n is the total number of independent diagonal blocks.  

1 ( )
i

FAC MULT +

 
is the maximum execution time among the 

PEs for the 
th

i iteration. 2T  is the time to perform one 

addition and communication during the PAC work. 2T  

may vary for operations between PEs that are not direct 

neighbors. We ignore this variance for simplicity. The 

shared memory port for three neighbors in HERA helps 

this procedure. The total number of iterations is m since 

this is the maximum number of 3-block groups that a PE 

receives.  lastT  corresponds to the execution time for the 

last block. 

 



 

4.2 MIMD Implementation 

 

Sometimes there is large variance in the sizes of the 3-

block groups, especially for matrices in the real world 

(such as the electric power distribution networks). To 

minimize PE idle times, it may be more efficient to carry 

out the execution under MIMD in these cases. In this 

mode, all PEs work in MIMD at all times, including the 

factorization of the last block. Every PE fetches data and 

instructions from its own local memories (LDM and 

LPM). A PE is forced to be idle if there is no more task 

left, except the factorization of the last block. The PAC 

work may begin while some PEs are still working on 

FAC or MAC tasks. The worst case execution time is 

21 2
1 36
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j
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i
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i
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≤ ≤
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+= + 	 
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i

FAC MACT +  is the execution time of the thi  iteration for 

PEj that processes mj 3-block groups.  

 

4.3 Mixed-Mode Implementation 

 

To map an application algorithm onto a mixed-mode 

system, the main focus is on identifying the optimal mode 

of parallelism for each subtask. We should also take into 

account the costs incurred when switching between 

different modes: SIMD/MIMD, SIMD/M-SIMD and 

MIMD/M-SIMD. The following is the general scheduling 

procedure to carry out parallel LU factorization of BDB 

matrices on our mixed-mode machine.  

Step 1 Identify 3-block groups of comparable size and 

put them into different task queues. Divide and 

configure the system into M-SIMD based on the 

task information. Assign 3-block groups from 

each queue to the PEs working in the same 

SIMD group, and perform the FAC and MAC 

work on these groups until the number of 

remaining 3-block groups is less than the number 

of PEs (i.e., 36). For example, suppose n=101 

(i.e., 100 3-block groups) and the distribution of 

the sizes of the diagonal blocks is {50(80), 

20(60), 15(40), 15(20)}, where 50(80) stands for 

50 blocks of size close to 80 x 80. One possible 

PE mode configuration in this stage for this 

matrix is: (a) SIMD(36), for 36 groups with 

diagonal size 80 x 80; (b) SIMD1(14), for the 

remaining 14 80-blocks and SIMD2(20), for 20 

60-blocks; (c) After the 20 60-blocks are finished, 

reconfigure SIMD2(20) to SIMD2(15), for 15 

40-blocks and SIMD3(6), for 6 20-blocks. 

SIMD(x) denotes that x PEs are in this SIMD 

group.  

Step 2     Assign the remaining 3-block groups in such a 

way that groups of comparable size go to the 

same column of PEs (see Figure 1) and every PE 

has the largest possible number of idle nearest 

neighbors. This is an effort to facilitate the 

following PAC work. If necessary, reconfigure 

the system into a different M-SIMD layout.  

Step 3     A PE is reconfigured into MIMD as soon as it 

finishes its work and no more 3-block group is 

waiting in the task queue. 

Step 4     Assign each PE in MIMD to the multiplication 

of a pair of (row and column) factored border 

blocks. Since the LDM has a shared port with its 

east and south neighbors, every idle PE will help 

its neighbors after it finishes its own work; no 

data transfer incurs in this process. 

Step 5     After the factorization of all the 3-block groups 

and the multiplication of factored border blocks, 

reconfigure all the PEs again into the SIMD 

mode to carry out the PAC work.  

Step 6     Factor the last block in the SIMD mode. 

 

    Figure 4 shows���� a typical PE mode assignment in the 

above procedure for large BDB matrices. When the number 

of tasks in one or more task queues is larger than 36, we 

start with one or more single SIMD executions, which is a 

special case of M-SIMD in Step 1.   
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5. Performance Results and Analysis 

 
Experiments implementing the above three scheduling 

schemes were performed on the 36-PE HERA machine.  

Table 1 shows the characteristics of the test matrices and 

the execution times under these modes are presented in 

Figure 5. We also implemented the BDB LU factorization 

algorithm on a DELL Precision 8200 PC, which is 

equipped with an Intel Pentium IV 2GHz microprocessor 

and 256MB of memory. This processor was implemented 

using an 8-layer copper 0.13um process and the FPGA we 

are using was built with an 8-layer aluminum 0.15um 

process. It is obvious that mixed-mode parallelism 

consumes less time for all the matrices and the advantage 

increases as the size of the matrices increases. In the 

SIMD mode, some PEs are sometimes idle during the 

factorization of the 3-block groups and the multiplication 

of the border blocks. This results from the irregularity in 

the size and shape of the assigned 3-block groups. Due to 

insufficient work, for the 1000 x 1000 matrix the 

performances of the SIMD, MIMD and mixed modes are 

very close. In our architecture, the communication cost is 

(M-SIMD) 

(M-SIMD) 

(M-SIMD 

       & 

   MIMD   ) 

 

  (SIMD) 

 

(SIMD) 

 

(M-SIMD 

       & 

   MIMD   ) 



 

not significant higher than that of SIMD, so their 

performance is also close. However, MIMD tends to 

perform better than SIMD in this algorithm for large 

matrices. HERA outperforms the PC under all the 

execution modes and actually its execution time increases 

at a lower rate than that for the PC. 

 
��������&(��&(��&(��&(������	��	��	��	��+���������������� �������������������+���������������� �������������������+���������������� �������������������+���������������� �����������������������

Matrix size (N) 1000  2000  3000  4000  5000  

Total diagonal 

blocks (n) 

31 71 89 117 145 

Dimension of 

the largest 

diagonal block 

33 51 57 80 129 

Dimension of 

the smallest 

diagonal block 

19 38 21 25 33 

Dimension of 

the last diagonal 

block 

35 80 121 153 224 
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6. Conclusions 

 
Mixed-mode parallelism can match better the 

requirements of application algorithms throughout 

execution. Thus, it can deliver much better performance 

than the pure SIMD and MIMD execution modes. Recent 

significant advances in new generation FPGAs provide a 

viable and cost-effective approach in building high-

performance parallel computing platforms that target 

scientific computing. We have presented here SIMD, 

MIMD and mixed-mode implementations of parallel LU 

factorization for large sparse BDB matrices on our 36-PE 

HERA machine. HERA is a reconfigurable, pipelined 

computing engine embedded in platform FPGAs. It is 

flexible enough to allow mixed-mode execution realizing 

various parallel processing modes such as SIMD, MIMD 

and M-SIMD. Our design also supports floating-point 

operations. The advantage of mixed-mode parallelism is 

reflected in the experimental results which demonstrate 

higher performance with increases in the matrix size. 

Mixed mode is the best choice for all the matrices in this 

problem. MIMD tends to outperform SIMD for large 

matrices. We will continue to include additional features 

in our architecture and explore more mapping techniques 

for matrix-based problems. The benefits of mixed-mode 

execution should become more visible with applications 

that have more irregular computation and communication 

patterns, and involve more frequent conditional 

executions. With the anticipated speed and density 

improvements for FPGAs, the high performance and cost-

effectiveness of our approach will become even more 

preeminent in the near future. 
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