

Mixed-Mode Scheduling for Parallel LU Factorization

of Sparse Matrices on the Reconfigurable HERA Computer

Xiaofang Wang and Sotirios G. Ziavras

Department of Electrical and Computer Engineering

New Jersey Institute of Technology

Newark, NJ 07102, USA

 {xw23, ziavras}@njit.edu

ABSTRACT

HERA (HEterogeneous Reconfigurable Architecture) is

an FPGA-based mixed-mode reconfigurable computing

system that we have designed and implemented for the

simultaneous execution of a variety of parallel processing

modes. These modes are SIMD (Single-Instruction,

Multiple-Data), MIMD (Multiple-Instruction, Multiple-

Data) and M-SIMD (Multiple-SIMD). Each processing

element (PE) is centered on a single-precision IEEE 754

floating-point unit (FPU) and supports dynamic switching

between SIMD and MIMD at runtime. Mixed-mode

parallelism has the potential to best match the

characteristics of subtasks in any application, thus

resulting in sustained high performance. In this paper, we

present our SIMD, MIMD and mixed-mode

implementations on HERA of parallel LU factorization

for sparse Block-Diagonal-Bordered (BDB) matrices.

Experimental results with matrices of size up to 5000 x

5000 show that mixed-mode scheduling can improve the

performance by up to 24.7% compared to the SIMD

implementation and 22.2% compared to the MIMD

implementation. We also show that HERA outperforms a

commercial PC with a 2GHz Pentium IV processor for all

the test matrices.

Key Words: Reconfigurable architecture, SIMD/MIMD

mixed-mode computing, Floating-point arithmetic,

Parallel LU factorization, Bock-Diagonal-Bordered

matrices, Sparse matrices

1. Introduction

SIMD and MIMD are the two fundamental modes in

parallel processing. SIMD is attractive because it saves

both hardware (uses only one control unit) and memory

(only one copy of the program needs to be stored). Low

PE-to-PE communication and synchronization overheads

make it superior to MIMD in performing fine-grain

algorithms [1-5]. Many numerical analysis algorithms,

such as large-scale matrix multiplication and LU

factorization, have a very high degree of structured, fine-

grain parallelism and can benefit substantially from the

SIMD mode. SIMD’s superior ability for data parallelism

has created immense demand in such areas as weather

analysis and gene study. From the implementation point

of view, SIMD is also very efficient in silicon layout.

However, SIMD machines are frequently under-utilized

when programs are abundant in conditional instructions

due to SIMD’s implicit synchronization. On the other

hand, MIMD machines consist of independent PEs and

are very good at conditional branching. However,

numerous scientific and engineering problems, such as

matrix operations and image processing, are primarily

data parallel (i.e., SIMD) in nature and may perform

poorly under MIMD. Recent years also have seen re-

evaluation of this SIMD vs. MIMD philosophy [4].

SIMD machines were very popular in the late 1980s

and early 1990s [2, 4, 5]. With steady performance

improvements in COTS microprocessors, MIMD

machines have become more accessible than SIMD

machines; because the latter are usually implemented with

custom chips, and suffer from high cost and resilience to

hardware upgrades.

We all know from our experience with high-

performance computing that the performance and

efficiency of an algorithm highly depend on its good

match with the target hardware. However, a typical

application may have several subtasks that require

different architectures. For a given machine configuration,

the performance for most subtasks is not optimal because

of the architecture's expected unsuitability. Mixed-mode

heterogeneous computing, where the machine's

operational mode (i.e., SIMD, MIMD, M-SIMD, etc.)

changes dynamically as deemed suitable by the

application, has proved to be a very effective approach in

alleviating this problem and potentially getting the great

performance by wishfully employing the most suitable

architecture each time for the individual subtasks in the

application [3]. Several prototype mixed-mode systems

[3, 6-7] were implemented before the early 1990s by

using COTS components. In these systems, the

processors designated as the control units and the

computing PEs were most often exclusively defined at

static time and there was an interconnection network

between these two groups. Thus, the role assignment of a

processor either as a control unit or a PE was fixed at

runtime. This can cause performance degradation due to

inefficient utilization of the available resources. Also,

*This work was supported in part by the U.S. Department of Energy

under grant DE-FG02-03CH11171.

these machines suffered from high communication

overheads.

Our HERA computer is dynamically reconfigurable

and supports mixed-mode processing. It is based on new

generation Xilinx platform FPGAs. FPGA-based

reconfigurable computing is going through a revolution

with the recent advent of multi-million gate devices. It is

now viable to build programmable parallel systems that

also support floating-point arithmetic on a single FPGA

chip. It has been shown in [10] that the peak floating-

point performance of FPGAs has outnumbered in the last

1-2 years that of modern microprocessors and is growing

much faster than the latter. FPGA-based reconfigurable

systems also introduce another dimension of flexibility;

their runtime resource reconfiguration can further boost

system performance. Every PE in HERA is built around

an IEEE 754 single-precision FPU. It is equipped with its

own control unit so that not only the whole system is

dynamically partitionable, like previous mixed-mode

systems, but also the role of each PE can be changed

dynamically at runtime by using an HERA instruction.

Thus, the system can be reconfigured dynamically at

runtime to support a variety of independent or cooperating

computing modes, such as SIMD, MIMD and M-SIMD,

to best match in the time spectrum all subtask

characteristics in a single application. The low

communication overheads and very low cost of our

approach add much needed promise to the high-

performance, low-cost computing field.

The LU factorization [8] of large sparse matrices is a

computation greedy process and plays such an important

role in many scientific applications that its efficient

implementation has long been the focus of many research

efforts. In [12] we present our results of parallel LU

factorization for sparse matrices permuted into the BDB

format; the target system was an in-house developed

configurable, IP-based multiprocessor that was embedded

into an Altera FPGA. In this paper, we propose SIMD,

MIMD and mixed-mode scheduling schemes for BDB-

based LU factorization on our new HERA system that

comprises 36 PEs.

The paper is organized as follows: In Section 2, an

overview of the design and implementation of HERA is

presented. Section 3 describes a parallel LU factorization

algorithm for sparse BDB matrices. Its SIMD, MIMD and

mixed mode mappings onto HERA are presented in

Section 4. Experimental results and analysis are given in

Section 5. In order to have a reference point to evaluate

the computing power of the HERA computer, we also

provide the performance of the sequential BDB LU

algorithm on a commercial PC for the same matrices.

Conclusions follow in Section 6.

2. HERA Architecture Overview

Figure 1 shows the general diagram of our HERA

machine with m x n PEs interconnected via a 2-D mesh

network. The 2-D mesh topology is ideal for our target

matrix-based applications and is also scalable. The

computing fabric is controlled by the system Sequencer

that communicates with the host processor via the PCI

bus. Interrupt logic between the Sequencer and the host

processor is implemented. The Global Control Unit

(GCU) is included in the system Sequencer and fetches

instructions from the global program memory (GPM) for

PEs operating in SIMD. The total number of PEs is

determined by the available resources in the target FPGA

devices and the resource requirements of the application.

The presence of FPGAs also makes it possible to

dynamically adjust the capabilities of PEs at runtime to

match the computation characteristics of the application.

We employ fast, direct NEWS (North, East, West and

South) connections for communications between nearest

neighbors. Nearest PE pairs on the same row or column

can also communicate through one port of the data

memory of the PE to the west or north. Since every PE

also has a Local Control Unit (LCU), the decoding of

instructions is carried out by the LCU. By giving the

decoding work to the LCUs, we avoid broadcasting a

large number of control signals to all the PEs under SIMD

mode. We still need global communication. Every column

has a Cbus and all the Cbuses are connected to the

Column Bus.

Column Bus

Host

Processor

M ain

Mem ory

PE(1,1)

PCI Bus

D
a
ta

 B
u

s

Dbus1

PE(2,1)Dbus2

PE(m ,1)Dbusm

PE(1,2)

PE(2,2)

PE(m ,2)

PE(1,n)

PE(2,n)

PE(m,n)

Cbus_1 Cbus_2 Cbus_3 Cbus_n

Sequencer GPM

D
a
ta

 B
u

s

GDM

Dbus1

Dbus2

Dbusm

��������������������������	��
��
����������������������	��
��
����������������������	��
��
����������������������	��
��
��������������������

We employed a RISC load-store architecture for our

PE to save hardware resources. All data paths are 32 bits.

The PE contains several major components: a 7-stage,

pipelined, 32-bit IEEE 754 FPU, an LCU, 32-bit dual-

ported local program memory (LPM), 32-bit dual-ported

local data memory (LDM) and eight NEWS

communication ports. The sizes of LPM and LDM were

determined by the number of memory blocks in the FPGA

device. The A port of LDM is accessed by the local PE,

and the B port is shared with the neighbors to the south

and east. A PE can directly write to or read from the

LDMs of its west and north neighbors via their B ports.

This feature facilitates efficient large block data transfers

and data I/O.

Currently HERA implements about 30 instructions

supporting floating-point arithmetic, branch and jump,

memory access, inter-PE communication and system

control. HERA supports both global and local PE

masking. Every PE in the processor array is assigned an

ID number and this number serves in global masking. The

last seven bits of all the instructions select a particular PE

or a group of PEs. Every PE holds a mask bit and

computes the mask value with every instruction. A

specific bit in instructions selects between global and

local masking. The destination register of Get_N/E/W/S

instructions or the source register of Send_N/E/W/S

instructions can also be one of the four NEWS_OUT

registers. In this innovative manner, data can bypass a PE

to reach the next PE because we can use shared NEWS

registers between PE pairs. Each PE comprises 32 32-bit

general-purpose registers (GPRs) and several system

registers: local instruction register (LIR), local program

counter (LPC), data memory address register (DMAR),

program memory address register (PMAR), local status

register (LSR), 1-bit local mask register (LMR) and

operating mode register (OMR). Similar to some other

RISC processors, the R0 GPR is fixed at zero.

The operating mode of each PE is set dynamically by

the host processor through its OMR by using the

Configure instruction: “0” indicates SIMD and “1” sets

the PE into MIMD. All PEs operate in SIMD when

powered up. To switch a PE to MIMD from SIMD, the

sequencer first distributes the instructions to the LPM of

the PE through the Column Bus and Cbus, and then sends

a JumpI instruction to the PE with the starting address in

the MIMD code. OMR is set to “1”. To switch back to

SIMD, OMR is reset to “0” and the PE then listens for the

broadcasting of a global instruction. The data in the

registers and memories remain intact during switching.

The instructions come from GPM in SIMD and from

LPM in MIMD. The masking in the SIMD mode can use

the PE’s ID number and/or LMR.

Our first implementation was carried out on the high-

performance WILDSTARII-PCI [11] FPGA board from

Annapolis Microsystems. The board is populated with

two tightly coupled Xilinx XC2V6000 Virtex II FPGA

devices and 24MB of DDRII SRAM memory. 36 PEs fit

into the two FPGAs. The board communicates with the

host computer via the PCI bus interface. Every PE is

assigned 4KB of LPM and 8KB of LDM. The interface to

the PCI bus operates at 133MHz and the datapath is 64

bits. The computing fabric is clocked at 80MHz.

3. Parallel LU Factorization of BDB Matrices

Due to the limited space in this paper, we just present

an overview of the algorithm. Complete details can be

found in [12].

LU factorization is a classic and widely employed

direct method that solves a large system of simultaneous

linear equations presented in the form Ax = b; A is an N x

N nonsingular matrix, x is a vector of N unknowns and b

is a given vector of length N. It works as follows. We first

factorize A so that A = LU, where L is a lower triangular

matrix and U is an upper triangular matrix. Their elements

can be determined by
1

1

1
(*) * , [1, 1]

j

ij ij ik kj

jjk

L A L U for j i
U

−

=

= − ∈ −� (1) and

1

1

* , [,]
i

ij ij ik kj

k

U A L U for j i N
−

=

= − ∈� (2), respectively [8] if L

has 1’s on its diagonal. Once L and U are formed, the

unknown vector x can be identified by forward reduction
and backward substitution, respectively, using the two

equations Ly = b and Ux = y. Since LU factorization is a

computation-intensive procedure, its parallel solution has

been a quite active research area. Thus, plenty of parallel

techniques have appeared in the literature.

Although the sequential LU factorization of sparse

matrices appears easy to parallelize, it suffers from a

significantly unique dynamic problem corresponding to

the fill-ins (i.e., zero-elements that receive new values).

Our earlier research [12] has revealed that it is often

inefficient to extract instruction level parallelism (ILP) in

the LU factorization of sparse matrices due to irregular

data dependencies and the limited scalability of the

parallel implementations. We believe that data

partitioning is an efficient and scalable approach to

parallelize LU factorization algorithms.

��������	��������������������������	��������������������������	��������������������������	����������������������

����
One of the partitioning schemes is to reorder and

partition the A matrix into the BDB form by the node-

tearing technique [9] or similar heuristics. In the BDB

form shown in Figure 2, the Aik ’s represent matrix sub-

blocks and all the non-zero elements in the matrix appear

only inside these sub-blocks. For every fixed i, the blocks

Aii, Ain and Ani are said to form a 3-block group, where

i∈[1, n-1] and n ≤ N. Ann is known as the last block. The

Aii’s will be referred to as the diagonal blocks, and Ain

and Ani will be called right border block and bottom

border block, respectively, where i ∈[1, n]. The sizes of

all the blocks after ordering are determined by the

physical characteristics of the matrices and the ordering

parameters, such as the maximum number of nodes in a

block. For example, Figure 3 shows the nonzero patterns

of a Jacobian matrix before and after ordering for the

Newton’s power flow solution of a real 7917-bus power

network. The Jacobian has dimension larger than the

number of buses.

 (a) Original matrix (b) Ordered matrix

����
������� �	�������� �	�������� �	�������� �	� ���� ����� ����� ����� �������� ��������� � � �� �!"#$������� ��������� � � �� �!"#$������� ��������� � � �� �!"#$������� ��������� � � �� �!"#$���� �������� �!"#$��!"#$��!"#$��!"#$�
%���&���� �������%���&���� �������%���&���� �������%���&���� ������� ��� ��'��� (�'� ���(����� ��� ��'��� (�'� ���(����� ��� ��'��� (�'� ���(����� ��� ��'��� (�'� ���(����� &� ���� ��)� � ����&� ���� ��)� � ����&� ���� ��)� � ����&� ���� ��)� � ����
������������������)�������)�������)�������)���������

Since all non-border, off-diagonal blocks contain only

0’s, if we apply equations (1) and (2) to a BDB matrix, we

can find out that there will be no fill-ins in these blocks

during factorization. Thus, the resulting matrix keeps the

same BDB form, as shown in Eq. (3).

11 11 1

22 22 2

33 33 3

1 2 3

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0 0

0 0 0 0 0 0

... 0 0 0 ...

n

n

n

n n n nn nn

L U U

L U U

L U U

L L L L U

� �� �
� �� �
� �� �� �� �
� �� �
� �� �
� �� �
� �� �� �� �

 (3)

where

1

1

1

1

, [1, 1]

kk kk kk

kn knkk

nk nk kk

n

nn nn nn nk kn

k

A L U

U L A

L A U for k n

L U A L U

−

−

−

=

=

=

= ∈ −

= −�

 The calculations of , , andkk kk nk knL U L U for different k’s

(i.e., 3-block groups) are independent. So we can

distribute different 3-block groups to different processors

in order to be factored in parallel with no data exchanges

until the factorization of Ann. The last block, Ann, requires

data produced in all the right and bottom border blocks,

so its factorization is the last step. We can see that the

sparse BDB matrix format presents great advantages for

parallel implementation.

In summary, the parallel BDB LU factorization

includes the following jobs,

1. FAC: Independent factorization of all the 3-block

groups. There is no data communication between PEs

in this category of work.

2. MAC: Independent multiplication of the factored

border block pairs (nk knL U) and (local) accumulation of

the partial products inside each PE to later produce the

inner product
1

1

im

nk kn

k

L U
−

=

� , where mi is the total number of

3-block groups assigned to PEi and
36

1

1i

i

m n
=

= −� . Every

resulting product has the same size as Ann. This work

can be overlapped with the FAC work as long as the

corresponding L and U blocks are already factored.

3. PAC: Parallel (global) accumulation of the partial

results in all PEs in parallel after no more FAC or

MAC tasks are left. This work can also be overlapped

with FAC and MAC work.

4. LAST: Parallel LU factorization of the last block upon

finishing all the factorization and multiplication work.

The beginning of this work starts with the

synchronization of the involved PEs. The last block is

normally dense.

4. Mapping the Algorithm onto HERA

The parallel LU factorization of sparse BDB matrices

involves irregular computation patterns and blocks of

various sizes as a result of the physical characteristics of

the underlying problem. The higher the variance in block

sizes is, the larger will be the resulting PE idle times

under the SIMD mode of computation. However, many

parts of the algorithm could still benefit from an SIMD

implementation. As a natural sequence, a combination of

appropriate parallel execution modes should give better

results. Thus, we develop in this section three efficient

scheduling approaches for this problem in order to

investigate the performance of SIMD, MIMD and mixed-

mode implementations, respectively. For this application,

our HERA machine comprises 36 PEs, which are

configured in a 6 x 6 mesh layout

4.1 SIMD Implementation

The factorization of all independent 3-block groups

involves the same operations, so it is only natural to

consider its implementation in the SIMD mode. Different

PEs work on different 3-block groups, so there is no data

communication until all 3-block groups have been

processed. The PAC work is carried out in a logical

binary tree and takes
2log p	
� � steps, where p is the number

of PEs (36 in HERA). The factorization of the last block

is also carried out in SIMD and the data for the last block

are scattered among the participating PEs. Depending on

the size of the last block, it is possible that not all the PEs

take part in the last factorization in an effort to reduce the

communication overhead. The total execution time is

21 2

1

()
1

log , where
36

m

simd lasti

i

FAC MUL
n

T T p T T m
=

+

−	

= + + =	
� � � �� �
� and

n is the total number of independent diagonal blocks.

1 ()
i

FAC MULT +

is the maximum execution time among the

PEs for the
th

i iteration. 2T is the time to perform one

addition and communication during the PAC work. 2T

may vary for operations between PEs that are not direct

neighbors. We ignore this variance for simplicity. The

shared memory port for three neighbors in HERA helps

this procedure. The total number of iterations is m since

this is the maximum number of 3-block groups that a PE

receives. lastT corresponds to the execution time for the

last block.

4.2 MIMD Implementation

Sometimes there is large variance in the sizes of the 3-

block groups, especially for matrices in the real world

(such as the electric power distribution networks). To

minimize PE idle times, it may be more efficient to carry

out the execution under MIMD in these cases. In this

mode, all PEs work in MIMD at all times, including the

factorization of the last block. Every PE fetches data and

instructions from its own local memories (LDM and

LPM). A PE is forced to be idle if there is no more task

left, except the factorization of the last block. The PAC

work may begin while some PEs are still working on

FAC or MAC tasks. The worst case execution time is

21 2
1 36

1

()}max { log ,
j

j

m

mimd last
i

PE
i

FAC MACT T p T T+

≤ ≤
=

+= + 	
� �� where

1 ()
i

FAC MACT + is the execution time of the thi iteration for

PEj that processes mj 3-block groups.

4.3 Mixed-Mode Implementation

To map an application algorithm onto a mixed-mode

system, the main focus is on identifying the optimal mode

of parallelism for each subtask. We should also take into

account the costs incurred when switching between

different modes: SIMD/MIMD, SIMD/M-SIMD and

MIMD/M-SIMD. The following is the general scheduling

procedure to carry out parallel LU factorization of BDB

matrices on our mixed-mode machine.

Step 1 Identify 3-block groups of comparable size and

put them into different task queues. Divide and

configure the system into M-SIMD based on the

task information. Assign 3-block groups from

each queue to the PEs working in the same

SIMD group, and perform the FAC and MAC

work on these groups until the number of

remaining 3-block groups is less than the number

of PEs (i.e., 36). For example, suppose n=101

(i.e., 100 3-block groups) and the distribution of

the sizes of the diagonal blocks is {50(80),

20(60), 15(40), 15(20)}, where 50(80) stands for

50 blocks of size close to 80 x 80. One possible

PE mode configuration in this stage for this

matrix is: (a) SIMD(36), for 36 groups with

diagonal size 80 x 80; (b) SIMD1(14), for the

remaining 14 80-blocks and SIMD2(20), for 20

60-blocks; (c) After the 20 60-blocks are finished,

reconfigure SIMD2(20) to SIMD2(15), for 15

40-blocks and SIMD3(6), for 6 20-blocks.

SIMD(x) denotes that x PEs are in this SIMD

group.

Step 2 Assign the remaining 3-block groups in such a

way that groups of comparable size go to the

same column of PEs (see Figure 1) and every PE

has the largest possible number of idle nearest

neighbors. This is an effort to facilitate the

following PAC work. If necessary, reconfigure

the system into a different M-SIMD layout.

Step 3 A PE is reconfigured into MIMD as soon as it

finishes its work and no more 3-block group is

waiting in the task queue.

Step 4 Assign each PE in MIMD to the multiplication

of a pair of (row and column) factored border

blocks. Since the LDM has a shared port with its

east and south neighbors, every idle PE will help

its neighbors after it finishes its own work; no

data transfer incurs in this process.

Step 5 After the factorization of all the 3-block groups

and the multiplication of factored border blocks,

reconfigure all the PEs again into the SIMD

mode to carry out the PAC work.

Step 6 Factor the last block in the SIMD mode.

 Figure 4 shows���� a typical PE mode assignment in the

above procedure for large BDB matrices. When the number

of tasks in one or more task queues is larger than 36, we

start with one or more single SIMD executions, which is a

special case of M-SIMD in Step 1.

����������������������������!!!!				�������������(�*�������(�*�������(�*�������(�*����)����)����)����)�� ���(��������� ���(��������� ���(��������� ���(���������

��������������������������������

5. Performance Results and Analysis

Experiments implementing the above three scheduling

schemes were performed on the 36-PE HERA machine.

Table 1 shows the characteristics of the test matrices and

the execution times under these modes are presented in

Figure 5. We also implemented the BDB LU factorization

algorithm on a DELL Precision 8200 PC, which is

equipped with an Intel Pentium IV 2GHz microprocessor

and 256MB of memory. This processor was implemented

using an 8-layer copper 0.13um process and the FPGA we

are using was built with an 8-layer aluminum 0.15um

process. It is obvious that mixed-mode parallelism

consumes less time for all the matrices and the advantage

increases as the size of the matrices increases. In the

SIMD mode, some PEs are sometimes idle during the

factorization of the 3-block groups and the multiplication

of the border blocks. This results from the irregularity in

the size and shape of the assigned 3-block groups. Due to

insufficient work, for the 1000 x 1000 matrix the

performances of the SIMD, MIMD and mixed modes are

very close. In our architecture, the communication cost is

(M-SIMD)

(M-SIMD)

(M-SIMD

 &

 MIMD)

 (SIMD)

(SIMD)

(M-SIMD

 &

 MIMD)

not significant higher than that of SIMD, so their

performance is also close. However, MIMD tends to

perform better than SIMD in this algorithm for large

matrices. HERA outperforms the PC under all the

execution modes and actually its execution time increases

at a lower rate than that for the PC.

��������&(��&(��&(��&(������	��	��	��	��+���������������� �������������������+���������������� �������������������+���������������� �������������������+���������������� �����������������������

Matrix size (N) 1000 2000 3000 4000 5000

Total diagonal

blocks (n)

31 71 89 117 145

Dimension of

the largest

diagonal block

33 51 57 80 129

Dimension of

the smallest

diagonal block

19 38 21 25 33

Dimension of

the last diagonal

block

35 80 121 153 224

0

50

100

150

200

250

300

350

1000 x 1000 2000 x 2000 3000 x 3000 4000 x 4000 5000 x 5000

Matrix size

E
x
e
c
u

ti
o

n
 t

im
e
 (

m
s
)

SIMD

MIMD

MIXED-MODE

DELL PC

���������������������������� """"	� ���������� ������	� ���������� ������	� ���������� ������	� ���������� ������ ��)����)����)����)������ ���������������� �,-�.� -,-�� ��)��,-�.� -,-�� ��)��,-�.� -,-�� ��)��,-�.� -,-�� ��)�
����)���)������
��
����)���)������
��
����)���)������
��
����)���)������
��
....���)���/������(����������������������)���/������(����������������������)���/������(����������������������)���/������(�������������������
�������00�*+���00�*+���00�*+���00�*+

6. Conclusions

Mixed-mode parallelism can match better the

requirements of application algorithms throughout

execution. Thus, it can deliver much better performance

than the pure SIMD and MIMD execution modes. Recent

significant advances in new generation FPGAs provide a

viable and cost-effective approach in building high-

performance parallel computing platforms that target

scientific computing. We have presented here SIMD,

MIMD and mixed-mode implementations of parallel LU

factorization for large sparse BDB matrices on our 36-PE

HERA machine. HERA is a reconfigurable, pipelined

computing engine embedded in platform FPGAs. It is

flexible enough to allow mixed-mode execution realizing

various parallel processing modes such as SIMD, MIMD

and M-SIMD. Our design also supports floating-point

operations. The advantage of mixed-mode parallelism is

reflected in the experimental results which demonstrate

higher performance with increases in the matrix size.

Mixed mode is the best choice for all the matrices in this

problem. MIMD tends to outperform SIMD for large

matrices. We will continue to include additional features

in our architecture and explore more mapping techniques

for matrix-based problems. The benefits of mixed-mode

execution should become more visible with applications

that have more irregular computation and communication

patterns, and involve more frequent conditional

executions. With the anticipated speed and density

improvements for FPGAs, the high performance and cost-

effectiveness of our approach will become even more

preeminent in the near future.

References

[1] M. D. Theys, T. D. Braun and H. J. Siegel, "Widespread

Acceptance of General-Purpose, Large-Scale Parallel

Machines: Fact, Future, or Fantasy?" IEEE Concur., Vol.

6 No. 1, January-March 1998, pp. 79-83.
[2] B. Parhami, “SIMD Machines: Do They Have a

Significant Future?” Report on a Panel Discussion, 5th

Symposium Frontiers Massively Parallel Computation,

McLean, LA, Feb. 1995.

[3] H.J. Siegel, M. Maheswaran, D.W. Watson, J. K.

Antonio and M. J. Atallah, “Mixed-Mode System

Heterogeneous Computing,” in Heterogeneous

Computing, M. M. Eshaghian (Ed.), Artech House,

Norwood, MA, 1996, pp. 19-65.

[4] W.C. Meilander, J.W. Baker and M. Jin, “Importance of

SIMD Computation Reconsidered,” Proc. 17th IEEE

Int'l Parallel Distributed Processing Symp. (IPDPS2003),

April 2003, pp. 266–273.

[5] J.D. Allen and D.E. Schimmel, “Issues in the Design of

High Performance SIMD Architectures,” IEEE

Transactions Parallel Distributed Systems, Vol. 7, Issue

8, Aug. 1996, pp. 818–829.

[6] H.J. Siegel, et al., “The Design and Prototyping of the

PASM Reconfigurable Parallel Processing System,”

Parallel Computing: Paradigms and Applications,

International Thomson Computer Press, London, 1996,

pp. 78-114.

[7] G. J. Lipovski and M. Malek. Parallel Computing:

Theory and Comparisons. Wiley, New York, 1987.

[8] I. S. Duff, A. M. Erisman and J. K. Reid, Direct Methods

for Sparse Matrices, Oxford Univ. Press, Oxford,

England, 1990.

[9] A. Sangiovanni-Vincentelli, L. K. Chen and L. O. Chua,

“Node-Tearing Nodal Analysis,” Tech. Report ERL-

M582, Electronics Research Laboratory, College of

Engineering, University of California, Berkeley, Oct.

1976.

[10] K. Underwood, “FPGAs vs. CPUs: Trends in Peak

Floating-Point Performance,” ACM/SIGDA 12th

International Symposium on Field Programmable Gate

Arrays, Monterey, CA, Feb. 2004, 171-180.

[11] http://www.annapmicro.com/.

[12] X. Wang and S.G. Ziavras, "Parallel LU Factorization of

Sparse Matrices on FPGA-Based Configurable

Computing Engines," Concurrency Computation:

Practice Experience, Vol. 16, No. 4, April 2004, pp.

319-343.

HERA system frequency: 80MHz

